
Adaptive Stochastic Convex Optimization Over Networks

Zaid J. Towfic and Ali H. Sayed

Abstract— In this work, we study the task of distributed
optimization over a network of learners in which each learner
possesses a convex cost function, a set of affine equality
constraints, and a set of convex inequality constraints. We
propose a distributed diffusion algorithm based on penalty
methods that allows the network to cooperatively optimize a
global cost function, subject to all constraints and without using
projection steps. We show that when sufficiently small step-
sizes are employed, the expected distance between the optimal
solution vector and that obtained at each node in the network
can be made arbitrarily small.

I. INTRODUCTION

Distributed convex optimization refers to the task of min-
imizing the aggregate sum of convex cost functions, each
available at an agent of a connected network, subject to
convex constraints that are also distributed across the agents.
The key challenge in such problems is that each agent is
only aware of its cost function and its constraints. This
article proposes a fully decentralized solution that is able
to minimize the aggregate cost function while satisfying all
distributed constraints. The solution method is based solely
on local cooperation among neighboring nodes and does not
rely on the use of projection constructions.

There have been several useful studies on distributed
convex optimization and estimation techniques in the litera-
ture [1]–[11]. Most existing techniques are suitable for the
solution of static optimization problems, where the objective
is to determine the location of a fixed optimal solution. These
techniques become problematic in the context of adaptation
and learning where the objective becomes that of solving a
dynamic optimization problem in real-time from streaming
data. In these dynamic scenarios, the solution methods need
to track drifts in the location of the optimal solution that
occur due to changes in the constraint conditions over time.
Moreover, it is customary in several distributed optimization
approaches to rely on stochastic-gradient implementations
that employ decaying step-sizes that die out as time pro-
gresses [1], [3], [10], [11]. The use of decaying step-sizes is a
hindrance to adaptation when it is desired to track changes in
the location of the minimizer. For these reasons, we shall set
all step-sizes to constant values in order to enable continuous
adaptation and learning.

It is also customary in the literature to rely on the use of
projection steps in order to ensure that the successive iterates
at the nodes satisfy the convex constraints [1], [2], [9]–[11].
In some of the methods [10], [11], each node is required to

This work was supported in part by NSF grant CCF-1011918.
The authors are with Department of Electrical Engineering, University of

California, Los Angeles, CA 90095. Email: {ztowfic,sayed}@ucla.edu.

know all the constraints across the entire network in order to
compute the necessary projections: this requirement renders
the methods non-distributed since they require the nodes to
have access to global information from across the network,
unless the feasible set is node-independent. The works [1],
[2] develop a useful alternative method where nodes are
only required to know their own constraints. However, the
constraint conditions still need to be relatively simple in
order for the distributed algorithm to be able to compute
the necessary projections analytically (such as projecting
onto the nonnegative orthant); we comment further on this
situation after Eqs. (29a)–(29c).

Motivated by these considerations, in this work, we pro-
pose fully distributed solutions that employ constant step-
sizes and that do not require projection steps. The solution
method relies instead on the use of suitably chosen penalty
functions and replaces the projection step by a stochastic
approximation update that runs simultaneously with the
optimization step. In the proposed technique, the nodes are
only required to interact locally and there is no need for the
nodes to know any of the constraints besides their own. The
technique used in this work relies on the use of diffusion
strategies [12], [13], which have been proven to have useful
convergence and learning properties [13], [14].

Notation. Random quantities are denoted in boldface. Ma-
trices are denoted in capital letters while vectors and scalars
are denoted in small-case letters.

II. AUGMENTATION METHODS

Consider a convex optimization problem of the form:

min
w

J(w) (1)

subject to gl(w) ≤ 0, l = 1, 2, . . . , L

where w ∈ RM , {g1(w), . . . , gL(w)} is a collection of
convex functions, and J(w) is a strongly convex function
from RM to R. Augmentation incorporates the inequality
constraints into the cost function and helps transform the
constrained optimization problem into an unconstrained op-
timization problem via a convex barrier or penalty function
δ(·) : R→ R, in the following manner:

min
w

J(w) + η

L∑
l=1

δ(gl(w)) (2)

where η > 0 is a scalar parameter that controls the relative
importance of adhering to the constraints. One choice for

1272978-1-4799-3410-2/13/$31.00 ©2013 IEEE

Fifty-first Annual Allerton Conference
Allerton House, UIUC, Illinois, USA
October 2 - 3, 2013

δ(·) that yields an equivalent problem to (1) for any finite
η > 0 is the indicator function [15, pp. 562–563]:

δIF(x) =

{
0, x ≤ 0

∞, otherwise
(3)

which is convex and nondecreasing. Since the indicator func-
tion is generally nondifferentiable, approximations are used
in its place. The main difference between barrier methods and
penalty methods is the choice of the approximating functions.

