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ABSTRACT
This work develops an exact converging algorithm for
the solution of a distributed optimization problem with
partially-coupled parameters across agents in a multi-
agent scenario. In this formulation, while the network
performance is dependent on a collection of parameters,
each individual agent may be influenced by only a subset
of the parameters. Problems of this type arise in several
applications, most notably in distributed control formu-
lations and in power system monitoring. The resulting
coupled exact diffusion strategy is shown to converge to
the true optimizer at a linear rate for strongly-convex cost
functions.

Index Terms—Distributed optimization, exact diffusion,
coupled optimization, multi-agent networks.

I. INTRODUCTION

In most multi-agent formulations of distributed opti-
mization problems, each agent generally has an individual
cost function, denoted by Jk(w), and the goal is to
minimize the sum of costs:

minimize
w∈RM

N∑
k=1

Jk(w) (1)

In this statement, all individual costs depend on one
common parameter, w ∈ RM , which all agents need to
estimate and agree upon [1]–[6]. However, there exist
extensive scenarios such as in web-search ranking [7],
distributed model predictive control [8], [9], distributed
wireless acoustic sensor networks [10], distributed wire-
less localization [11], and distributed power system mon-
itoring [12], where each local cost may be a function of
multiple variables that make up the entries of w. This
situation motivates us to study a broader problem, where
each local cost contains multiple variables that get to be
learned by the network cooperatively.

Thus, consider a parameter vector w ∈ RM and
assume it is partitioned into L sub-blocks as w ,
col{w1, w2, ..., wL}, with w` ∈ RM` . Without loss of
generality, we assume the variables {w`} are different in
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that they do not share entries. Let Ik denote the set of
variable indices that affect the cost of agent k and define:

wk , col{w`}`∈Ik ∈ RQk , Qk ,
∑
`∈Ik

M` (2)

We are then interested in solving the following optimiza-
tion problem:

minimize
w∈RM

Jglob(w) ,
N∑

k=1

Jk(wk) (3)

We denote the optimal solution of (3) by w?:

w? , col{w1,?, w2,?, ..., wL,?} = arg min
w1,...,wL

N∑
k=1

Jk(wk)

(4)

One important fact to emphasize here is that different
agents may be influenced by common sub-vectors of w.
Therefore, coupling between agents occurs and hence
cooperation becomes useful and often necessary. Figure
1 illustrates the formulation for a simple network.

Fig. 1: A connected network of agents where the cost of
each agent is a function of multiple parameters. Different
agents generally depend on different sub-vectors of w =
[w1, w2, w3, w4, w5, w6]. Cooperation is beneficial to promote
correct inference across the network.

We remark that algorithms that solve (1) can be used to
solve (3) by extending each local variable wk into a longer
global variable w, which would require unnecessary com-
munications and memory allocation. This is because in
(3), each local function contains only a subset of the
global variable w. This approach can lead to performance
degradation relative to the alternative solution proposed in



this work, which exploits more relaxed conditions — see
the illustration and explanations in future Fig. 6. There-
fore, solving (3) directly and effectively is important for
large scale networks. On the other hand, algorithms that
solve (3) are more general and can be used to solve (1). To
see this, we let L = 1 and Ik = {L},∀ k, then problem
(3) will depend only on one variable w , wL. In this
case, the cost function becomes Jglob(w) ,

∑N
k=1 Jk(w),

which is of the same form as problem (1)
Distributed optimization problems of the type (3) have

received less attention in the literature. Some related
references are [12]–[16]. For example, in [12], an ADMM
method is used to solve a distributed power system state
estimation with constraints. In [13] an extended ADMM
method is used to reduce communications but at the
expense of stronger assumptions. In the model predictive
control literature [9], [14], [15], most of the methods used
are specific for the case where all agents that share a
common variable w` form a star shaped subgraph. For
example, in [14] another ADMM method is proposed,
while [15] uses an inexact fast alternating minimization
algorithm; this second method is equivalent to an inexact
accelerated proximal-gradient method [16] applied to the
dual problem. In all of these methods, a sub-minimization
problem is solved at each iteration, which requires an
inner iteration unless a closed form solution exists.

