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Abstract

We develop an estimation technique for problems
that involve multiple sources of uncertainties or errors
in the data. The method allows the designer to explic-
itly incorporate into the problem formulation bounds on
the sizes of the uncertainties; thus leading to solutions
that will not over-emphasize the effects of the uncer-
tainties beyond what is assumed by the prior informa-
tion. Applications in array signal processing and image
processing are considered.

1. Introduction and problem formulation

This paper deals with the development of an es-
timation technique for models with bounded data
uncertainties. The method will be referred to as a BDU
estimation method for brevity. It is based on a new
constrained game-type formulation that allows the de-
signer to explicitly incorporate into the problem state-
ment a-priori information about bounds on the sizes of
the uncertainties in the model. In this way, the effect of
uncertainties will not be unnecessarily over-emphasized
beyond what is implied by the a-priori bounds; conse-
quently, overly conservative designs, as well as overly
sensitive designs, will be avoided.

A key feature of the BDU formulation is that geo-
metric insights (such as orthogonality conditions and
projections) and recursive (adaptive or online) tech-
niques, which are widely known and appreciated for
classical quadratic-cost designs, can be pursued in this
new framework. More details on these aspects can
be found in [1]. Also, algorithms for computing op-
timal solutions with the same computational effort as
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standard least-squares solutions exist, thus making the
new formulations attractive for practical use. An SVD-
based solution is developed rather fully in [2].

In this paper, we introduce the following optimiza-
tion problem

min  max ||[ Ai+64 Ak +38Ax |z — b
® A< m
1<i<K

(1)

where z is an n—dimensional column vector, the {4;}
denote submatrices (column-wise) of an N xn known or
nominal matrix A, and the {§A4;} denote submatrices
of an N x n perturbation matrix §A. The notation |- ||
denotes the Euclidean norm of its vector argument or
the maximum singular value of its matrix argument.
We also partition the vector z accordingly with A, say
z = col{z1,...,zx}, and further assume that

rank(A)=n and b¢ R(A4). (2)
The analysis can be extended to cases where (2) is vi-
olated, but we shall focus here on (2) in order to high-
light the main ideas. Due to space limitations, our
proofs are brief and details will be provided elsewhere.

Problem (1) seeks a solution & that performs “best”
in the worst-possible scenario. It can be regarded as
a constrained two-player game problem, with the de-
signer trying to pick an z that minimizes the residual
norm while the opponents {6A4;} try to maximize the
residual norm. The game problem is constrained since
it imposes a limit on how large (or how damaging) the
opponents can be.

2. The case of a unique zero solution

We shall establish that when the uncertainty set
{6 4;]] < m:} is large enough to include a perturbed



matrix (A+JA) that is orthogonal to b, then the unique
solution of (1) is £ = 0. Otherwise, the solution is
nonzero and has an interesting regularized form.

Lemma 1 The uncertainty set {||0A;|| < i} contains
a perturbation §A such that (A +8A)Tb =0 iff

7 > ATOll/lbll forall 1<i< K (3)

Proof: Assume there exists a perturbation J4, say A
with {||64;|| < m:}, such that (4 + §4)Tb = 0. Then
(A; + 34;)Tb = 0 and, consequently,

—7 T p—
NAT bl = 1I6A; bl < 1I8A; || - libll = 1184 - bl

which implies that ||§4;]] > ||ATb]|/||b]| and, hence,
condition (3) must hold for each i:. Conversely, as-
sume (3) holds and choose §4; = —bbT 4;/||b]|*>. Then
IBA:)) < n; and A + 34 = P A, where P & (I ~
bbT /||b||2) is the projector onto the orthogonal comple-
ment space of b. Then (A4 + §4)Tb = 0, as desired.

¢

Note that if we set z equal to zero in the BDU cost
function (1), we obtain that the cost is equal to ||b||
regardless of A. We now show that when (3) holds,
the cost for any nonzero z will be strictly larger than
|b]| so that Z = 0 has to be the unique solution.

Lemma 2 The BDU estimation problem (1) has a
unique solution at £ = 0 if, and only if, (3) holds.

Proof: Assume first that (3) holds and choose the ma-
trix 6A from the proof of Lemma 1. It can be shown
that A + A is full rank. Now since b is orthogonal to
(A + dA), it follows that [|[(A + 64)z — b|| > |||, for
any nonzero vector . Therefore,

max A+86A)z—b|| > ||(A+8A)z—b]} > b)),
o (A+5A)z—bl) 2 1|(A+TA)z—b] > |ib]
which shows that £ = 0 is the unique solution of (1).

Conversely, assume Z = 0 is the unique solution of
(1) then, for every z, we can show that

max [-2b7 A;ATb — 2676 A;ATH) > 0,
li6A:]|<m:

from which we can conclude that n; > [[ATb]|/|[b]-

3. Worst-case perturbations

Now assume that (3) is violated at least for some i,
say

m, < ||ATbll/|Ibll,  for some i, . (4)
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Hence, if the problem has a solution & then it has to be
nonzero. We shall in fact show that a unique nonzero
solution exists in this case.