A. Barrier Methods

Barrier methods set a “barrier” around the feasible region.
One popular smooth approximation for (3) is the logarithmic
barrier function:

δlog(x) =

{
− log(−x), x < 0

∞, otherwise
(4)

Solution methods that are based on (4) would require a
strictly feasible initialization in order for the augmented
cost in (2) to remain bounded. When the entire constraint
set {g1(w), . . . , gL(w)} is not available to an agent (as
happens in distributed constrained optimization), then it is
not possible to choose a strictly feasible initializer without
sharing this global information with the agents. Penalty
methods avoid this difficulty.

B. Penalty Methods

In contrast to barrier methods, penalty methods give some
positive penalty to solutions that fall outside the feasible set.
In this case, the penalty function satisfies:

δIP(x) =

{
0, x ≤ 0

> 0, otherwise
(5)

One continuous, convex, and twice-differentiable choice that
satisfies (5) is:

δSIP(x) = max(0, x3) (6)

Observe that δSIP(x) does not assume unbounded values and,
therefore, penalty methods do not require a feasible solution
as an initializer. While this fact implies that penalty methods
are well-suited for distributed optimization scenarios, it also
follows that the iterates may not remain inside the feasible
region in general. We will see though that the iterates are
guaranteed to converge to the feasible solution asymptoti-
cally by adding a small positive offset τ to the penalty, i.e.,
by considering choices of the form δIP(x+ τ).

Another advantage of penalty methods, as opposed to
barrier methods, is that it is possible to easily incorporate
affine constraints as well. Thus, consider more generally the
convex optimization problem:

min
w

J(w) (7)

subject to hu(w) = 0, u = 1, 2, . . . , U

gl(w) ≤ 0, l = 1, 2, . . . , L

where the functions hu(w) are affine. This problem can also
be approached as an unconstrained optimization problem
using penalty functions:

min
w

J(w) + η

[
L∑
l=1

δIP(gl(w) + τ) +

U∑
u=1

δEP(hu(w))

]
(8)

where δIP(·) is described in (5) while δEP(·) is the convex
function:

δEP(x) =

{
0, x = 0

> 0, x 6= 0
(9)

One popular choice of a continuous, convex, and twice-
differentiable equality penalty function that satisfies (9) is
the quadratic penalty:

δSEP(x) = x2 (10)

Clearly, since the penalty functions are convex and the
original objective function is strongly convex, the augmented
cost (8) remains strongly convex. Note further that when (7)
is feasible, the minimizer of (8) tends to the optimal solution
of the original problem (7) as η → ∞. This shows that it
is possible to tackle both equality and inequality constraints
simultaneously using penalty methods.

In the next section, we examine how penalty methods can
be used in the development of distributed convex optimiza-
tion algorithms for the solution of the original optimization
problem (7) without the need to communicate the constraints
across the agents in the network.

III. DISTRIBUTED CONSTRAINED
OPTIMIZATION

Consider a connected network of agents (nodes), where
each node k possesses a strongly convex cost function,
Jk(w), associated with it and a convex set of constraints
w ∈ Wk where w ∈ RM . The objective of the network is
to optimize the aggregate cost across all nodes subject to all
constraints, i.e.,

min
w

Jglob(w) ,
N∑
k=1

Jk(w) (11)

subject to w ∈W1, . . . , w ∈WN

Each of the convex sets {W1, . . . ,WN} is defined as the set
of points w that satisfy a collection of affine equality and
convex inequality constraints:

Wk ,

{
w :

hk,u(w) = 0, u = 1, . . . , Uk

gk,l(w) ≤ 0, l = 1, . . . , Lk
(12)

Obviously, the original optimization problem (11) can be cast
as the optimization of the aggregate cost function Jglob(w)
over the common feasible set, W , W1 ∩ . . . ∩WN :

min
w

Jglob(w) subject to w ∈W (13)

1273

where W is a convex set since the intersection of convex
sets is itself convex [15, p. 36]. Assuming a solution for
the above optimization problem exists (i.e, W 6= ∅), we will
denote it by w?. The optimal objective value is given by
Jglob(w?).