In this work, motivated by recent developments in
[1], [3], [17], we propose a fully distributed first-
order algorithm that does not involve inner minimization
sub-problems and enjoys a linear convergence rate for
strongly-convex cost functions. Our algorithm generalizes
the exact diffusion strategy of [1], [3], [17] to the case of
coupled parameters.

Notation: We use lowercase letters to denote vectors
and scalars, and uppercase letters for matrices. We use
diag{x1, ..., xN} or diag{xj}Nj=1 to denote a (block)
diagonal matrix consisting of diagonal entries (blocks)
x1, ..., xN , and use col{x1, ..., xN} or col{xj}Nj=1 to
denote a column vector formed by stacking x1, ..., xN on
top of each other. For any set X = {n1, n2, · · · , nx},
we let U = [gij ]i,j∈X denote a matrix that is formed as
follows:

U =

gn1n1 · · · gn1nx

...
...

gnxn1
· · · gnxnx

 (5)

for some pre-defined scalars {gij}i,j∈X .

II. PROBLEM FORMULATION AND
ALGORITHM DERIVATION

II-A. Problem Reformulation
In order to solve (3) in a distributed manner, we first

need to reformulate (3) into an equivalent problem to
account for one additional degree of freedom. Recall that
the costs of two different agents, say, agents k and s, may

depend on the same sub-vector, say, w`. Thus, we let w`
k

denote the local copy of w` residing at agent k and let w`
s

denote the local copy of the same w` residing at agent s.
With this in mind, we redefine wk from (2) in terms of
the local copies, namely, we now write

wk
∆
= col{w`

k}`∈Ik ∈ RQk (6)

We further let C` denote the cluster (or sub-network) of
nodes that is influenced by the variable w` i.e.,

C`
∆
=
{
k | ` ∈ Ik

}
. (7)

It is necessary to require all local copies w`
k to coincide

with each other, which is met by imposing the constraints:

w`
k = w`

s ,∀ k, s ∈ C`. (8)

Using relations (6)–(8), we can rewrite problem (3) as:

minimize
w1,....,wN

N∑
k=1

Jk(wk)

subject to w`
k = w`

s ∀ k, s ∈ C`, ∀ ` ∈ {1, · · · , L}.
(9)

We illustrate the above construction by means of an
example.

Example: Consider the network with five agents shown
in Figure 2a.

(a)

(b)

Fig. 2: (a) A 5-agent network to illustrate the setting of problem
(9). (b) Cluster division of the network to highlight the common
shared parameters across different agents. The connection be-
tween agent 1 and 5 is represented in dashed line to highlight
the fact that they do not share any common parameters.



In this network, we have w = col{w1, w2, w3, w4},
I1 = {1, 2}, I2 = {1}, I3 = {1, 3}, I4 = {1, 3, 4}, and
I5 = {3, 4}. Consider further the optimization problem:

min.
{w`}

J1(w1, w2) + J2(w1) + J3(w1, w3)+

J4(w1, w3, w4) + J5(w3, w4) (10)

To reformulate problem (10) into an equivalent problem
that is amenable to distributed implementation, we intro-
duce w`

k as the local copy of w` at agent k, and rewrite
problem (10) as:

minimize J1(w1
1, w

2
1) + J2(w1

2) + J3(w1
3, w

3
3)+

J4(w1
4, w

3
4, w

4
4) + J5(w3

5, w
4
5),

subject to w1
1 = w1

2 = w1
3 = w1

4

w3
3 = w3

4 = w3
5

w4
4 = w4

5 (11)

We next introduce

w1
∆
= col{w1

1, w
2
1}, (12)

w2
∆
= col{w1

2}, (13)

w3
∆
= col{w1

3, w
3
3}, (14)

w4
∆
= col{w1

4, w
3
4, w

4
4}, (15)

w5
∆
= col{w3

5, w
4
5} (16)

and organize the network into L = 4 clusters with C1 =
{1, 2, 3, 4}, C2 = {1}, C3 = {3, 4, 5}, and C4 = {4, 5}
as shown in Figure 2b. Each cluster C` encircles the
agents that depend on the corresponding parameter w`.
Moreover, the links among the agents in each cluster C`
are defined by the links already existent in the network
shown in Fig. 2a. Then, problem (11) becomes equivalent
to

minimize
w1,w2,w3,w4

N∑
k=1

Jk(wk),

subject to w`
k = w`

s, ∀ k, s ∈ C`, ` = 1, 2, 3, 4. (17)

