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ABSTRACT

Distributed adaptive algorithms are proposed based on incremen-
tal and diffusion strategies. Adaptation rules that are suitable for
ring topologies and general topologies are described. Both dis-
tributed LMS and RLS implementations are considered in order to
endow a network of nodes with learning abilities; thus resulting in
a network that is an adaptive entity in its own right.

1. INTRODUCTION

Distributed and sensor networks are emerging as a formidable tech-
nology for a variety of applications, ranging from precision agri-
culture, to environment surveillance, to target localization. How-
ever, the advantages advocated by the use of distributed and coop-
erative processing [1] demand adaptive processing capabilities at
the distributed nodes in order to be able to cope with time varia-
tions in the environment and the network. In addition, the adaptive
processors should enable the network to respond to such variations
in real-time and to adjust its performance accordingly. Inspired
by incremental strategies [2], we propose distributed processing
strategies over what we refer to as adaptive networks (e.g., [3]).
The proposed strategies require the adaptive nodes to share infor-
mation only locally and to exploit both spatial and temporal in-
formation in a cooperative fashion. Different cooperation policies
will lead to different distributed algorithms.

Each nodek across anN -node network is assumed to have ac-
cess to time realizations{dk(i), uk,i}, of zero-mean random data
{dk, uk}, with dk(i) a scalar measurement anduk,i a regression
row vector; both at timei – see Figure 1. The nodes should use the
data to estimate some unknown common vectorwo. Rather than
expect each node to function independently of the other nodes,
the nodes will instead collaborate with each other in an adaptive
manner in order to achieve three objectives: (1) improve global
performance with reduced communication; (2) allow the nodes to
converge to the desired estimate without the need to share global
information; (3) endow the network with learning abilities.

Recently the authors proposed a scheme [3] that implements a
distributed incremental gradient algorithm in which an initial vec-
tor estimate is updated along a collaboration cycle over the net-
work. Each local filter updates the estimate received from the pre-
vious neighbork − 1 with its local data and passes the estimate
to the next nodek + 1, operating over a collaboration cycle - see
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Fig. 1. A distributed network withN nodes.

Figure 3 further ahead. This approach requires limited communi-
cations and increases the network autonomy [3]. The network may
also learn at an enhanced pace as compared to a standard gradient-
descent solution.

In this paper, we propose a least-squares framework that equips
the nodes with a RLS-type adaptation rule, while keeping the same
cooperation strategy, yielding to a distributed and recursive least-
squares solution (dRLS). The resulting algorithm conveys an ex-
act global least-squares estimate, for the unknown vectorwo, to
every node in the network. This scheme further allows an alterna-
tive dRLS implementation with decreased communication require-
ments, saving energy compared with its exact counterpart. It also
has the striking feature that in steady-state, both algorithms present
similar performance in the mean-square error sense.

When more communication and energy resources are avail-
able, the topology constraints implied by the aforementioned al-
gorithms can be removed by resorting to a diffusion cooperative
scheme, where the adaptive processor at nodek updates its esti-
mate using all available estimates from the neighbors, as well as
local data and its own past estimate – see Figure 6.

2. DISTRIBUTED ESTIMATION

We are interested in estimating an unknown vectorwo from mea-
surements collected atN nodes in a network (see Fig. 1). Each
nodek has access to realizations of zero-mean data{dk, uk}, k =
1, . . . , N , wheredk is a scalar anduk is 1 × M . We collect the



regression and measurement data into global matrices:

U
∆
= col{u1, u2, . . . , uN} (N ×M) (1)

d
∆
= col{d1, d2, . . . , dN} (N × 1) (2)

and pose the minimum mean-square error estimation problem:

min
w

J(w), where J(w) = E‖d− Uw‖2 (3)

The optimal solutionwo satisfies thenormal equations[4]:

Rdu = Ruwo (4)

where

Ru = E U∗U =

NX
k=1

Ru,k , Rdu = E U∗d =

NX
k=1

Rdu,k (5)

Computingwo from (4) requiresevery nodeto have access to the
global statistical information{Ru, Rdu}, thus draining communi-
cations and computational resources. In [3] we proposed adistrib-
uted solution (incremental LMS) that allows cooperation among
nodes through limited local communications, while equipping the
nodes with adaptive mechanisms to respond to time-variations in
the underlying signal statistics.