Remark. Although we are requiring the individual cost
functions, Jk(w), to be strongly convex, this condition is
actually unnecessary and it is sufficient to require that at least
one of the individual costs is strongly convex while all other
costs can simply be convex; this condition is sufficient to
ensure that the aggregate cost Jglob(w) will remain strongly
convex. Most of the results in this article will continue to
hold under these weaker conditions. ♦

Returning to (11) and using the cost-augmentation tech-
nique described in (8), we introduce the unconstrained prob-
lem:

min
w

Jglob
η,τ (w) (14)

where

Jglob
η,τ (w) ,

N∑
k=1

Jk(w) + η

N∑
k=1

pk(w, τ) (15)

and

pk(w, τ) ,
Lk∑
l=1

δIP(gk,l(w)+τ)+

Uk∑
u=1

δEP(hk,u(w)) (16)

with δIP(x) and δEP(x) denoting convex and differentiable
functions that satisfy (5) and (9), respectively. We stress
that (14) is not an equivalent problem to (11). We will see
later though that the approximation improves as τ → 0 and
η →∞. Since Jglob(w) is strongly convex, the cost (14) will
also be strongly-convex and will have a unique optimizer for
each pair (η, τ) � 0. We shall denote this optimal solution
to (14) by wo(η, τ), which is parameterized in terms of
(η, τ). Our task is now two-fold: (1) to motivate a fully
distributed algorithm to solve (14) and determine wo(η, τ) by
using diffusion strategies, and (2) to characterize the distance
between wo(η, τ) and the desired optimizer w? of (11). We
will establish that by choosing the algorithm’s parameters
appropriately, it is possible to obtain an arbitrarily accurate
approximation for w?.

A. Diffusion Strategy for Distributed Optimization

Thus, consider the optimization problem given by (14).
Its aggregate cost can be expressed as the sum of local cost
functions as follows:

Jglob
η,τ (w) ,

N∑
k=1

J ′k,η,τ (w) (17)

where

J ′k,η,τ (w) , Jk(w)+η · pk(w, τ) (18)

and pk(w, τ) is defined in (16). Observe that each function
J ′k,η,τ (w) depends only on agent k’s information: cost func-
tion Jk(w) and constraint set Wk. This situation falls within
the framework of unconstrained diffusion optimization de-
veloped in [12], [13], which extends the original diffusion
formulations of [16], [17]. Following similar arguments to
those employed in these references, we conclude that one
way to seek the minimizer of (17) is for each node to run
the following diffusion strategy:

ψk,i = wk,i−1 − µ · ∇wJ ′k,η,τ (wk,i−1) (19a)

wk,i =

N∑
`=1

a`kψ`,i (19b)

In (19a)-(19b), the vector wk,i−1 denotes the estimate for
wo(η, τ) at node k at iteration i − 1. This iterate is first
updated via the gradient-descent update (19a) with step-
size µ > 0 to the intermediate value ψk,i. All other nodes
in the network perform a similar update simultaneously by
using their gradient vectors. Subsequently, each node k uses
(19b) to combine, in a convex manner, the intermediate
estimates from its neighbors. This step results in the updated
estimate wk,i and the process repeats itself. The nonnegative
coefficients {a`k} are chosen to satisfy the conditions:

a`k = 0, when ` and k are not neighbors (20a)
N∑
`=1

a`k = 1, k = 1, . . . , N (20b)

If we collect these coefficients into a matrix A = [a`k],
then condition (20b) implies that A is left-stochastic (i.e.,
it satisfies AT1N = 1N , where 1N is the vector with all
entries equal to one).

