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Abstract

We pursue a time-domain feedback analysis of
adaptive schemes with nonlinear update relations. We
consider commonly used algorithms in blind equaliza-
tion and study their performance in a purely determin-
istic framework. The derivation employs insights from
system theory and feedback analysis, and it clarifies
the combined effects of the step-size parameter and the
nature of the nonlinear functional on the convergence
and robustness performance of adaptive schemes.

1 INTRODUCTION

In recent work [1]-[4], the authors have formulated
a time-domain feedback approach for the analysis and
design of adaptive schemes with emphasis on robust
performance and improved convergence in the pres-
ence of measurement noise and modeling uncertain-
ties. In particular, we have addressed the following
two issues:

1. We have shown how to select the adaptation gain
(step-size) in order to guarantee a robust be-
haviour in the presence of noise and modeling un-
certainties.

2. We have also shown how to select the adaptation
gain in order to guarantee faster convergence.

In this paper, we briefly outline extensions of this for-
mulation to adaptive schemes that involve nonlinear
update laws, with special emphasis on blind and non-
blind equalization schemes in communications.
Notation. We use small boldface letters to denote
vectors, “+” for Hermitian conjugation, “I” for trans-
position, and ||x|| for the Euclidean norm of a vector.
All vectors are column vectors except for the input
data vector denoted by u;, which is taken to be a row
vector. We also use the shift operator ¢!, defined by
¢~ 1s(d) = s(i — 1), to denote the unit time delay.
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2 NONLINEAR ADAPTIVE SCHEMES

Fig. 1 depicts a nonlinear training structure that
arises in channel equalization. The figure shows a se-
quence {s(¢)} (usually complex and of constant mod-
ulus) being transmitted through an unknown channel
C(g™1). The receiver is assumed to have an adaptive
M-th order FIR structure with weights w;_1, followed
by a nonlinear decision device f. The output of the
decision device is used to compute an error quantity
eo(?) that is employed in the training algorithm:

1)

with w; = [ u(i), ..., u(i—M+1)]. The defi-
nition of the error quantity e,(7) depends on whether
the equalizer operates in a blind mode or not, which in
turn determines the nature of the additional measure-
ment used in Fig. 1. In non-blind operation, or train-
ing mode, the measurement is s(¢ — D) (a delayed ver-
sion of s(2)) and €,(%) = €, (¢) = s(i—D)— flu;w;_1].
In blind operation, or data mode, e,(i) is taken as
€o(?) = €o5(%) = fluswi—1] — w;w;—1. We assume for
our analysis that there exists an optimal receiver w
with such a structure, FIR followed by the nonlinear-
ity, and which guarantees detection, viz., flu;w] =

s(i— D). -
/

w; = Wiy + p(i)ufeo(i)
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Figure 1: Structure of the nonlinear adaptive equal-
1zer.

Table 1 lists several nonlinear functions that have been



used and studied in the context of channel equalization
(see, e.g.,[5]-[14]).

| Equalization type/algorithm | f[2] |
Direct-decision 2-PSK sign[z]
Direct-decision equalizer dec[z]
CMA (Godard 2-2) z|z[*

Norm. CMA (Godard 1-2) B
Sato’s algorithm ysign[z]

Table 1: Nonlinear devices for equalization.

In channel equalization, we are interested in the
limiting behaviour of the adaptive scheme (1) as time
progresses to infinity. In particular, our objective is
to exhibit conditions on {f, #(¢)} under which e,(¢) =
u;[w—w;_1] = w;W; — 0 as i — oo and, consequently,
2(i) — 2(1) and §(z) — y(3).

We shall assume, without loss of generality, that the
update equation (1) is only employed when e,(¢) # 0
(i.e., we ignore the non-active steps and focus only on
updates that involve nonzero error terms eo(:)). In
this case, our objective becomes the following: given
a sequence of updates with nonzero errors e,(i), do the
resulting weight vector estimates w; tend to a value
that guarantees eq(¢) — 0 (and, consequently, e,(7) —
0)?

2.1 The Reference Model

The above questions are based on the assumption
that there exists an optimal receiver that is capable of
mapping the received symbols to the correct transmit-
ted ones, viz., an optimal receiver that consists of a
linear combiner w in cascade with the same nonlinear
function f[-]. We refer to this optimal configuration
as the reference model. Fig. 2 depicts the optimal re-
ceiver (upper branch) together with the structure for
adaptive equalizer (lower branch).

z(1) s(i — D)
- W > fl2]
u;
————
£(7)
> W > fl7]
Figure 2: Model reference structure for nonlinear
equalization.

272

2.2 Non-Blind Mode of Operation

Fig. 3 shows a feedback mapping of a-posteriori and
a-priori errors following the methods described in [1]-
[3], where h is the function that relates e, and e, p,
eon(8) = hl2(4), 2(3)]eq(?), and is given by

h(z(3), 2(3)] = FE) = FE@)

[z(9)]
20) ~ ) ®

q
Wi_1 \
VE@e (i) | 1Tl = 1 V/B(i) ea(i)

Fa
>

O
1 — BER[2(3), 4(1)]

Figure 3: Feedback structure implied by non-blind
equalization.