3. INCREMENTAL LMS ADAPTATION

In this section, we review the distributed incremental LMS al-
gorithm [3], which is a starting point for the later developments.
The algorithm is obtained as follows. We start from the standard
gradient-descent implementation

wi = wi−1 − µ [∇J(wi−1)]
∗ (6)

for solving the normal equations (4), whereµ > 0 is a suitably
chosen step-size parameter,wi is an estimate forwo at iterationi,
and∇J(·) denotes the gradient vector ofJ(w) evaluated atwi−1.
For µ sufficiently small we will havewi → wo asi → ∞. This
iterative solution could be applied at every nodek or centrally at
some central node. A distributed version can be motivated as fol-
lows.

The cost functionJ(w) can be decomposed as:

J(w) =

NX
k=1

Jk(w), where Jk(w)
∆
= E|dk − ukw|2 (7)

which allows us to rewrite (6) as

wi = wi−1 − µ

"
NX

k=1

∇Jk(wi−1)

#∗
(8)

Now letψ(i)
k be alocal estimateof wo at nodek and timei and as-

sign the initial conditionψ(i)
0 ← wi−1. Thenwi can be evaluated

by iteratingψ
(i)
0 through the nodes in the following manner:

ψ
(i)
k = ψ

(i)
k−1 − µ [∇Jk(wi−1)]

∗ , k = 1, . . . , N (9)

At the end of the procedure (9), the last node will contain the global
estimatewi from (8), i.e.,wi ← ψ

(i)
N . This scheme still requires
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Fig. 2. Excess mean square error (EMSE) performance for both
the distributed incremental solution (10) and the centralized solu-
tion (9) at node 1.

all nodes to share the global informationwi−1. A fully distrib-
uted solution can be achieved by resorting to incremental strate-
gies, which would require each node in (9) to evaluate its partial
gradient∇Jk(·) at its local estimateψ(i)

k−1, instead ofwi−1. This
approach leads to the incremental algorithm:

ψ
(i)
k = ψ

(i)
k−1 − µ [∇Jk(ψ

(i)
k−1) ]∗ , k = 1, . . . , N (10)

This cooperative scheme requires each nodek to communicate
only with its immediate neighbork − 1 over a pre-defined path.
Moreover, it is an established result in optimization theory that the
incremental solution (10) can outperform the solution (9) as illus-
trated in Fig. 2. The figure compares the excess mean square error
(EMSE) of both algorithms for a network withN = 20 nodes and
using Gaussian regressors withRu,k = I. The background noise
is white and Gaussian withσ2

v = 10−3. The curves are obtained
by averaging over500 experiments withµ = 0.05.

Now using instantaneous approximationsR̂du,k = dk(i)u∗k,i

andR̂u,k = u∗k,iuk,i in (10), and allowing for different step-sizes
at different nodes, leads to adistributed incrementalLMS algo-
rithm, summarized below:8><>:

ψ
(i)
0 ← wi−1

ψ
(i)
k = ψ

(i)
k−1 + µku∗k,i

�
dk(i)− uk,iψ

(i)
k−1

�
wi ← ψ

(i)
N

(11)

with k = 1, . . . , N . In this algorithm, a weight estimate is circu-
lated through a path defined over the network and updated by local
adaptive filters using local data – see Fig. 3.
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Fig. 3. The structure of incremental LMS.



4. EXACT DISTRIBUTED RLS ADAPTATION

We formulate in this section a least-squares solution for estimat-
ing the unknown parameter vectorwo. At each time instanti, the
network has access to the following space-time data:

yi =

26664
d1(i)
d2(i)

...
dN (i)

37775 and Hi =

26664
u1,i

u2,i

...
uN,i

37775 . (12)

We can then seek an estimate forwo by solving a regularized least-
squares problem of the form [4]:

min
w

�
w∗Πw +

Yi −Hiw
2
�

(13)

whereΠ > 0 is a regularization matrix andYi andHi collect all
the data that are available up to timei:

Yi =

26664
y0

y1

...
yi

37775 and Hi =

26664
H0

H1

...
Hi

37775 . (14)

One could also incorporate weighting into (13) to account for
spatial relevance, temporal relevance, and node relevance. Here
we continue without weighting in order to convey the main idea.
We are thus interested in deriving a distributed implementation of
the least-squares solution. Some related work has been recently
proposed where a global least-squares solution is achieved only
approximately at each node, and the algorithm demands large com-
munication and energy resources [5]. We proceed instead as fol-
lows. Assume thatwi−1 is the solution to the following least-
squares (LS) problem using the data that are available up to time
i− 1:

min
w

�
w∗Πw +

Yi−1 −Hi−1w
2
�

. (15)

