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Abstract 

Although the least mean fourth (LMF) and the least 
mean mixed norm (LMMN) adaptive algorithms are recom- 
mended for highly nonstationary environments, their track- 
ing capabilities are not yet fully understood. This is mainly 
due to the fact that both algorithms involve nonlinear up- 
date equatioqs for the weight error vectoK In this paper we 
present a new approach to the tracking analysis of the LMF 
and LMMN algorithms, which bypasses the need for work- 
ing directly with the weight error vector; and is based on 
a fundamental energy-preserving relation. By studying the 
energy $ow through the system in steady-state, we derive 
expressions for the steady-state excess mean square error 
(EMSE) for both algorithms. We also derive optimal pa- 
rameter values that minimize the EMSE in each case, and 
support our conclusions by simulations. 

1 INTRODUCTION 

Consider measurements { d ( i ) }  that arise from the linear 
model 

where v( i )  accounts for measurement noise and modeling 
errors, and ui denotes non zero row input (or regressor) vec- 
tors. Recursive estimates for the unknown weight vector wp 
can be obtained adaptively via 

where wi is an estimate for wp at time i, p is the algorithm 
step size, and fe(i) is a scalar function of the estimation 
error e(i) = d ( i )  - uiwi. The most popular variant of 

'This material was based on work supported in part by the National 
Science Foundation under Award CCR-9732376 and ECS-9820765. 

(2) is the least mean squares (LMS) algorithm [ I ] ,  which 
corresponds to the linear error function ftMS(i) = e ( i ) .  
Among other variants are the least mean fourth (LMF) [2] 
and the least mean mixed norm (LMMN) [3,4] algorithms, 
which correspond to the error functions f k M F ( i )  = e 3 ( i )  
and f f M M N ( i )  = 6 e ( i )  + (1 - 6) e 3 ( i ) ,  respectively. The 
parameter 6 is called the norm mixing parameter. 

It is known that the LMF algorithm has better steady 
state performance than that of the LMS algorithm for ap- 
plications in which the plant noise v ( i )  has a probability 
density function with short tail [2]. However, its stability 
properties are worse than those of the LMS algorithm [3]. 
On the other hand, the LMMN algorithm has better steady 
state performance than the LMS algorithm and better stabil- 
ity properties than the LMF algorithm [4, 51. 

Now, unlike the LMS algorithm, no tracking analysis 
is available in the literature for the LMF or LMMN algo- 
rithms. This is mainly due to the nonlinear nature of their 
update equations, which makes their tracking analysis us- 
ing conventional approaches rather difficult. In this paper 
wc propose a new approach to the tracking analysis of both 
algorithms. The approach bypasses the need for working 
directly with the weight error vector w i  = wp - wi, and is 
based on a fundamental energy-preserving relation. 

In a nonstationary environment, w4 is often assumed to 
vary randomly with time according to (see, e.g., [SI): 

W?+I = W: + qi (3) 

where qi is a random vector. An important performance 
measure, which characterizes how well an adaptive al- 
gorithm tracks such variations in the environment, is the 
steady-state mean-square-error (MSE), defined by 

MSE = lim Ele(i)I2 = 
t-b 00 

Under the often realistic assumption that (see, e.g., 
[ 1,6,71): 
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A.1 The noise sequence { ~ ( i ) )  is identically individ- 
ually distributed (iid) and statistically independent of 
the regressor sequence {U,}, 

we find that the MSE is equivalently given by 

which is dependent on W , .  In the sequel we shall derive 
expressions for the steady-state excess mean square error 
(EMSE), 

A C = MSE - D," = lim E )u,w,12 , 
s-+m 

as well as expressions for the optimum values of the step 
size and the n o m  mixing parameter that minimize the 
steady-state EMSE, C. 

2 Fundamental Energy Relation 

We start by noting that with any adaptive scheme 
we can -associate the following so-called a-priori and a- 
posteriori estimation errors, ea(i)  = U i e i  y e p ( i )  = 
Ui (@,+I - q,). Using the data model (1). it is easy to see 
that the errors { e ( i ) > e a ( i ) }  are related via e ( i )  = ea(i) + 
w(i ) .  If we further subtract w: from both sides of (2) and 
multiply by U ,  from the left, we also find that the errors 
( e p ( i ) ,  ea(z), e ( i ) }  are related via: 

(4) 

where we defined, for compactness of notation, p ( i )  = 
l/l(ui1(2. Substituting ( 3 )  and (4) into (2), we obtain the 
update relation 

diri+l = @, - p( i )u t [e , ( i )  - e,(i)] + 9, . 

By evduafing the energies of both sides of this equation we 
obtain 

II*i+l - sill2 + ii(i)Iea(i)12 = \I*iI12 + ~ ( i ) I e p ( i ) I ~  ( 5 )  

This energy conservation relation, first noted in [9]-[ 1 11, 
holds for all adaptive algorithms whose recursions are 
of the form given by (2); it shows how the energies of 
the weight error vectors at two successive time instants 
are related to the energies of the a-priori and a-posteriori 
estimation errors. It also establishes that the mapping 
from { + i t  m e p ( * ) }  to {*,+I - qi, m e a ( i ) }  is en- 
ergy preserving (or lossless). Furthermore, by combining 
( 5 )  with (4), we see that both relations establish the ex- 
istence of the feedback configuration shown in Figure 1, 
where 7 denotes a lossless map and q-' denotes the unit 

Figure 1. Lossless mapping and a feedback loop. 

delay operator. It could be seen from the figure that the sys- 
tem nonstationarity vector qi acts as a disturbance input to 
the system. 