If we define
A = i, [1- A9, 20
_ p(0)
YV) = max A1)’

and the normalized step-size fi(i) = 1/||u||?, then
it can be checked (along the lines of [1]-[3]) that if
A(N) < 1 then the following bounds on the weighted
energies of the a-priori estimation errors hold:

E#(z ) lea(i)[? _K(_N_) (Wl (3)
N 1/2

\PECECLE s ol @
=0 ’

Relations (3) and (4) are desirable because they
imply, when they hold, that in the limit (as N — o0)

the weighted energy of the a-priori estimation errors
remains bounded and, hence, that {4/u() e4(:)} and

{+/B(%) ea(%)} tend to zero.
The condition A(N) < 1 requires (in terms of the
real and imaginary parts of A) that

1-500] + 55 ®

which shows that k should necessarily be positive-real.
These conditions can be verified for many of the algo-
rithms listed in Table 1.

R3(i) < 1,



2.2.1 2-PSK and CMA

For example, for 2-PSK it can be verified that if ju;w|
and |u;w;_1| are uniformly bounded from above, and
if p(7) is chosen such that 0 < p(7) < fuyw;-1]/||usl)?,
then \/u(7) eq(i) — 0 as ¢ — oo.

Likewise, for the CM algorithm, if |u;w| and
|u;w;_1| are uniformly bounded from below and if u(%)
is chosen such that (5) is satisfied, where h[z(%), 2(7)]
is evaluated as

hlz(3), 2(8)] =

s(i - D) - u,:wi_llu;w,;_1|2
s(i — D)|s(i — D)|“§ —Wing

then we also obtain 1/p(i) eq(f) — 0. For a projec-
tion step-size u(%) = afi(i), we also see that o should
guarantee

0< |1 - ah[u,:w,u,;w,r_l]l <1 ,

(6)

which, in view of the positive-realness of the function
h, can in general be guaranteed for small enough «.

2.2.2 An Alternative Nonlinearity

Note that the nonlinear decision functions used in 2-
PSK, CM, and normalized CM lead to positive-real
functions h[z, 2], but their real parts are not necessar-
ily bounded. On the other hand, assume we employ
as a nonlinear device the function
42|

fle]l = Txep (7)
Then we always get f[z] = z for |z| = 1. The maxi-
mum magnitude of the corresponding function h[z, 2],
fle] - fI2]

2 ~

max|h(z,2]| = max
2,2 2,z z

b

can be calculated by considering the limit as z — 2
(a large value can only occur if the values of z and
% are very close). Assume they both have the same
phase but different amplitudes, say r and #. We
then compute the maximum magnitude of h[z, 2] by
applying L’Hospital’s rule and obtain (as r — #)
max, ; |h[z,2]| = 8r/(1 + 7). The maximum value
of this ratio occurs for » = 0.5. Therefore, the magni-
tude of the real part of h[z, ] is bounded from above
by 4/(1.5)% = 1.1852:

4
(1.5)3 -
The nonlinear function (7) therefore allows, in con-
trast to the earlier cases (2-PSK, CMA, and normal-

ized CMA), a step-size parameter that will not in gen-
eral be as small as before. This is because the real part

0 < Real {h[z,2]} <
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of hlz,#] is bounded. But since the larger the value
of the step-size the faster the convergence speed, this
function is therefore expected to lead to a higher con-
vergence rate in the training phase. Simulation results
are included at the end of this paper to support this
statement.
2.3 Blind Mode of Operation

In the blind mode of operation, the feedback path
is modified as shown in Fig. 4, with (1— ) replacing h
and where v,(¢) = flu;w]—u;w denotes the distortion
introduced by the channel and by the optimal receiver

— \J
1— 48 (1 - hl2(3), 2(9)))

Figure 4: Structure for blind operation.

A contractive map will now require

BO) () _ hpati), a6
1_ﬁ(l)(1 h[()’ ()]) <1

(8

for all possible combinations of z(¢) and 2(%) over the
desired interval of time. A necessary condition for
this to hold is to require the function 1 — h to be posi-
tive real. This is in contrast to the non-blind training
mode, which requires h itself to be positive real.

One can verify the following for 2-PSK operation.
Assume the optimal receiver guarantees ju;w| = 1 and
its distortion v,(-) is negligible or has finite energy.
If the adaptive weights are only updated whenever
|u;w;—1| > 1 and if (%) is chosen according to

u(i) < 28() }—%f—i

then \/u(%) eq(i) — 0.

Likewise, assume the weight updates in the nor-
malized CM algorithm are performed only whenever
la;wi—1| > 1 + ¢ for some given positive ¢ < 1.
Assume also that the optimal receiver guarantees
luiw| < 1+ €. If p(d) < 2a(5), and if the optimal
channel-receiver distortion is negligible or has finite
energy, then we also obtain \/u(z) eq(s) — 0.