Returning to (1), we shall first identify the perturba-
tions {§A;} that maximize the residual norm. Indeed
define, for every z, the column vector

g(z) & colfmllz:l|'zy,. .., nxllexltex},  (5)

where a! denotes the pseudo-inverse of the scalar a
(equal to its inverse if a # 0 and equal to 0 if a =
0). Then it can be verified that the following rank-one
modification of A,

(Az - b) " (z)

A+8A°(e) 2 A+ Ao (6)

achieves the maximum residual, viz.,

) (A +84)c —bll = [[[A+8A4°(z)]x — b]|

max
{8 A<

K
= |lAz - bl + > millzill £ J(z).

i=1

Moreover, the following facts hold.

Lemma 3 For any z, the matriz §A°(z) is such that
A 4+ 0A°(z) is full rank and the residual vectors [A +
0A°(z)]z — b and Az — b are collinear; they also point
in the same direction (i.e., one is a positive multiple of
the other).

4. The Orthogonality Condition

We are thus reduced to studying the equivalent
problem

min ([[Az - bl + milz1(l + ... +nxllzkl) . (7)

Lemma 4 Assume condition (4) holds. Then a unique
nonzero solution & of (1) (or (7)) exist.

Proof: The cost function J(z) can be shown to be
strictly convex in z since b ¢ R(A). This implies that
J(z) has a unique global minimum. When (4) holds
we already know from Lemma 2 that £ = 0 can not be
the global minimum. Therefore, the global minimum
is necessarily unique and nonzero.

¢

We shall denote the worst-case perturbed matrix A+
8A°(z) by A(z) so that (7) is equivalent to

min ||A(z)z - b]| . (8)



This statement looks similar to a least-squares prob-
lem except that the coefficient matrix is dependent on
the unknown z. Hence, what we have is a nonlinear
least-squares problem with a special form for the co-
efficient matrix A(z). If A(z) were a constant matrix,
and therefore not dependent on x, say A, then we know
from the geometry of least-squares estimation that the
solution # is obtained by imposing the orthogonality
condition AT(A% — b) = 0. In the BDU case (8), the
coefficient matrix is a nonlinear function of z. Interest-
ingly enough, however, it turns out that the solution
Z can still be characterized by similar orthogonality
conditions.

In the following we distinguish between two classes
of vectors z. We define

X = {set of vectors z such that all z; # 0} .

Regular solutions.

The following result shows that the unique solution
Z belongs to X if, and only if, an element £ of X’ satisfies
the following orthogonality condition (see Fig. 1)

AT(£)[A(@)2 - b)=0. (9)

Since, from Lemma 3, the residual vector A(£)Z — b is
collinear with A% — b, we obtain the equivalent condi-
tion

(Az — b) " (2)
lAZ — bl|

[A+ }T[Aa‘:-—b]zo. (10)

[A + 84°(5))%

A+3A°(%)

Figure 1. Orthogonality condition for BDU es-
timation.

Compared with least-squares theory, we can inter-
pret the result (10) as requiring the residual vector to
be orthogonal to a rank-one modification of A.
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Theorem 1 Assume ({) holds. Then an & € X is the
unique solution of (7) if, and only if, (10) holds.

Proof: Let & € X be a vector that satisfies the orthog-
onality condition AT (#)[A% ~b] = 0 and pick any other
vector z (in X or otherwise). Then we necessarily have
lA()z -8l = |lA(&)z - bl .

This is because we already know that for a given z,
A(z) is a matrix that maximizes ||(4 + d A)z — b|| over
dA. We can further verify that ||A(£)Z-b|| < ||A(&)z~—
b|| so that ||A(£)Z — b|] < ||A(z)z — b||, which means
that & is the unique minimizer.

Conversely, suppose that £ € X is a nonzero min-
imizer of J(z). The gradient of J(z) is defined at all
z € X. Thus, setting the gradient of J(z) at z = &
equal to zero we obtain (10).

¢

Boundary solutions.

If a vector & € X satisfying the orthogonality con-
dition (10) does not exist, i.e., one with all its entries
{&;} nonzero, then the unique minimizer belongs to
the set R™ — X — {0}. That is, we need to examine the
possibility of a solution Z with one or more zero entries
{&:}.

We illustrate this point by considering the simple
case of K = 2. If a solution £ € X does not exist, then
we need to check for solutions of the form {0,%»} or
{#1,0}. We shall refer to these as boundary solutions.
In the first case, with z; = 0, the cost function collapses
to

J1(z) = ||A2z2 — b]| + m2flz2|l -

A unique nonzero minimum of this cost exists if, and
only if, 7, < ||ATb]|/|Ib]|, in which case it is given by
the solution of the orthogonality condition

T
(A28 — b) i .
gy | AR m=00)

Likewise, in the second case with 3 = 0, the cost func-
tion collapses to

Ja(z) = ||Arz1 — b + mullz1]] -

A unique nonzero minimum of this cost exists if, and
only if, 7y < ||AF8||/||bll, in which case it is given by
the solution of the orthogonality condition

a nliT T
(A1x1 - b) —-—m‘

— A1z, -0)=0.
T oo | 8=



Once the unique nonzero minimizers of J; (z) and Ja(z)
have been determined (when they exist), we pick that
solution {0, £2} or {#;,0} that has the smallest cost as
the unique minimizer of the original problem (1).

