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Abstract 

Wireless location finding is receiving increasing attention in 
the field of wireless communications. This is is due to a recent 
order issued by the Federal Communications Commission (FCC) 
that mandates all wireless service providers to locate an emer- 
gency 911 caller within a high accuracy, by the year 2001. I n  this 
papet we derive a new (sub-optimal) maximum likelihood estima- 
tion algorithnt for the time and amplitude of arrival of a known 
transmitted sequence over a single path fading channel. The new 
algorithm is then applied to the case of CDMA wireless location 
finding. The paper discusses both simulation and field trial results, 
all of which demonstrate significant estimation accuracy improve- 
ment over known algorithms. 

1 INTRODUCTION 

Wireless location finding has recently emerged as a very es- 
sential public safety feature of future cellular systems. This has 
been emphasized by a recent federal order issued by the federal 
communications commission (FCC), which mandates all wireless 
service providers to provide public safety answering points with 
information to locate an emergency 91 1 caller with an accuracy 
of 125 meters for 67% of the cases [I] .  It is also expected that 
the FCC will tighten its requirements in the near future. This has 
boosted research in the field of wireless location finding, which has 
many other potential applications in areas such as location sensi- 
tive billing, fraud protection, mobile yellow pages, and fleet man- 
agement (see, e.g., [2]-[6]. 

Location finding mainly requires accurate estimates of the time 
and amplitude of arrival of the mobile station signal when received 
at various base stations. Obtaining such estimates is usually diffi- 
cult due to the low signal to noise ratios and to fast channel fading 
conditions encountered in wireless propagation environments [SI. 

Although several signal parameters estimation algorithms al- 
ready exist in the literature (see, e.g.. [7, 8, 9]), these algorithms 
are mainly designed for signal aquisition or tracking purposes, 
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where coarse estimates for the channel time delays and amplitudes 
are sufficient for online signal decoding. Using the same algo- 
rithms for wireless location applications is not adequate for the 
following reasons: 1) Channel fading is mainly considered con- 
stant during the relatively short estimation period of these algo- 
rithms, thus totally ignored. This assumption cannot be made for 
wireless location applications where the estimation period could 
be much longer. 2) The low precision of the coarse estimates pro- 
vided by these algorithms generally does not satisfy the precision 
levels needed in wireless location applications, especially the FCC 
requirements [5 ] .  

In this paper we first develop an efficient adaptive (sub- 
optimal) maximum likelihood procedure for estimating unknown 
parameters of a measured transmitted signal over a time-variant 
channel in the presence of additive white Gaussian noise. The 
properties of the proposed estimator are also studied. The pro- 
posed scheme is then used to estimate the time and amplitude of 
arrival of a known IS-95 CDMA sequence transmitted over a sin- 
gle path fading channel. 

2 Problem Formulation 

Consider the problem of estimating an unknown constant dis- 
crete time delay 7' of a known real-valued sequence { ~ ( n ,  7")) 

transmitted over a single path time varying channel, from a mea- 
sured sequence {r(n)}tZl that arises from the model' 

r ( n )  = A zo(n) s(n, 7 " )  + v(n) , ( 1 )  

where A is a constant unknown channel amplitude, v ( n )  is additive 
white Gaussian noise, and z"(n) is a complex ergodic random 
process of known autocorrelation function R, ( 2 )  defined as 

R,( i )  = E I O ( T I ) I ~ ( T ~  - i) . 

The sequence {~"(n)} accounts for the time-varying nature of the 
fading channel gain over which the sequence { s ( n ,  7")) is trans- 
mitted, while A represents the gain of the static channel if fading 

'By a known sequence (s(n,~O)} we mean one for which the 
dependency on n and T O  is known. The actual sequence itself is not 
known. 
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were not present. Without loss of generality, we will assume that 
the sequence {zO(n)} has unit power, i.e., lz0(n)l2 = 
1. The maximum likelihood (ML) estimates of {~",2(n)} are 
given by [IO] 

{ f ,  i.(n)) = arg m m  [ P  (~(11, . . . , r ( K ) l { ~ ,  z(73)))l , 
I r d n ) I  

where the likelihood function P ( r 1 { ~ ,  z(n)}) is equal to 

and C1 and Cz are positive constants that are independent of 
(7, z(n)}. Thus, the ML estimates of {~",z~(n)} are given by 

where the cost function J M L  is defined by 

A' 
K -- Iz(n)l2s2(n, T )  . 

n = l  

This construction requires an infinite dimensional search, and is 
not feasible in practice even when T and z(n)  are evaluated over 
a dense grid, which is generally the approach adopted in ML esti- 
mation over single path static channels (see, e.g., [7]). 