�

Remark 1. If we set L = 1 and Ik = {1}, there will be
only one cluster C = {1, · · · , N} which is the network
itself. Then, relation (6) will imply that wk = w`

k (this is
because Ik only contains one element). For this setting,
problem (9) reduces to

minimize
w1,....,wN

N∑
k=1

Jk(wk)

subject to wk = ws ∀ k, s ∈ C, (18)

which is the problem formulation considered by exact
diffusion in [3], [17]. �

To solve (9), we associate with each cluster C` a set of
combination weights {a`,sk}s,k∈C` such that:∑

s∈C`

a`,sk = 1,
∑
k∈C`

a`,sk = 1 (19)

a`,sk ≥ 0, and a`,sk = 0 if s /∈ Nk (20)

It should be noted that each agent k gets to choose its own
combination weights. For example, let n`,k =

∣∣Nk ∩ C`
∣∣

denote the number of agents that belong to C` and are
neighbors of agent k. Then, we can use the Metropolis
rule to construct the combinations weights {a`,sk; s ∈
Nk ∩ C`, ` ∈ Ik} that belong to agent k as follows:

a`,sk =



1

max{n`,k, n`,s}
, if s ∈ Nk ∩ C`, s 6= k

1−
∑

r∈Nk∩C`\{k}

a`,rk, s = k

0, otherwise
(21)

Remark 2. Each agent is required to know the set
Nk ∩ C` for every ` ∈ Ik, i.e., to know the collection
of neighboring agents that depend on the vector w`. This
condition does not require agent k to know the agents in
C` beyond its neighborhood. In most networked problems
of interest, this scenario is satisfied. For instance, in dis-
tributed wireless localization [11] and distributed model
predictive control [9], [14] there are L = N variables
and it holds that Ik = Ck = Nk (see simulation section).
Hence, the set Nk ∩ C` for every ` ∈ Ik can be easily
known by agent k. �

We now let N` denotes the cardinality of cluster C` and
define the N` ×N` cluster combination matrices:

A`
∆
= [a`,sk]s,k∈C` , ∀ ` ∈ {1, · · · , L} (22)

We refer the reader to the notation section to see how con-
struction (22) is formed. In-order to derive our distributed
algorithm, we introduce the following assumption.

Assumption 1. (Each cluster is a connected sub-
graph): The combinations submatrices {A`} are as-
sumed to be primitive, i.e., we assume that there ex-
ists a large enough j0 such that the elements of
Aj0

` have strictly positive entries. This implies that for
any two arbitrary agents in cluster C`, there exists
at least one path with nonzero weights {a`,sk}s,k∈C`
linking one agent to the other. Moreover, at least one
self weight {a`,kk}k∈C` is nonzero. We further as-
sume each A` to be symmetric and doubly stochastic.

�

We note that the assumption that each cluster forms
a connected network is not a stringent assumption. In
many applications, this condition is automatically satisfied
such as in maximum flow problems where it holds that
C` = N`, which in turn implies that the C` are connected
[13], [14]. More generally, most networks of interest



are connected. Therefore, even if some cluster C` is not
connected, we can always construct a larger connected
cluster C′` such that C` ⊂ C′`. For example, consider the
following network shown in Fig. 3.

Fig. 3: A five-agent network with unconnected C2 and C3.

In this network, we have

C1 = {1, 2, 3, 5}, C2 = {1, 4}, C3 = {3, 5}, C4 = {4}
(23)

Note that C4 is a singleton. Therefore, w4 will be opti-
mized solely and separately by agent 4, and no communi-
cation is needed for that variable. Cluster C1 is connected,
and agents {1, 2, 3, 5} cooperate in order to optimize
w1, with each agent sharing its estimate with neighbors.
However, clusters C2 and C3 have disconnected graphs.
This implies that agents 1 and 4 cannot communicate
directly to optimize and reach consensus on w2. Likewise,
for agents {3, 5} regarding the variable w3. To circumvent
this issue, we can redefine the local costs J1(w1, w2) and
J5(w1, w3) as

J ′1(w1, w2, w3)
∆
= J1(w1, w2) + 0 · w3 (24)