Evaluating the gradient vector from (18) and substituting
into (19a) we get:

ψk,i = wk,i−1 − µ · ∇wJk(wk,i−1)− µη · ∇wpk(w, τ)
(21)

for differentiable penalty functions. Expression (21) indicates
that the update from wk,i−1 to ψk,i involves two gradients:
the original gradient vector, ∇wJk(·), and the gradient vector
of the penalty function. We can incorporate these update
terms into wk,i−1 in various orders. One convenient way is
to split the update into two parts: first we move from wk,i−1
to an intermediate vector ζk,i in the opposite direction of the
gradient vector of Jk(·). Subsequently, we incorporate the
correction by the penalty gradient to obtain ψk,i, i.e.,

ζk,i = wk,i−1 − µ · ∇wJk(wk,i−1) (22a)
ψk,i = ζk,i − µη · ∇wpk(wk,i−1, τ) (22b)

It is generally expected that the intermediate iterate ζk,i
generated by (22a) is a better estimate for wo(η, τ) than
wk,i−1. This motivates us to replace wk,i−1 in the rightmost
term in (22b) by ζk,i to get:

ζk,i = wk,i−1 − µ · ∇wJk(wk,i−1) (23)
ψk,i = ζk,i − µη · ∇wpk(ζk,i, τ) (24)

1274

This substitution is reminiscent of incremental-type argu-
ments in gradient descent algorithms [18].

Now, combining (23)–(24) with (19b), we arrive at what
we shall refer to as the penalized Adapt-then-Combine (ATC)
algorithm:

ζk,i = wk,i−1 − µ · ∇wJk(wk,i−1) (25a)
ψk,i = ζk,i − µη · ∇wpk(ζk,i, τ) (25b)

wk,i =
∑
`∈Nk

a`kψ`,i (25c)

where Nk denotes the neighborhood of node k. It is also
possible to interchange the order in which steps (19a)–
(19b) are performed, with combination performed prior to
adaptation. Following similar arguments to the above, we
can motivate the following alternative penalized Combine-
and-Adapt (CTA) algorithm:

ψk,i−1 =
∑
`∈Nk

a`kw`,i−1 (26a)

ζk,i = ψk,i−1 − µ · ∇wJk(ψk,i−1) (26b)
wk,i = ζk,i − µη · ∇wpk(ζk,i, τ) (26c)

Observe that in both penalized ATC and CTA algorithms,
there is an explicit step to move along the gradient of the
penalty function. This step can be thought of as perform-
ing a single incremental “projection” step along agent k’s
constraints [19, pp. 20-21].

B. Comparison with the Consensus Construction

It is instructive to compare the penalized CTA algorithm
(26a)–(26c) with the consensus-based algorithm used, for
example, in [10] to solve similar constrained optimization
problems. The algorithm is reproduced below using our
notation:

ψk,i−1 =
∑
`∈Nk

a`kw`,i−1 (27a)

ζk,i = ψk,i−1 − µ · ∇wJk(wk,i−1) (27b)
wk,i = PW1∩...∩WN

[ζk,i] (27c)

where the notation PX[y] denotes the operation of projecting
the vector y onto the set X:

PX[y] , argmin
x∈X

‖x− y‖ (28)

Observe that the gradient vector in (27b) is evaluated at the
old iterate, wk,i−1, and not at the updated iterate ψk,i−1
as in (26b). Moreover, the projection step (27c) assumes
global knowledge of the full feasible set W by node k,
which runs counter to the objective of a fully distributed
solution. In addition, unless the constraints are simple, the
actual projection in (27c) is usually found via augmentation
methods such as the barrier method discussed in Sec. II-A,
and enough iterations need to be executed offline.

C. Comparison with Projection-Based Constructions

Another distributed algorithm is developed in [1]; it relies
on a diffusion structure similar to the penalized CTA form
albeit with two important differences: step (26c) is replaced
by the local projection step (29c) shown below and the
constant step-size in step (26b) is replaced by an iteration-
dependent step-size in step (29b):

ψk,i−1 =
∑
`∈Nk

a`kw`,i−1 (29a)

ζk,i = ψk,i−1 − µ(i) · ∇wJk(ψk,i−1) (29b)
wk,i = PWk

[ζk,i] (29c)

In this solution, each node would project only onto its
constraint set Wk, as indicated by (29c). However, the
constraint set Wk is required to consist of simple constraints
whose projections (29c) can be computed analytically, such
as the projection onto the non-negative orthant. Moreover,
note that step (29b) utilizes a diminishing step-size, which
limits the adaptation ability of the network in tracking
drifting constraints. In contrast, the diffusion strategy (26a)–
(26c) employs a constant step-size. When this is done,
the dynamics of the distributed algorithm is changed in a
nontrivial manner because the gradient update term will not
die out anymore with time as happens with decaying step-
size implementations.