5. Statement of the solution

Returning to the orthogonality condition (10), we
introduce the auxiliary nonnegative numbers

& & il Az - bl| - |1 (12)
Then we can rewrite (10) in the form
(AT A + diag{éuI,...,axI}z) = ATb. (13)

Expressions (12)-(13) define a system of equations in
the unknowns {Z, &;}.

Theorem 2 Under (2), the solution of the BDU prob-
lem (1) is always unique. The following facts hold:

I. The solution is zero (% = 0) if, and only if, each
mi satisfies n; > || AT 0ll/|[bll.

II. The solution is nonzero if, and only if, at least one
mi satisfies m; < ||ATb{|/1|b]l.

II.1 The unique solution & is in X (i.e., with
all 2; # 0) if, and only if, an £ exists that
solves (10). Alternatively, this unique & can
be found by solving the nonlinear system of
equations (12)-(13) in & and &;.

I1.2 If o solution £ € X does not exist, then the
unique minimizer is a boundary solution.

¢

Note that the solution of the BDU problem performs
automatic regularization by determining regularization
parameters {&;}. If we replace the expression for %
from (13) into (12) we obtain a nonlinear system of
equations in the {&;}. Such equations can be solved by
any appropriate zero-finding technique (e.g., the com-
mand fsolve of Matlab® has been used in the simulation
results below). The SVD of A can also be used to ob-
tain better conditioned numerical solutions (cf. [2]).

6. Two Applications

Our first application is in the context of co-channel
interference cancelation in array signal processing, as
depicted in a simplified form in Fig. 2 for the case of
two sources and four antenna elements.

1Matlab@©is a trademark of the MathWords Inc.
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User 1

-
h T T

Figure 2. Spatial-processing with multiple
users.

¥

The figure shows two emitters sending at time ¢
the signals {1, z2:} from different angles to an an-
tenna array. The antenna array has 4 elements that are
equally spaced. The signal received by the elements of
the antenna array can be presented in vector form as

bi = A171,; + A2za i + vy, (14)
where v; denotes a measurement noise vector. More-
over, A; and A; are 4 x 1 column vectors. The j—th
entry of A; is the gain from source z; to the j—th
antenna. Likewise, the j—th entry in A, is the gain
from source z5 to the j—th antenna. In practice, these
gains are estimated by a variety of methods (e.g., MU-
SIC, ESPRIT, and many others — see [3, 4] and the many
references therein).

Once the {A4;, A2} are known (or estimated), the
common techniques in the literature proceed to recover
the transmitted signals {z1,z2,}, at each time in-
stant 4, by solving any of the following problems: least-
squares, regularized least-squares, TLS [5], or general-
ized cross-validation (GCV) [6].

Now the data matrix A is subject to errors since
it is the result of an identification procedure. There
can also be different levels of errors in the different
columns of A. The BDU formulation of this paper al-
lows us to handle such situations with multiple sources
of uncertainties rather naturally and allows us to incor-
porate into the problem formulation a-priori bounds on
the sizes of the uncertainties in the estimated A4; and
Aj (these bounds can be obtained from the identifica-
tion procedure for A; and A,), say ||641]] < m and
l642]] < m2. We can then recover the {z1,22;} by
solving

min max
Z16%2,i ||6A1]|<m,||6A2(|<n2

“[ A1 +6A1 Ar+ 684 ] [ oy

2,1

| -»

K



Least-squares method

'BOU for mutiple uncertainties
Total least squares
Genarakized cross-validation

1
10 15

SNR(B)

Figure 3. 4PAM modulation, N = 4000 runs,
m~ 7%, m = 22%.

which is a special case of (1). Fig. 3 compares the
performance (in terms of mean-square error) of the
BDU solution with the above alternative methods for
4PAM modulation with 7% and 22% relative uncertain-
ties in the path gains (by relative uncertainty we mean
m/||A1l| and 12/|{42|]). The top curve corresponds to
total-least-squares while the bottom curve corresponds
to BDU. The second curve from top is least-squares and
the third curve is generalized cross-validation.

Our second application is in the context of image
processing. Figure 4 repeats the same experiment
as above where now the signals {z, ;,z2:} represent
the pixels of two 128 x 128 images that are being
transmitted over different paths. Hence, the purpose
is to identify and separate the superimposed images.
In this particular simulation, we took 7y = 7, = 7%.
We see that the result from the BDU solution is the
clearest.
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