J ′5(w1, w2, w3)
∆
= J5(w1, w3) + 0 · w2 (25)

By doing so, the augmented costs J ′1(w1, w2, w3) and
J ′5(w1, w2, w3) now involve w3 and w2, respectively, and
the new clusters become

C′2 = {1, 4, 5}, C′3 = {1, 3, 5} (26)

which are connected and satisfy C2 ⊂ C′2 and C3 ⊂ C′3.
Therefore, in this scenario, agents {1, 4, 5} will now
cooperate to optimize w2 with agent 5 acting as a con-
nection that allows information about w2 to diffuse in
the cluster. Likewise, for agents {1, 3, 5}, with agent 1
allowing information about w3 to diffuse in the cluster.
A second extreme approach would be to extend each
local variable wk to the global variable w, which reduces
problem (3) to the formulation (1). We remark that the
task of embedding smaller clusters into larger connected
clusters can be achieved in a distributed fashion [13].

The following two auxiliary results are proven in [3].

Lemma 1. For any Q × Q primitive, symmetric and
doubly stochastic matrix A, it holds that IQ − A is
symmetric and positive semi-definite. Moreover, if we

introduce the eigen-decomposition 1
2 (IQ − A) = UΣUT,

where U is orthogonal, and the symmetric square-root
matrix:

V , UΣ1/2UT ∈ RQ×Q (27)

then, it holds that:

null(V ) = null(IQ −A) = span{1Q} (28)

where 1Q denotes a column vector of size Q× 1 with all
its entries equal to one. �

Corollary 1. For the same setting of Lemma 1, let
A = A ⊗ IM , where ⊗ denotes the Kronecker product
operation. Then, it holds that

null(I −A) = span{1Q ⊗ IM} (29)

Moreover, for any block vector X = col{x1, ..., xQ} in the
nullspace of I −A with entries xk ∈ RM it holds that :

(I −A)X = 0 ⇐⇒ x1 = x2 = ... = xQ (30)

If we further let V = V ⊗ IM , then we have:

VX = 0 ⇐⇒ (I −A)X = 0 ⇐⇒ x1 = x2 = ... = xQ

(31)

�

Corollary 1 allows us to rewrite the constraints in (9)
in an equivalent form that is amenable to distributed
implementations. First, for each parameter vector w`, we
collect its local copies into the extended vector

W` , col{w`
k}k∈C` ∈ RN`M` (32)

With this notation, we can rewrite the cost function in
problem (9) as

J (W1,W2, · · · ,W`)
∆
=

N∑
k=1

Jk(wk). (33)

Now recalling that each cluster C` is associated with a
symmetric and doubly stochastic combination matrix A`

defined in (22), we appeal to Lemma 1 to decompose
1

2
(IN`

−A`) = U`Σ`U
T
` . (34)

If we let

V` , U`Σ
1/2
` UT

` , (35)

V` , V` ⊗ IM`
, (36)

then using Corollary 1 and the definition of W` in (32)
we get

w`
k = w`

s, ∀ k, s ∈ C` ⇐⇒ V`W` = 0, ∀ `. (37)

Using relations (33) and (37), we can rewrite problem (9)
equivalently as

minimize
W1,....,WL

J (W1, · · · ,WL) (38)

subject to V`W` = 0, ∀ `



To rewrite problem (38) more compactly, we introduce

V , diag{V`}L`=1 (39)

and

W
∆
= col{W`}L`=1 ∈ RS (40)

J (W)
∆
= J (W1, · · · ,WL) (41)

where S ,
L∑̀
=1

N`M`. Then, problem (38) becomes:

minimize
W

J (W), s.t. VW = 0 (42)

For ease of reference, we summarize the notation in Table
I.

Ik The set of variable indices that influence the cost of agent k.
w`

k Local copy of w` at agent k.
wk Collection of parameters influencing agent k,

wk , col{w`
k}`∈Ik

C` Cluster of nodes that is influenced by the variable w`.
W` Stacks all local copies of w` across C`,

W` = col{w`
k}k∈C`

W Stacks W` for all parameters, W = col{W`}L`=1

Table I: A listing of the main symbols used in the problem
formulation and their interpretation.

