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Abstract

Frequency-domain implementations improve the compu-
tational efficiency and the convergence rate of adaptive
schemes. This paper develops frequency-domain adaptive
structures that are based on the trigonometric transforms
DCT and DST. The structures involve only real arithmetic
and efficient algorithms exist for computing these trans-
forms. The new filters are derived by first presenting a
derivation for the classical DFT-based filter that allows us
to pursue these extensions very immediately.

1 Introduction

Computational complexity is a burden in applications
that require long tapped-delay adaptive structures, such as
acoustic echo cancelation where filters with hundreds or
even thousands of taps are necessary to model the echo path.
Frequency-domain and subband adaptive filters have been
proposed to reduce the computational requirements inher-
ent to such applications (see, e.g., [1, 2, 3, 4]). These tech-
niques not only result in more efficient computations (due to
the use of efficient FFT implementations and block signal
processing) but they also improve the convergence rate of
an adaptive algorithm (due to a decrease in the eigenvalue
spread of the correlation matrix of the signals in the sub-
bands). It is also known that the DFT matrix uncorrelates
stationary signal vectors whose covariance matrices are cir-
culant so that, in this case, the input signals to the subband
filters will be further uncorrelated.

In this paper we develop frequency-domain adaptive
structures that are based on the trigonometric transforms
DCT and DST. The resulting filters will involve only real
arithmetic and efficient algorithms exist for computing the
DCT and DST (see, e.g., [5]). They are also better suited to
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input signals whose covariance matrices can be diagonal-
ized by the DCT and DST (e.g., covariance matrices that
can be represented as the sum of Toeplitz and Hankel ma-
trices — see Sec. 4). The new adaptive structures are derived
by first presenting a derivation for the classical DFT-based
filter that allows us to pursue these extensions very imme-
diately.

2 A Block Estimation Problem

Consider two jointly wide-sense stationary (WSS) and
zero-mean random sequences {z(n),d(n)}, and define
their M —long block column versions

x(n)
d(n)

co{z(Mn),z(Mn —1),... ,a(Mn —~ M + 1)}
col{d(Mn),d(Mn —1),... ,d(Mn - M + 1)}

The z—spectrum of {x(n)} and the cross z-spectrum of
{d(n)} and {x(n)} are denoted by Sx(z) and Sax(z), re-
spectively. The linear least-mean-squares filter for estimat-
ing d(n) from {x(n), —o00 < n < oo} is given by G(z) =
Sax(2)Sx ' (), and is represented in Fig. 1. The signal e(n)
denotes the estimation error, e(n) = d(n) — d(n), and, us-
ing z—transform notation, d(z) = G(2)x(z).

d(n)

-yen)
20, G(z)

v

Figure 1. Block estimation problem.

It is known that for WSS signals {z(n), d(n)} the spec-
tra Sx(z) and Sax(z) are pseudocirculant (PC) matrix!
functions [6]. Moreover, since the inverse of a PC matrix is
also PC, and since the product of two PC matrices is PC,

1A pseudocirculant matrix function K (z) is essentially a circulant ma-
trix function with the exception that all the entries below the main diagonal
are further multiplied by z—! — see Eq. (1).



it follows that the optimal filter G(2) is also PC, viz., it has
the form (for M = 3)

[ go(2) g1(2) g2(2) :l
G(2)=| z7'g2(2)  go(z) al2) |. (@D
77h91(2) 271g2(2) go(2)

[In fact, the entries g;(z) represent the polyphase compo-
nents of the (wideband) LTI filter G(z) that estimates d(n)
from {z(n), —00 < n < o0}.]

Due to its structure, the matrix G(2) can be factored into
G(z) = P(2)Q(z), where P(2) is an M x {(2M — 1) matrix
function with Toeplitz structure, e.g., for M = 3,

9o(2) g1(2) g2(2) O 0
P(z) = 0 go(2) g1(2) g2(2) O |, (2
g0(2) 91(2) g2(2)

0 0

and Q(z) is a 2M — 1 x M matrix with a leading identity
block and a lower block with shifts, say for M = 3 again,

1 0 0
0 1 0
Qz)=1] 0 0 1 3
z7b 0 0
0 2t 0

3 The DFT-Based Adaptive Structure

The pseudocirculant structure of G(z) can be exploited
to derive a known frequency-domain adaptive filter that re-
lies on the DFT, and which is known in the literature as
the multidelay adaptive filter (or MDF — see [1, 2, 3]). The
original derivation of this structure is considerably different
from the approach we present in this paper. Our derivation
is based on exploiting in a direct way the PC structure of
G(z). As a fallout, the argument will suggest immediate
extensions that rely on other signal transformations (such
as the real trigonometric transforms DCT and DST - see
Sec. 4).