We now use the energy relation (5 )  to evaluate the MSE 
of an adaptive filter once it reaches steady-state. To do so, 
we impose the following assumptions, which are typical in 
the context of the tracking analysis of adaptive filters (see, 
e.g., t 81). 

- A.2 The sequences {U,} and { ~ ( i ) }  are mutually 
statistically independent of {q,). 

- A.3 The sequence {s i }  is a stationary sequence of 
independent zero-mean vectors whose autocorrela- 
tion matrix Q = Eqiqt is positive definite. 

Using E Ilairi+1112 = E I(diril12 in steady-state, (4), A.2 
and A.3, it  is straightforward to verify that the energy rela- 
tion ( 5 )  becomes 

EP(i ) le , ( i ) l2  = Tr(Q) + E f i ( i )  le.(i) - :fe(z)lz w . (6) 

We now show how to use this relation in evaluating the 
tracking performance of the LMF and LMMN algorithms. 

3 Tracking Analysis 

Throughout the analysis, we will only study the steady 
state performance of the LMMN algorithm and then treat 
the LMF algorithm as a special case (that corresponds to 
the choice 6 = 0). Now in steady state, and when is small 
enough, it is reasonable to assume that leO(i)l2 << (v(i)I2 
(see [ 5 ] ) .  Using e ( i )  = e a ( i )  + w ( i ) ,  we can then write the 
error function of the LMMN algorithm as 

Introduce, for compactness of notation, 
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Using A.l  and the above approximation for fe(i), it is 
straightforward to show that equation (6) becomes 

2p(a  + 38u;)C = a ( Q )  + p’ %(R) (d’u; + 2d@: + a’(:) 
+p2 E Ilu;l121eo(i)12[6’ + 6 6 8 ~ :  + 98’trv‘I (7) 

To solve for CLMMN we consider two cases: 

1. For sufficiently small p, we can assume that the third 
term on the RHS of (7) is negligible with respect to the 
second term, so that 

( 8 )  

At d = 0, equation (8) reduces to the EMSE of the 
LMF algorithm, which is given by 

(LMMN = l k ( Q ) / p  + p T r ( R )  ( 6 ’ d  + 2S8€,4 + a’€:) 
2 (a + 3 8 4  

(9) CLMF = n ( Q ) / P  -k CL n ( R k f  
6u: 

2. For larger values of p, equation (7) can be solved by 
imposing the following (often studied) assumption: 

A.4 At,steady state, p211u,1(2 is statistically inde- 
pendent of lea(i)12. 

This assumption in fact becomes realistic for long filter 
lengths. Furthermore, it becomes exact for the case 
of constant modulus data that arises in some adaptive 
filtering applications [ 12, 131. Using A.4, and (7), we 
then obtain 

T r ( Q ) / p  + pTr(R) (a2u: + 26Bt: + a’[:) 
CLMMN = 2 (6 + 38~:) - p Tr(R) (6’ + 6650: + 98t:) (10) 

and 

4 Parameter Optimization 

We now investigate the existence of optimum design 
parameters {do, po}  that minimize the steady state EMSE 
for the LMMN and LMF algorithms, as given by (8) and 
(9). This is done for the following two cases: 

A. Fixed 6 and optimal p 
If the norm mixing parameter 6 is a priori chosen to fullfill 
some convergence properties, then there will always exist 
an optimum value of p that minimizes CLMMN, which is di- 
rectly given from (8) by 

P O  LMMN = JTr(Q)/  (Tr(R) + 268.$? + 8’tf)) . (12) 

The corresponding minimum value of the steady state 
EMSE is given by 

The LMF algorithm always has a constrained 6 that is equal 
to zero. Therefore, the optimum step size that minimizes 
its steady state EMSE, given in (9) and the corresponding 
minimum steady state EMSE, are respectively given by 

(14) p y  = J n(Q)l (a(R)€,B) 

B. Optimal 6 and p 

obtain 
Differentiating (8) separately with respect to p and 6 ,  we 

and 

[ p T r ( R ) ( D 6  + E)(2A6 + B )  
ac 1 
ad - 2(D6 + E)’ 
- -  

- D  ( T r ( Q ) / p  + p n ( R ) ( A 6 ’  + Bd + C))] , (17) 

where A = ((r: - 2(: + (t), B = 2 ((: - (:), C = <:, 
D = (1 - 30;) and E = 3 ~ ; .  Equating 2 and 3 to zero, 
it is straightforward to show that C has one local minimum 
or maximum at 

2DC - B E  
2 A E - B D  ’ a, = (18) 

and 

p0 = Jn(Q) /  ( a ( R ) ( A a , ”  + Sao + C)) . (19) 