II-B. Algorithm Development
We can now arrive at the Coupled Exact Diffusion

Algorithm (62a)–(62c) listed further ahead, by adjusting
the arguments of [3]. We first note that

V2 = diag{V2
` }L`=1 =

1

2
(IS −A) (43)

where

A , diag{A`}L`=1. (44)

Next, we introduce the augmented Lagrangian:

La(W, Y) = J (W) +
1

µ
YTVW +

1

2µ
‖VW‖2

= J (W) +
1

µ
YTVW +

1

4µ
WT(I −A)W (45)

where µ > 0 is a scaling parameter, and Y =
col{Y1, ..., YL} is a dual variable with each block Y` =
col{y`k}k∈C` ∈ RN`M` . Employing a standard primal-
descent dual-ascent saddle point algorithm we get the
following recursions using µ as a step-size parameter:

Wi = Wi−1 − µ∇WLa(Wi−1, Yi−1) (46)

Yi = Yi−1 + µ

(
1

µ
VWi

)
= Yi−1 + VWi (47)

The gradient vector appearing in (46) will involve three
terms and, therefore, the update in (46) can be imple-
mented in an incremental form. Specifically, referring to
(45), let

D(W) =
1

4µ
WT(I −A)W, G(W, Y) =

1

µ
YTVW (48)

so that:

La(W, Yi−1) = J (W) +D(W) + G(W, Yi−1) (49)

All three terms on the right-hand side depend on W. We
can then implement the gradient descent operation in (46)
in three successive steps and obtain the incremental form:

θi = Wi−1 − µ∇WJ (Wi−1) (50)

φi = θi − µ∇WD(θi) =
1

2
(IS +A) θi = Āθi (51)

Wi = φi − µ∇WG(φi, Yi−1) = φi − VYi−1 (52)

where in (51) we introduced :

Ā , 1

2
(IS +A) (53)

Now if we substitute (50) and (51) into (52) we get:

Wi = Ā
(
Wi−1 − µ∇WJ (Wi−1)

)
− VYi−1 (54)

Replacing (46) with (54), the resulting algorithm be-
comes:Wi = Ā

(
Wi−1 − µ∇WJ (Wi−1)

)
− VYi−1

Yi = Yi−1 + VWi

(55)

We can rewrite (55) in a simpler form by eliminating the
dual variable Y. First, we initialize Y−1 = 0 and W−1 to
any value. Hence, for i = 0 we have:W0 = Ā

(
W−1 − µ∇WJ (W−1)

)
Y0 = VW0

(56)

Moreover, by subtracting two successive iterations of (55)
for i = 1, 2, . . . we get:

Wi −Wi−1 = −V(Yi−1 − Yi−2) +

Ā
(
Wi−1 −Wi−2 − µ

(
∇WJ (Wi−1)−∇WJ (Wi−2)

))
(57)

From the second step in (55) we have:

V(Yi−1 − Yi−2) = V2Wi−1 =
1

2

(
IS −A

)
Wi−1 (58)

Substituting (58) into (57), we arrive at:

Wi = Ā
(

2Wi−1 −Wi−2 − µ
(
∇WJ (Wi−1)−∇WJ (Wi−2)

))
(59)

Algorithm (59) looks similar to the one in [3]. However,
there are two subtle differences. First, the combination
matrix Ā = 1

2 (IS + diag{A`)}L`=1) has a block diagonal
structure and, second, the gradient ∇WJ (W) couples the
variables {W`} across the clusters. To see this, we note
that the gradient vector is given by

∇WJ (W) =

∇W1J (W)
...

∇WLJ (W)

 (60)



with each ∇W`J (W) having the following form:

∇W`J (W) = col{∇w`
k
Jk(wk)}k∈C` (61)

It is clear that each block col{∇w`
k
Jk(wk)}k∈C` depends

on other clusters since the argument in Jk(wk) is wk and
agent k may belong to more than one cluster. For the
special case that there exists only one cluster (i.e, L = 1,
wk = w1

k, and A = A1), we recover the Algorithm in
[3]. We can rewrite (59) in an equivalent distributed form,
as listed in (62a)–(62c). In this listing, the variables ψk,i

and φk,i have the same structure as wk,i, i.e., ψk,i =
col{ψ`

k,i}`∈Ik and φk,i = col{φ`k,i}`∈Ik .