We start by embedding the M x (2M — 1) Toeplitz ma-
trix P(z) into a (2M — 1) x (2M — 1) circulant matrix
function C(z) (a similar technique was used in [7] to pro-
pose efficient structures for block digital filtering), say for
M =3,

90(2) q1(z) g2(2) O 0
0  go(2) gi(2) ga(2) O
C(z) = 0 0 go(2) gi(2) ga2) |, @
g2(z) 0 0 go(2) a1(2)
g1(z) g2(2) O 0 go(2)

so that P(z) = [Ips 0]C(z), where I is the M x M
identity matrix and 0 is the M x M — 1 null matrix.
Now the circulant matrix C(z) can be diagonalized by the
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(2M —1) x (2M — 1) DFT matrix F as C(z) = F*W(2)F,
where W(2) = diag{wo(2), ... ,wapr—2(2)} and * denotes
complex conjugate transposition. Note in particular that the
entries of the first row of C(z) satisfy (e.g., for M = 3)

go(2) wo(z)

g1(2) wy(2)

92(2) | =F | wa(2) ®)
0 ’LU3(Z)
0 w4(z)

In other words, not every diagonal matrix W(z) in C(z) =
F*W(z)F will result in a circulant matrix C(z) of the form
(4). This is because the transformation (5) shows that the
{w;(2)} should be such that the last two entries of the trans-
formed vector are zero. We shall invoke this constraint at
the end of this section when deriving the so-called con-
strained adaptive structure.
We can now write G(z) = P(2)Q(z) in the form
G(z) = Iy OJF*W(2)FQ(z) . 6)
The estimation error e(n) = d(n) — d(n) is then given by,
in the z-transform domain,

e(z) = d(2)—[Iy OFW()FQ(2)x(z). (7)
Now define the (2M — 1) x 1 transformed signal
X(2) £ FQ(2)x(2) £ col{zp(2), 24 (2), . , Shar—2(2)}-

Then

W(2)x'(z) = col{wo(2)z((2), - - -, Wanr—2(2)Thar_2(2)} -

In a tapped-delay-line adaptive estimation of the filter G(z),
we first approximate the diagonal components {w;(z)} by
FIR filters with (column vector) weights denoted by {w;}
and of length N/M each (assuming further that the wide-
band filter G(z) is approximated by an FIR filter of length
N). In this case, the output of each term w;(z)z}(z) at a
certain time instant n can be obtained as the inner product
x}(n)w;, where x.(n) is the state (row) vector correspond-
ing to w; at time n and is given by

xj(n) =[ zi(n) zi(n-1) zi(n-$+1) ] .

Define the (2M — 1) x 4% (2M — 1) block diagonal matrix
of regression vectors at time n,

X('n') = diag{xﬁ(n)» x'l (n)a oo vxle—Z ('I’L)} ’

and the following (2} — 1)4¥. column vector of unknown
weight vectors that we wish to determine,

W = COl{W(),Wl,. . ,WZM—Z} .



1t then follows from the error equation (7) that
e(n) =d(n) — [Iyy OJF*X(n)W .

An LMS-based adaptive algorithm that recursively esti-
mates the W is given by

Wit = W, + pX (n)e'(n) ®
where we introduced the transformed error signal
€e'(n) AF [ 134 ] e(n). )]

Note in particular that the update for the estimate of the i—th
weight vector w; is of the form (in terms of the ¢—th entry
of €'(n) and the i—th regression vector x}(n)):

ei(n) .