IV. MAIN ASSUMPTIONS
In this section, we examine the performance of the penal-

ized ATC and CTA diffusion strategies (25a)-(25c) and (26a)-
(26c). We do not limit our analysis to deterministic optimiza-
tion problems, but consider more general stochastic gradient
approximation problems where the true gradient vectors,
∇wJk(·), are replaced by approximations, say, ∇̂wJk(·).

We model the approximate gradient direction as a ran-
domly perturbed version of the true gradient, say, as:

∇̂wJk(w) , ∇wJk(w) + vk,i(w) (30)

where vk,i(·) is the perturbation vector (or gradient noise).
Observe that once we replace ∇wJk(w) by ∇̂wJk(w), then
the variables φ, ψ, ζ, and w in the diffusion strategies (25a)–
(25c) and (26a)–(26c) become random variables (and will be
denoted by boldface letters from now on) due to the presence
of the random perturbation vk,i(·).

Since the iterate wk,i generated by the diffusion strategies
is random, we shall measure performance by examining the
average distance between wk,i and w?, i.e., by evaluating

lim sup
i→∞

E‖w? −wk,i‖ (31)

Now, using the solution wo(η, τ) of (14) we can write:

lim sup
i→∞

E‖w? −wk,i‖

≤ ‖w? − wo(η, τ)‖︸ ︷︷ ︸
Approximation Error

+ lim sup
i→∞

E‖wo(η, τ)−wk,i‖ (32)

We will see that under some assumptions, the approximation
error ‖w? − wo(η, τ)‖ can be driven to arbitrarily small

1275

values as η → ∞ and τ → 0. Therefore, it is sufficient
to characterize the size of the second term in (32) in order
to assess how small (31) is.

We now list the assumptions that are used for studying the
performance of the diffusion strategies. These conditions are
of the same nature as assumptions often used in the broad
distributed optimization literature.

Assumption 1 (Feasible problem): Problem (11) is feasi-
ble and, therefore, a minimizer w? ∈W exists. ♦
We also require the uniqueness of the solutions w? of (11)
and wo(η, τ) of (14). In order to guarantee these facts, we
introduce the following assumption.

Assumption 2 (Individual costs): Each Jk(w) has a Hes-
sian matrix that is bounded from above, i.e., there exist
{λk,max > 0} such that, for each k = 1, . . . , N :

∇2
wJk(w) ≤ λk,maxIM (33)

Furthermore, since the individual costs Jk(w) are strongly
convex, there exist λk,min > 0 such that

∇2
wJk(w) ≥ λk,minIM (34)

♦
Fact 1 (Uniqueness of w?): When Assumptions 1–2

hold, the optimizer w? of (11) is unique. ♦
Fact 2 (Uniqueness of wo(η, τ)): When Assumption 2

holds, the optimizer wo(η, τ) of (14) is unique for any η ≥ 0
and τ ≥ 0. ♦

We also require the Hessian matrices of the penalty
functions with respect to w to be bounded from above, but
not necessarily from below (they are obviously nonnegative
definite since the penalty functions are convex).

Assumption 3 (Penalty functions): The Hessian matrix of
each penalty function pk(w, τ), with respect to w, is upper
bounded, i.e.,

∇2
wpk(w, τ) ≤ λ

p
k,maxIM (35)

where λpk,max > 0. Furthermore, since the penalty functions
are convex, the Hessian matrix is nonnegative definite. ♦

Observe that we are not requiring δIP(gk,l(w)),
δEP(hk,u(w)), or gk,l(w) to be strongly convex in w.

Assumption 4 (Combination matrix): The combination
matrix A in the penalized ATC or CTA implementation is
primitive and doubly-stochastic. ♦

A doubly-stochastic matrix A is one that satisfies AT1 =
1 and A1 = 1. The primitive condition on A is satisfied by
any connected network with at least one self-loop (i.e., at
least one ak,k > 0) [20].