Algorithm (Coupled Exact Diffusion Strategy)
Setting: Let Ā` = (IN`

+ A`)/2, and wk,−1 = ψk,−1

arbitrary. For every agent k, repeat for i = 0, 1, 2, ...

ψk,i = wk,i−1 − µ∇wk
Jk(wk,i−1) (62a)

φk,i = ψk,i + wk,i−1 − ψk,i−1 (62b)

w`
k,i =

∑
s∈Nk∩C`

ā`,skφ
`
s,i, ∀ ` ∈ Ik (62c)

Before we examine the convergence properties of the
proposed algorithm, we introduce the following common
assumption.

Assumption 2. (Individual Costs): It is assumed that
the individual cost functions Jk(wk) are each twice-
differentiable, convex, and have Hessian matrices that are
bounded from above:

∇2
wk
Jk(wk) ≤ λk,maxIMk

(63)

Moreover, for every cluster C` there exists at least one
agent k` such that:

∇2
wk`

Jk`
(wk`

) > λ`,min (64)

for some strictly positive scalars {λ`,min} and {λk,max}.
a �

Note that assumption (64) is similar to requiring at least
one of the costs Jk(.) to be strongly convex within each
cluster – see [1], [2]. This guarantees that the aggregate
cost is strongly convex, and therefore a unique minimizer
exists.

Lemma 2. (An optimality condition) If block vectors
(W?, Y?) exist that satisfy :

µĀ∇WJ (W?) + VY? = 0 (65)
VW? = 0 (66)

then, it holds that each entry in each sub-block of the
vector W? (i.e., block entries of W`,?) satisfy:

w`,?
k = w`,?, k ∈ C` (67)

where w`,? is the `-th block of w? defined in (4), the
unique solution of problem (3).

Proof: First let W`,? ∆
= col{w`,?

k }`∈C` and note that
VW? = col{V`W`,?}L`=1. Therefore, from (37) we have:

VW? = 0 ⇐⇒ w`,?
k = w`,?

s , ∀ k, s ∈ C` (68)

We now show that w`,?
k = w`,?. Let Z = diag{1N`

⊗
IM`
}L`=1 and multiply (65) by ZT from the left:

0 = µZTĀ∇WJ (W?) + ZTVY?
(a)
= µZTĀ∇WJ (W?)

(b)
= µ


∑

k∈C1
∇w1

k
Jk(w?

k)

...∑
k∈CL

∇wL
k
Jk(w?

k)

 (69)

where step (a) is because ZTV = 0, since Z is in the
null space of V and step (b) is because of (60)–(61) and
the fact that ZTĀ = ZT. Equations (68) and (69) are
the optimality conditions for problem (9). Therefore, we
conclude that for every k, the entries {w`,?

k }, which are
identical, must coincide with the minimizer w`,? which is
the `-th block of the minimzer w? of problem (3). �

We remark that W? is unique due to the fact that
w? is unique since Jglob(w) is assumed strongly convex.
However, Y? is not necessarily unique due the fact that V
can be rank-deficient. It can be shown that there exists a
unique solution Y?o lying in the span of V .

Lemma 3. (Particular solution pair) When J (W) is
strongly convex and the combination matrices {A`} are
primitive, symmetric, and doubly stochastic, there exists a
unique pair of variables (W?, Y?o) in which Y?o lies in the
range space of V , and the optimality conditions (65)–(66)
are satisfied.

Proof: Omitted for brevity — see the arguments in [3],
[17] though. �

Theorem 1. (Linear convergence): Suppose Assump-
tions 1 and 2 hold, then the coupled exact diffusion
algorithm (55) converges exponentially fast to (W?, Y∗o)
for step-sizes µ ≤ µ0 for some small enough µ0.