This suggests an alternative way for rewriting the adaptive
algorithm (8), where instead of collecting all unknown col-
umn weight vectors {w;} into a single column vector W,

we collect their conjugate transposes into a block matrix of
dimensions (2M — 1) X % Thus define

Wingl = Wi + - [X(n)]*

Wo xp(n)
w; xi(n)
w=| |, Xm=| . :
WiM—1 Xom—1(n)
and E(n) = diag{ey(n),... ,e,s;_,(n)}. Then the uncon-
strained frequency-domain adaptive filter becomes
W1 = Wy + pA 7 (n)E* (n)X(n) . (10)

where we further introduced a (2M — 1) x (2M — 1) di-
agonal weighting matrix A(n); its entries consist of power
estimates of the inputs of the individual subband channels,

A(n) = diag {)\0 (n), ceey )\QM_z (Tl)} 3

with each A;(n) evaluated via
Ai(n) = BAia(n) + (1= Blzi(n)|*, 0<B<1,

with initial condition equal to 1.

The reason for the qualification unconstrained is that the
filters w;(2) that result from the weight estimates in W,,
do not necessarily satisfy the constraint (5). A constrained
version of the algorithm is obtained as follows (as suggested
by the relation (5)). We first multiply W,, by F followed by
(XIas ® 0) in order to zero out its last M — 1 rows. We then
return to the frequency domain by multiplying the result by
F*. That is, the constrained estimate, denoted by W¢,, is
obtained via W7, = F* (I ©0)FW,, so that the recursion
for the constrained frequency-domain adaptive filter is

Wiis = WE + uF*UrFA™ (n)E* ()X (n) ,
with Up = (IM @ 0).

(1D

386

4 A DCT-Based Adaptive Structure

The well-known DFT-based adaptive structure was thus
rederived above by embedding the matrix P(z) into a larger
circulant matrix C(z), which was then diagonalized by the
DFT matrix. Now one could embed P(z) into other larger
matrices that are not necessarily circulant, but which could
still be diagonalized by other orthogonal transforms, say by
trigonometric transforms. In this section, we focus on the
DCT transform and, in particular, consider the following
so-called DCT-ll matrix, say of dimensions K x K2

Cir= \/7 [77] iz + 1)7r] o

1,j=0

where n; = 1/\/§ for 5
otherwise,

It is known that Cy; diagonalizes K x K structured
matrix functions A(z) that can be expressed as the sum
of Toeplitz-plus-Hankel matrix functions in the following
form (this fact is developed in [8, 9] in the context of con-
stant matrices with so-called displacement structure [10]),

=0andj = Kandy; = 1

A(2) = T(z) + H(z) + B(2) , (12)
where T(2) is a symmetric Toeplitz matrix, H(z) is a Han-
kel matrix related to T(z), and B(z) is a “border” ma-

trix also related to T(z). For example, for K = 4,

{A(z), B(z), H(2)} have the forms
togzg t]_EZ; tggzg tsEZ;
t1(2) to(z) ¢ t.
TE) = | 25 66) o0 i)
L t3(z) tz(z) tl(z) to(z)
i togzg tlgzg tzgzg t3(2)
t1(z)  ta2(z t3(z 0
HE) = | 6e) 6 0 —t(2)
| t3(z) 0 —t3(2) ~ta(2)
B0 4(6) L) ()
B = | ) (Va-2).
L t3(2)

Returning to the Toeplitz matrix P(z) in (2), which arises
from the representation G(z) = P(z)Q(z), we now embed
it into a matrix A(z) that can be diagonalized by Crry (in
contrast to the earlier embedding into the circulant matrix
C(2z)). We do so as follows. Assume, for simplicity, that

2We hasten to add that the derivation applies equally well to other
trigonometric transforms, such as DCT-1to DCT-IV and DST-I to DST-
IV. These transforms are also known to diagonalize matrices A(z) of the
form (12) for different choices of the Hankel and border matrices, H(z)
and B(z). We omit the details for brevity.



M = 2. Then
- z) gi(z) 0
P(2) = [ 0 e ] )
We first embed P(z) into a symmetric matrix T(z),
0 gofz) o2 0O 0
A | 902 0 go(2) gi(z) 0
T(2) = | 91(2) go(2) 0 go(2) 91(2) )
0 0 g 0 wb)
O 0 gl w0

where the framed entries correspond to P(z). Then the cor-
responding matrix A(z) is (we now drop the argument 2z
from the g;(z) for compactness of notation)

0 290 291 0 0
290 9 9 g1 0
09 @ 0 2
g1 290 O
We can thus recover P(z) from A(z) as
0
P(z) =[0 In O0]JA(2) [ Toas1 ] , (14)

where the column dimension of the square matrix A(z) is
IM=4 when M is even and 74=% when M is odd. We
shall denote the dimensions of A(z) generically by K x K.