We are interested in updatingwi−1 to wi by accounting for the in-
coming data blocksyi andHi at timei. An algorithm that updates
wi−1 incrementally is given by:

ψ
(i)
0 ← wi−1; P0,i ← Pi−1

for k = 1 : N

ek(i) = dk(i)− uk,iψ
(i)
k−1

ψ
(i)
k = ψ

(i)
k−1 +

Pk−1,i

1+uk,iPk−1,iu∗
k,i

u∗k,iek(i)

Pk,i = Pk−1,i − Pk−1,iu∗k,iuk,iPk−1,i

1+uk,iPk−1,iu∗
k,i

end

wi ← ψ
(i)
N ; Pi ← PN,i.

(16)

Similarly to the incremental LMS in Section 3, algorithm (16) in-
duces a cycle across the network, along which the estimatewi−1

is spatially updated by sequentially visiting every node once. At
each nodek, the estimateψ(i)

k at timei is the LS solution that is
based on the data blocksYi−1 andHi−1 and the data collected
along the path up to that node, namely

min
ψ

�
ψ∗Πψ +

Yk
i −Hk

i ψ
2
�

=⇒ ψ
(i)
k (17)

where now

Yk
i =

2666664
Yi−1

d1(i)
d2(i)

...
dk(i)

3777775 and Hk
i =

2666664
Hi−1

u1,i

u2,i

...
uk,i

3777775 . (18)

At the end of the cycle,ψ(i)
N will contain the desired solutionwi. If

we start fromi = 0 with w−1 = 0 andP−1 = Π−1 and repeatedly
apply (16), thenψ(i)

N will be the solution to (13). The distributed
RLS (dRLS) algorithm (16) can be motivated as follows. Note first
that the solution for (17) is given by [4]:

ψ
(i)
k = Pk,iHk∗

i Yk
i (19)

with

Pk,i =
�
Π +Hk∗

i Hk
i

�−1

. (20)

PartitionYk
i andHk

i as follows:

Yk
i =

� Yk−1
i

dk(i)

�
and Hk

i =

� Hk−1
i

uk,i

�
(21)

Then a spatial recursion forPk,i can be found by substituting (21)
into (20):

P−1
k,i = Π +Hk∗

i Hk
i

= Π +Hk−1∗
i Hk−1

i + u∗k,iuk,i

= P−1
k−1,i + u∗k,iuk,i (22)

which, by applying the matrix inversion lemma, leads to

Pk,i = Pk−1,i −
Pk−1,iu∗k,iuk,iPk−1,i

1 + uk,iPk−1,iu∗k,i

. (23)

Substituting (21) and (23) into (19) we get:

ψ
(i)
k = Pk,i

�
Hk−1∗

i Yk−1
i + u∗k,idk(i)

�
= Pk−1,iHk−1∗

i Yk−1
i| {z }

= ψ
(i)
k−1

+ Pk−1,iu
∗
k,i

�
1− uk,iPk−1,iu∗k,i

1 + uk,iPk−1,iu∗k,i

�
dk(i)

− Pk−1,iu∗k,iuk,i

1 + uk,iPk−1,iu∗k,i

Pk−1,iHk−1∗
i Yk−1

i| {z }
= ψ

(i)
k−1

which leads to

ψ
(i)
k = ψ

(i)
k−1 +

Pk−1,i

1 + uk,iPk−1,iu∗k,i

u∗k,iek(i) (24)

with

ek(i) = dk(i)− uk,iψ
(i)
k−1. (25)

Grouping (23), (24), and (25) leads to (16). The algorithm struc-
ture is relatively simple and it can be understood as a standard
least-squares solution unwrapped along the collaboration cycle.
However, the nodes are exposed to data with distinct spatial and
noise profiles. This variation reflects itself in the performance of
the algorithm, which will be studied elsewhere.