3 Proposed Estimator 

We now develop an efficient sub-optimal ML estimator that 
requires a finite number of search bins. To arrive at this estimator, 
we assume the case of slow channel variation, namely we assume 
that 

~ . 1  q n j  is piecewise constant over intervals of N samples 

where IQ is a parameter that depends on the environment condi- 
tions. An optimal choice for N that is based on the available 
knowledge of the channel autocorrelation function R,(z) is dis- 
cussed in the next section. 

Now introduce a sequence { ~ " ( m ) }  that is an N under- 
sampled version of {zO(n)}, i.e., 

z"(m) = zo ( (m  - l ) N  + 1) , 
for m = 1 , 2 , .  . . , M. where M = KIN is assumed to be an 
integer. Using A. l  and ( I ) ,  expression (2) becomes 

where no = (m - l ) N  + 1. Consider further the choice of z (m)  
that corresponds to the solution of 

which is found to be z (m)  = zU(m), and leads to the following 
cost function: 

Although we still require a one dimensional search of J,(T) over 
7, J,(T) cannot be maximized since no direct measurement can 
be obtained for z" (m). However, we can see that J ,  ( T )  reaches 
its maximum at T = T O ,  which gives a maximum value of the time 
limited autocorrelation function xrfn, s (n ,  ~O)s(n, T ) .  We also 
observe that this cost function is a sum of partial correlations that 
are weighted by the power of the received signal in each partial 
correlation interval. An alternate cost function that has the same 
maximum value at T~ as J ,  ( T )  is given by 

In this case, we are maximizing the square of the autocorrelation 
function. Note that this is implied by the fact that any autocorre- 
lation function attains its maximum magnitude at T = T O .  Using 
A. 1 and ( I )  leads to 

- M I m N  

To arrive at a practically feasible algorithm, we further assume 
that: 

A.2 The partial cross-correlation of v(n)  and s (n ,  T )  over N 
samples is considerably smaller than the partial autocorre- 
lation of s(n, T )  over the same interval . 

This assumption is actually practical since ~ ( n )  and s(n, T )  are 
independent. In fact, it becomes true as N and K + 00.~ In this 
case, our maximization problem is equivalent to maximizing 

- M I _  mN 

Thus, the optimal ML estimate of T O ,  when A. l  and A.2 hold, and 
for sufficiently large K, becomes 

. M I _  mN 

(3) 

Figure 1 shows a practical scheme for implementing (3). We 
can see that this scheme only requires a one dimensional search, 

*However. if N is small, this cross correlation term will introduce an 
additive bias in the cost function. This bias term will be studied in the next 
section. 
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which is dramatically simpler than the optimal ML estimator 
given in (2). We will term the partial correlation operation 

CrTn,, r (n)s (n ,  T )  coherent integration or coherent averag- 
ing since the phase of the samples of the sequence {r(n)s(n, T ) }  

is kept during this averaging process. Furthermore, we will 
term the averaging operation over the M partial correlations non- 
coherent integration or non-coherent averaging since the phase of 
each of the partial correlation samples is removed before perform- 
ing the averaging operation. 

Here, we may add that in order for A.1 and A.2 to hold 
simultaneously, a careful choice of N should be made. In the next 
section, we derive an optimal value for N that would maximize 
the estimation accuracy of our algorithm. 

. . - I  

Figure 1. Sub-optimal estimator f o r  single path fad- 
ing channels. 

4 Parameter Optimization and Amplitude 
Estimation 

We now finalize the proposed algorithm by providing a design 
equation for the parameter N .  We also show how to estimate A 
by a simple peak piclung operation. In the following analysis, as- 
sumptions A. l  and A.2 are not used. Although these assumptions 
were used in deriving the estimation scheme, ignoring them in the 
following analysis will help us achieve the following goals: 1) Per- 
formance evaluation of the estimation scheme when assumptions 
A . l  and A.2 do not hold. 2) Arriving at an optimal value of the 
design parameter N .  3) Deriving an accurate estimation scheme 
for estimating the received signal amplitude A. 

We will consider the case of an infinite received sequence 
length (M --f CO). Thus, J ( T )  becomes, by the law of large num- 
bers, 

in terms of the expectation operator. Using ( I ) ,  one obtains 

I J ( T j  = E  (Azo(n)s(n,  r0)s (n ,  T )  + v’(n, T ) )  

where v’(n,  T )  = v(n)s(n, T )  . 

following assumption: 
For mathematical tractability of the analysis, we impose the 

- A.3 The sequence {s(n, T ) }  is identically statistically inde- 
pendent (i.i.d), and is independent of the channel fading 
gain sequence {zo(n)} . 

Then, it is straightforward to show that at T = T O ,  the cost function 
J ( T ” )  is equal to 

where U,” is the variance of the noise term v (n) .  Equation (4) 
shows that as M + CO, the value of the cost function at T = TO 
is composed of two terms. The first term is proportional to A’, 
while the second term is proportional to 0,”. Thus, a performance 
index that we might maximize is the signal-to-noise ratio (SNR), 
defined as the ratio of the signal and the noise terms at T = T O .  