The matrix A(z) can thus be diagonalized by Cryy, say
A(z) = CTW(2)Crr (15)

where W(z) = diag{w;(z)} has now K entries. Moreover,
as in (5), and for the case M = 2,

0 wo(2)

5 a1(z) wy (2)
\/; ax(z) | = C’{“— wa(z) |, (16)

0 ws(z)

0 wy(2)

where we used the fact that the top row of A(z) has the form
[0 a1(2) a2(2) 0 0] for some {a1(2),az2(2)}.

We now have K FIR filters to adapt, with weight vectors
{wi} and regression vectors {x}(n)} where

xi(2) = Crrr [ 1213_1 ] Q(2)x(z) .

If we define, as before,

WO; xg, Eng
W Xqi(n
w=| 1 |, xm=| . ,
Wk 1 Xk _1(n)
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and let E(n) = diag{e}(n),... ,e%_,(n)}, where
0 K-1

then we obtain the following constrained adaptive version

0
I
0

¢(n) 2 ¢y [ an

w1 = Wi, + uCrrrUrCT A7 (n)E(n)X(n)
(18)

where Ur = (06 Iy © 0).

The constraints incorporated into (11) and (18) can be
interpreted as a mapping of the data in the subbands into
wideband by multiplication with F in the DFT case and
with C¥;; in the DCT case. By applying the inverses of
the corresponding transforms, we map the wideband filter
back into the frequency domain. In the original DFT-MDF
structure [2], the wideband filter is transformed back into
the subband filters and convolved with the subband signals
z}(n). The output is then reconstructed and subtracted from
d(n). Alternatively, the convolution can be performed sep-
arately, as shown in Figs. 2(a) for the DFT-MDF and (b) for
the proposed DCT-MDF. The reasons for this is that 1) it
can be performed efficiently with a different block size R,
optimized to reduce the computational complexity, and 2)
the delay in the signal path can be eliminated if we compute
the first output block by direct convolution [11]. Figure 2(c)
illustrates the convolution part in (a) and (b), which is per-
formed without delay using FFTs with a block size R.

5 Some Simulation Results

We compare the convergence performance of the DFT
and DCT structures for a second-order AR input signal
z(n). The learning curves are shown in Fig. 3. The block
sizes were adjusted for each structure so that the corre-
sponding algorithm exhibited the best performance. The
DFT-MDF was tested with a block size M = 8 (corre-
sponding to subband filters of size 8 each), while the DCT-
based filter had a block size M = 64 (corresponding to
subband filters of single tap each). Note that these block
sizes are only for the adaptation process, because the con-
volution can be performed without delay with a different
optimized block size. The length of the impulse response
was N = 64, and the convergence factor used for the adap-
tive algorithm was y = M/N. The DCT can be computed
efficiently using the algorithm in [5], and the computa-
tional complexity involved is similar to existing frequency-
domain algorithms. The convergence behavior of the pro-
posed trigonometric-based adaptive structures is currently
under investigation.



/ d(n)
- A e(n)
G(2) Y

x(n,
’ i i
: e ot [+
! v ef(n)
TR )
F F
! ,
SN
(@)
o )j(n)
x(n) - e(n)
G(z) @),

xin) eqn)

xqfn) exn)
M rt——

x(n}
—}

x(n)

-1

EINE

-1

K-1

L2
M2

3MP2-1
M2 0

C
L

(b)

Gl2) ¥n)
xn) - yim) ]
xyn) - yin)

sk
F

k- k-A7)
k. ;(n)- Ye-An,

K—Io

0

M-1

Direct convolution
with the first R coef.

of G(z) ~a G

©)

Figure 2. Delayless (a) DFT-MDF and (b) DCT-
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Figure 3. MSE decay for colored input signal

for the DFT-MDF and the proposed DCT-MDF.
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