5. LOW-COMMUNICATION DISTRIBUTED RLS
ADAPTATION

The algorithm proposed in the previous section implements ex-
act RLS distributively, whereby the nodes share information about
the local weight estimates{ψ(i)

k } and the matrices{Pk,i}. A less
complex solution that only shares information about the weight es-
timates can be obtained by requiring the matrices{Pk,i} to evolve
locally. This strategy leads to:

ψ
(i)
0 ← wi−1

for k = 1 : N

ek(i) = dk(i)− uk,iψ
(i)
k−1

ψ
(i)
k = ψ

(i)
k−1 +

Pk,i−1
1+uk,iPk,i−1u∗

k,i
u∗k,iek(i)

Pk,i =

�
Pk,i−1 − Pk,i−1u∗k,iuk,iPk,i−1

1+uk,iPk,i−1u∗
k,i

�
end

wi ← ψ
(i)
N .

(26)

To illustrate the operation of both algorithms dRLS and its low-
communication counterpart (LC-dRLS), we consider a network
with N = 15 nodes where each local filter hasM = 10 taps.
The system evolves for30000 iterations and the results are aver-
aged over100 independent experiments. The steady-state mean-
square error values are obtained by averaging the last500 time
samples. Each node accesses time-correlated spatially indepen-
dent Gaussian regressorsuk,i with correlation functionsrk(i) =

σ2
u,k · (αk)|i|, i = 0, . . . , M − 1, with {αk} and{σ2

u,k} ran-
domly chosen in[0, 1) and depicted in Fig. 4. The background
noisevk(i) has varianceσ2

v,k = 10−3 across the network.
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Note in Fig. 5 that both distributed RLS algorithms have sim-
ilar performance in the mean-square error sense, suggesting that
the low-communication implementation can be a quite competi-
tive suboptimal implementation.

6. DIFFUSION LMS ADAPTATION

When more communication and energy resources are available, we
may take advantage of the network connectivity and devise more
sophisticated peer-to-peer cooperation rules. We explore a simple
diffusion protocol (see Fig. 6). Each individual nodek consults its
peer nodes from the neighborhood1 Nk(i− 1) and combines their
past estimates{ψ(i−1)

` ; ` ∈ Nk(i− 1)} with its own past estimate

ψ
(i−1)
k . The node generates an aggregated estimateφ

(i−1)
k and

feeds it in its local adaptive filter. This strategy can be expressed
as follows:

φ
(i−1)
k = fk

�
ψ

(i−1)
` ; ` ∈ Nk(i− 1)

�
ψ

(i)
k = φ

(i−1)
k + µu∗k,i

�
dk(i)− uk,iφ

(i−1)
k

�
(27)

for some combinerfk (·).

Fig. 6. A network with diffusion cooperation strategy.

In this work we explore a simple combining rule in which the
aggregated estimate is generated by averaging local and neighbors’
previous estimates, i.e.,

φ
(i−1)
k =

X
`∈Nk

a(k, `) ψ
(i−1)
`

ψ
(i)
k = φ

(i−1)
k + µu∗k,i

�
dk(i)− uk,iφ

(i−1)
k

�
(28)

wherea(k, `) = 1/deg(k), with deg(k) denoting the degree of
nodek (number of incident links at this node, including itself).
This scheme exploits network connectivity leading to more robust
algorithms. Furthermore, since more information is aggregated in
the local adaptive filter updates, individual nodes can attain bet-
ter learning behavior when compared to the non-cooperative case,
provided that the combinersfk are well designed. To illustrate
this fact, we run a simulation example with a network ofN = 10
adaptive filters withM = 10 taps each. The topology is presented
in Fig. 7, while the network statistical profile is presented in Fig.
8.

1The neighborhood of a nodek is the set of nodes directly connected
to it, including itself.
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We compare the diffusion LMS with the non-cooperative case,
in which the adaptive filters evolve independently accessing lo-
cal data and consulting their own past estimates only. We use the
global EMSE average, defined as

ζg
∆
=

1

N

NX
k=1

ζk (29)

as a figure of merit, whereζk is the local EMSE at nodek. Figure
9 shows the global learning behavior and Figure 9 presents the
network individual EMSE profile in steady-state. Despite some
losses at a few nodes, as for this case in node9, on average, the
entire system benefits from cooperation.
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7. CONCLUDING REMARKS

We have described adaptive schemes to perform distributed esti-
mation in a cooperative fashion. When communication and en-
ergy resources are scarce, the incremental LMS scheme may be
used. When more powerful processors are available at the nodes,
distributed RLS implementations with limited cooperation can be
employed. For general topologies, and with more energy and com-
munication resources, one can resort to diffusion LMS strategies.
The diffusion techniques can also be extended to recursive least-
squares formulations, which we will examine elsewhere.
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