3 SIMULATION RESULTS
We start with the non-blind mode of operation.



3.1 Non-Blind Mode of Operation
3.1.1 CMA and New Nonlinear Device

The channel is chosen as C(g~!) = 1+ 1.2¢™1, which
leads to a purely non-causal inverse. The receiver
length is M = 3. Our first simulation compares the
performance of the normalized CM algorithm and the
nonlinear device suggested in (7). The transmitted
signals are general CM signals with randomly chosen
phases. The nonlinear device is f[z] = z/|z|. A small
value for « is chosen, viz., @ = 0.1 in (6). The initial
weight vector was selected as w2, = [0,0, 1].

Fig. 5 compares the learning curves (averaged over
50 runs) of the normalized CM algorithm and the non-
blind algorithm that corresponds to the proposed non-
linear function f[z] = 4z|2|/(1+ |2|)2.

The error that is depicted in Fig. 5, and which has
been used for a fair comparison of both algorithms, is
e(i) = (i - D) - £(0)/|2()]

As the figure demonstrates, the new nonlinear de-
vice leads to considerably smaller errors. But since
both filter lengths are small, both equalizers are not
capable of completely reconstructing the transmitted
signal.
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Figure 5: Learning curves for general CM signals with
equalizer filter length M = 3 for normalized CM algo-
rithm (dotted line) and for new nonlinear device (con-
tinuous line).

3.1.2 2-PSK Case

In this experiment the channel is chosen as C(g~!) =
14 0.9¢7%, and the receiver length is taken as M = 3.
The initial weight vector is w_1 = [0, 1,0]7.

The step-size parameter was chosen in two ways: a
non-normalized mode where p(3) < fi(¢) (as is the case
with standard gradient algorithms [2]) and a normal-
ized mode where p(?) < fi(7)|2(%)| as suggested by the
discussion at Sec. 2.2.1. Fig. 6 depicts the results for

BER
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the two modes, where o denotes p(¢)/(3). The figure
shows the Bit-Error-Rates (BER); the ratio of falsely
detected bits to the overall transmitted bits. The al-
gorithms were run for N = 200 steps and the results
averaged over 20 Monte Carlo runs. The new nor-

0.5

without norm

with norm

0:5 1
Step-size o
Figure 6: BER for 2-PSK with various step-sizes «
for normalized and non-normalized mode.

1.5

malization shows superior behaviour compared to the
non-normalized algorithm for every step-size chosen.
The improvement is by about a factor of four.
3.2 Blind Mode of Operation

As argued in Sec. 2.3, a convergent (and robust)
performance in the blind mode of operation can be
guaranteed as long as the operation of the adaptive
equalizer is restricted to “large” enough values of 2(¢).

3.2.1 2-PSK Case

In the following experiment, we continue to employ
the channel C(g™') = 1+ 0.9¢7! and a receiver
length M = 3. The initial coefficients were w_; =
[0.8,~0.2,0]7.

We ran several simulations with « 0.1
p(1)/a(?) and for different values of 3. That is, we
compared the results when the update was done only
for values |2| > S8 for various 8.

Fig. 7 depicts BER values as a function of 5. For
B =0, the standard 2-PSK algorithm is obtained. The
experiment was run for N = 200 steps and the re-
sults averaged over 20 runs. For values of § > 0, the
algorithm shows a considerably improved behaviour.
However, the larger the 3, the smaller becomes the
improvement, since then the updates become less fre-
quent.

3.2.2 Normalized CM Algorithm

The next experiment considers the normalized CM al-
gorithm. Asindicated in Sec.2.3, the convergence (and
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Figure 7: BER for 2-PSK with different thresholds (3
(e =0.1).
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robustness) performance can be improved by updating
only for [2(¢)| > 1+e.

Fig. 8 depicts three averaged learning curves ob-
tained from averaging |e(?)|? = [s(i— D) — 2(3)/|2(:)||?
over 200 runs. The weight vector update employed
a normalized step-size o 1.0 and was used only
for |2(i)] > B. The step-size was set to zero oth-
erwise. The algorithm was run for M 3 with
w_1 = [2,0,0]7, for the channel C(¢™!) = 1+1.2¢71.
Note that a large initial value for w_; is necessary if
B > 1 since otherwise the algorithm never updates.

As the figure demonstrates, the normalized CMA
has superior performance if it is not updated at every
time instant. For 8 = 0.5 we have improvements over
B = 0. For # = 1.1 the learning curves show the best
performance.

We found ¢ = max; |v,(i)| ~ 0.28 in this case. For
B = 14 ¢ = 1.28, the behaviour of the algorithm is
close to the one from B = 1.1. Since v,(¢) works as
an additive noise, the output error of the normalized
CM algorithm in steady-state is expected to be larger
than 2|v,(i)|? which is in very good agreement with
the simulation. Further experiments showed that the
error energy can be reduced by decreasing the step-
size. The tightness of the bound p(¢) < 2f(s) has
also been investigated. Further experiments showed
that with § = 1.5 the algorithm converged for step-
sizes a < 2 as expected. Other situations in which
€ = max; |v,(%)| is very small did not show much im-
provement. In fact when the estimate Z is close to z,
Real{1 — h[z, 2]} becomes positive even if |2(z)| < 1.
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