Proof: Omitted for brevity — see the arguments in [17].
a �

III. EXAMPLE AND SIMULATION RESULTS
In this section we illustrate the operation of the algo-

rithm by considering a situation in which the individual
costs are quadratic. Each agent k seeks to estimate its own
variable wk ∈ RMk but is affected by the neighboring
variables {w`; ` ∈ Nk} (i.e., L = N and Ik = Nk),
through a cost of the form:

Jk(wk) = wT
kRkwk + bTkwk + rk

=
∑
s∈Nk

∑
`∈Nk

(ws)TRk,s`w
` +

∑
`∈Nk

bTk,`w
` + rk

(70)



where wk , col{w`}`∈Nk
, Rk is a Qk × Qk positive

definite matrix, and bk ∈ RQk . We partition Rk and bk
into block matrices {Rk,s` ∈ RMs×M`} and block vectors
{bk,` ∈ RM`} according to the block structure of wk.
Each agent k only knows its local quantities {Rk, bk}.
The aggregate cost is given by

Jglob(w) ,
N∑

k=1

Jk(wk) = wTRw + b̄Tw (71)

where

R ,


N∑

k=1

Rk,11 · · ·
N∑

k=1

Rk,1L

...
...

N∑
k=1

Rk,L1 · · ·
N∑

k=1

Rk,LL

, (72)

b̄ ,


N∑

k=1

bk,1

...
N∑

k=1

bk,L

 (73)

with

Rk,s` = 0, bk,` = 0, if ` /∈ Nk or s /∈ Nk (74)

Cost functions of the type (71) are common in the con-
trol literature, specifically in distributed linear quadratic
regulator (LQR) problems [9], [14]. In our simulation,
we consider a randomly generated network with N =
20 agents shown in Figure 4, where neighbors are de-
cided by closeness in distance. We randomly generate
Rk and bk. The matrices {A`} are generated using the
Metropolis rule (21). Figure 5 shows the relative error
(‖Wi − W?‖2/‖W−1 − W?‖2) with M` = 10 for all
variables and step size µ = 0.015. We observe that the
coupled exact diffusion algorithm (62a)–(62c) converges
linearly to W?. Figure 6 compares the proposed algorithm
to the exact diffusion algorithm [3], [17]. In this figure we
used M` = 5 for all variables and step size µ = 0.01
for both algorithms. We also used the Metropolis rule
to create the combination matrices. We conclude that, in
the case of problem formulation (3), it is not efficient to
extend each local vector to the global one and then solve
this extended problem [3], [17]. This can be reasoned
as follows. First, extending each local vector implies
that each Hessian matrix has a zero eigenvalue, which
destroys the strong convexity of the individual costs used
in this simulation. In comparison, the proposed coupled
exact diffusion algorithm takes advantage of the strong
convexity of the individual cost. Second, each agent
using exact diffusion combines every entry with the same
weights, which limits the flexibility of choosing more
weights for more important entries. For example, agent
8 in Fig. 4 using exact diffusion, estimate the entire
w8,i = {w`

8,i}20
`=1 by sharing and combining all entries

of φ8,i = {φ`8,i}20
`=1 according to the combination step

w8,i = a8,8φ8,i + a19,8φ19,i even though it only contains
information about the parameters w8 and w19. Thus the
combination weights a8,8 and a19,8 are required to satisfy
a19,8 = a8,19, a8,19 + a10,19 + a18,19 + a8,19 = 1, and
a8,8 + a19,8 = 1. From this we see that a8,8 and a19,8

can not be chosen independently (i.e, they depend on the
weights {a10,19, a18,19, a19,19} which relate to agents 10
and 18). This is not the case in the proposed coupled diffu-
sion algorithm since each cluster combination weights are
chosen independently (e.g., agent 8 combination weights
for w8

8,i, a8,8,8 and a8,19,8 are required to satisfy a8,19,8 =
a8,8,19 and a8,8,8 + a8,19,8 = 1, and hence unlike exact
diffusion, they do not depend on agents 10 and 18, which
gives more freedom in choosing the weights). Moreover,
in each iteration of Figure 6 each agent k using the exact
diffusion algorithm needs to communicate an 5×N = 100
long vector, as opposed to the proposed algorithm where
each agent k only communicates 5× |Nk| < 100.

Fig. 4: Network topology used in the simulation results.

Fig. 5: Relative error.



Fig. 6: Relative errors for the proposed coupled diffusion and
the exact diffusion algorithm [3], [17].

IV. CONCLUSION
In this work, we solved a distributed optimization

problem where each agent cost depends on multiple
parameters, and agents are coupled in that they may share
similar parameters. The proposed coupled exact diffusion
strategy enjoys a linear convergence rate for strongly-
convex cost functions and extends the exact diffusion
approach of [3], [17] to the case of partially-coupled agent
behavior.
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