The pair { do, po} corresponds to a minimum iff C possesses 
a positive definite Hessian matrix H(6, p),  which is defined 
by 

Differentiating (1 6) and ( 1  7) to obtain the second partial 
derivatives of C and substituting into (20), it can be shown 
that the Hessian matrix at {do, po} is given by 

The eigenvalues of H(J0, p0)  are the solutions of the char- 
acteristic equation 
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For the two eigenvalues to be positive, the system parame- 
ters should satisfy A > 0 and D2 Tr(Q) < A . Tr(R).  Fur- 
thermore, since 6, E [O, l], the term ( 0 6 ,  + E) is strictly 
positive. Using (8), we deduce that if the system noise mo- 
ments and the degree of nonstationarity satisfy 

and 

then the steady state EMSE of the LMMN algorithm will 
have a well defined minimum at {h, ,  po} given respectively 
by 

(23) 
(1 - 3u,2)21g - 3a: (tu" - (U") 

30: (0: - 2rV4 + t:) - (1 - 3UZ)Z ((U4 - ($) 
6, = ' 

and 

PO = $I'r(Q)/ ('WR) (6%? + 26,(%)€,4 + (8,)z($)) (24) 

Moreover, the corresponding minimum value of the EMSE 
will be 

Gaussian Plant Noise 
For Gaussian system noise, Ef = 3af and [: = 15~:. Then 

0; + (," - 2<,4 = ~ ; ( l  - 60; + 150:) 
= 1 5 u : ( ( u : - ; ) 2 + $ )  > o ,  

which implies that (2 1) is alwiys true for the Gaissian noise 
case. Then, if the system degree of nonstationarity satisfies 

the optimum value of 6 is given from (23) by 

15~,6(1 - 3 ~ ; ) '  - 30; ( 3 ~ :  - 150:) 
30: (0; - 6 4  + 15~:) - (1 - 3 4 ) '  (30: - 15~~:) 6, = = 1, 

which corresponds to the LMS algorithm with an optimal 
step size given by 

and a corresponding minimum EMSE of 

<=in = 0" J'(Q) Tr(R) 

That is, for Gaussian system noise, if (26) holds, the LMS 
algorithm outperforms the LMF and LMMN algorithms; an 
interesting conclusion. 

5 Simulation Results 

Several simulations are carried out to validate our the- 
oretical results. In the simulations, the unknown system 
weight vector wp is of length 10 and the elements of the sys- 
tem nonstationarity and input vectors, qi and ui, are white 
Gaussian of variances CY: and unity, respectively. The plant 
noise is chosen to be a linear combination of normally and 
uniformly distributed independent random variables of vari- 
ances a: and af, respectively. Each simulation result is the 
steady state statistical average of 100 runs, with 10' itera- 
tions in each run. 

Figure 2 compares the simulation and theoretical results 
of the steady state MSE of the LMMN algorithm for qq = 
5 x 6 = 0.8, a: = lo-', and af = 10-'/12. It is 
seen in the figure that the theoretical and experimental MSE 
are in good match. The figure also shows that the steady 
state MSE possesses a minimum value of 0.0113 at p = 
0.006, which are in good agreement with the corresponding 
theoretical values obtained from expressions (1 3) and ( 1  2) 
as 0.01136 and po = 0.0061, respectively. 

O a  0- O m S  0 0 3  001 0012 OOla 0016 0058 001 
00,121, ' ' ' ' ' ' ' I 

L 

Figure 2. Theory and simulation MSE vs. p .  

Figure 3 compares the theoretical MSE obtained from 
expressions (8) and (10) with the experimental MSE for 
oq = lo-', 6 = 0.5, CY: = and = 10-4/12. 
The figure shows that both expressions are in good match 
with simulation results at small values of p. However, ex- 
pression (IO) is in a much better match with the simulation 
results for relatively larger values of p, which validates the 
use of assumption A.4. 

Figure 4 shows the experimental MSE and the theoret- 
ical MSE obtained from expression (8) versus the norm 
mixing parameter 6 for Gaussian plant noise of variance 
a; = up = and p = 0.001. It is clear that 
the minimum value of the MSE occurs at 6 = 1 for Gaus- 
sian noise. 

Figure 5 shows the theoretical and simulated EMSE 
versus p, for the optimal value of 6 calculated from ex- 
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Figure 3. MSE vs. p f o r  6 = 0.5. Small and large p 
theoret ical  MSE correspond to (8) and (IO), respect ively .  

a 

Figure 4. T h e o r y  and simulat ion MSE vs .  6 for G a u s -  
s ian  p lan t  noise .  

pression (23) to be 6, = 0.5432, U: = U: = 0.1, and 
uq = -loy3. Figure 6 shows theoretical and simulated re- 
sults versus 6, for the optimal value of p calculated from 
expression (24) to be p, = 0.0029. Both simulations show 
that optimal parameter values obtained from simulations, 
{6,, p,} = {0.59,0.003}, are in good match with the val- 
ues, {0.5432,0.0029}, given by (23) and (24), respectively. 
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