This SNR (S) is given, from (4). by 

N - 1  
2 ( N  - i)R,(i) 

S =  $ (R,(O)+ i=l N 

The SNR at the input of our scheme is <. Thus, the SNR gain 
introduced by the algorithm (SG) is given by 

U” 

.. 
i=l  

The optimal value of the coherent averaging period (Nopt) is ob- 
tained by maximizing the SNR gain given in ( 5 )  with respect to 
N .  Thus, Nopt is computed by equating 

to zero, which directly leads to 

Nopt  - 1  

iR,(i) = o  . 
i=l  

This shows that the coherent integration interval N should he 
adapted based on the available knowledge of the channel accord- 
ing to (6). 

We will now use this analysis to obtain an accurate estimate 
of the amplitude A. Equation (4) shows that the amplitude of 
the output of our proposed estimation algorithm suffers from two 
biases. The first bias is an additive noise bias that is caused by 
non-coherent integration and that increases with the noise vari- 
ance. This noise bias is given by 
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and it vanishes as N + 00. The second bias is a multiplicative 
fading bias that arises from coherent averaging and increases as 
the channel rapidly changes. It is given from (4) by 

(8) 
R,(O) + Ncl 2(N - i)R,(i) 

NZ Bf = - 
i = l  

It is clear that this multiplicative fading bias is less than or equal to 
unity. This bias is due to phase misalignment of the complex chan- 
nel coefficients at different time instants, which leads to a degra- 
dation in the coherent integration output. It also vanishes for the 
case of static channels since Bf is equal to unity in this case, i.e., 
when A. 1 becomes true. This explains why previous conventional 
designs ignored this bias as fading was not considered in these 
designs [7]. Clearly, both biases degrade the precision of the esti- 
mation of A significantly, especially at low signal-to-noise ratios 
and fast channel variations. 

Two correction factors are therefore needed to correct for the 
noise and fading biases. Both of the biases should be estimated 
and used to correct the maximum of the cost function J ( r ) .  Then, 
the amplitude estimate A can be taken as 

recent field trial that was performed using our estimation scheme 
and resulted in a root mean square location error of 57 meters 
[ 121, which meets the current required FCC requirements in the 
case of single path channek3 

Table I :  The proposed estimation algorithm. 
Given a received sequence {r(n)}bl  that arises from the model: 

r ( n )  = A zo(n)s(n, 7") + v(n) , 
a (sub-optimal) maximum likelihood estimation algorithm for the 
time and amplitude of arrival ( T O ,  A) that maximizes the signal- 
to-noise ratio gain at the output of the estimation scheme is given 
as follows: 

r =  argmr=J(r) I 

(9) 

where C-, and Cf are the two needed correction factors that are 
given by 

where Bn and are estimates for B, and B f ,  respectively. Ob- 
taining accurate estimates for B, and Bf is actually feasible in 
practical applications. A successful application for this correction 
technique is given in the next section in the context of CDMA lo- 
cation finding (see [ l  I]). We may also add that neither of these 
correction factors is needed for the estimation of ro as the preci- 
sion of this estimate depends only on the SNR gain over A2/o :  
given in (5 ) .  

5 CDMA IS-95 Example 
ACKNOWLEDGMENT 

Figure shows the scheme that is used to implement our estima- 
tion procedure in the case of an IS-95 CDMA system. The scheme 
evaluates the cost function, picks the argument r that maximizes it, 
assigns this argument to the time of arrival estimate. The scheme 
also uses an estimate of the maximum Doppler frequency to cal- 
culate the fading bias. It then equalizes the maximum of the cost 
function for two fading and noise biases and uses the equalized 
value for amplitude estimation. The estimation algorithm used in 
this specific case is given in Table I .  Further motivation and ex- 
planation of this structure is given in [ 1 I] ,  along with a study of its 
sensitivity to errors in the fading channel Doppler estimate. 

Figures 3 and 4 show the estimation mean absolute TOA error 
and the AOA mean square error versus the received signal chip 
energy-to-noise ratio over a Rayleigh fading channel for M=128 
and various values of the maximum Doppler frequency. The figure 
also shows that the proposed algorithm outperforms conventional 
estimation algorithms significantly (see, e.g., [9]). Several other 
simulation results are given in [ l l ]  along with the results of a 

where 

N,,t is the solution of xzrt-l iR,(i) = 0 , 

n o  = (m - 1)Nopt + 1 , 
K 

Nopt 
M = - ,  

R,(i) is the autocorrelation function of the sequence {z0(n)} 
and Kn 5 Nopt M .  
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