Assumption 5 (Gradient noise model): Let the symbol φ
refer to either w in the ATC implementation (25a)–(25b) or
ψ in the CTA implementation (26a)–(26c). We model the
perturbed gradient vector as:

∇̂wJk(φ) = ∇wJk(φ) + vk,i(φ) (36)

where, conditioned on the past history of the estimators
Hi−1 , {φk,j : k = 1, . . . , N and j ≤ i− 1}, the gradient
noise vk,i(φ) satisfies:

E{vk,i(φ)|Hi−1} = 0 (37)

E‖vk,i(φ)‖2 ≤ αE‖wo(η, τ)− φ‖2 + σ2
v (38)

for some α ≥ 0, σ2
v ≥ 0, and where φ ∈ Hi−1. ♦

V. MAIN RESULTS

For convenience, we introduce the compact notation:

wo(∞, τ) , lim
η→∞

wo(η, τ) (39)

where η →∞ monotonically.
Theorem 1 (Approaching optimal solution): Under

Assumptions 1 and 2, it holds that:

‖w? − wo(∞, 0)‖ = 0 (40)

so that wo(∞, 0) is feasible and optimal.
Proof: Omitted for brevity — see also [21, p. 477]. ♦

Result (40) is consistent with traditional results from opti-
mization theory [19, p. 288], [22, p. 302–307] where η is
replaced by an iteration-dependent sequence, η(i), that is
required to be divergent.

Theorem 2 (Convergence condition): Let Assumptions 2,
3, 4, and 5 hold. Then, the diffusion algorithm converges for
sufficiently small positive step-sizes, namely, for step-sizes
that satisfy

µ < min
1≤k≤N

{
2λk,max

λ2k,max + 4αλ2k,max

,
2λk,min

λ2k,min + 4αλ2k,max

,

2

η · (Lk + Uk)λ
p
k,max

}
(41)

Specifically, it holds that for small µ:

lim sup
i→∞

E‖wo(η, τ)−wk,i‖ ≤ O(
√
µ) +O(η · µ) (42)

so that

lim
µ→0

lim sup
i→∞

E‖wo(η, τ)−wk,i‖ = 0. (43)

Proof: Omitted for brevity. ♦

We conclude from Theorems 1 and 2 that if we choose
the parameters η and τ in terms of µ as follows:

η , µ−θ1 , τ = µθ2 , 0 < θ1 < 1, 0 < θ2 (44)

then it holds that

lim
µ→0

lim sup
i→∞

E‖w? −wk,i‖ = 0 (45)

In addition, the diffusion algorithm, which utilizes a constant
step-size, is capable of tracking varying constraint sets.

1276

REFERENCES

[1] S. Lee and A. Nedic, “Distributed random projection algorithm for
convex optimization,” IEEE Journal of Selected Topics in Signal
Processing, vol. 7, no. 2, pp. 221–229, Apr. 2013.

[2] K. Srivastava and A. Nedic, “Distributed asynchronous constrained
stochastic optimization,” IEEE Journal of Selected Topics in Signal
Processing, vol. 5, no. 4, pp. 772–790, Aug. 2011.

[3] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
Transactions on Automatic Control, vol. 31, no. 9, pp. 803–812, Sep.
1986.

[4] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Compu-
tation: Numerical Methods. Athena Scientific, Singapore, 1997.

[5] S. Kar, J. Moura, and K. Ramanan, “Distributed parameter estimation
in sensor networks: Nonlinear observation models and imperfect
communication,” IEEE Transactions on Information Theory, vol. 58,
no. 6, pp. 3575–3605, Jun. 2012.

[6] S. Theodoridis, K. Slavakis, and I. Yamada, “Adaptive learning in
a world of projections,” IEEE Signal Processing Magazine, vol. 28,
no. 1, pp. 97–123, Jan. 2011.

[7] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Transactions on Information Theory, vol. 52, no. 6,
pp. 2508–2530, Jun. 2006.

[8] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction
method of multipliers,” Foundations and Trends in Machine Learning,
vol. 3, no. 1, pp. 1–122, Jan. 2011.

[9] A. Nedic and A. Ozdaglar, “Cooperative distributed multi-agent opti-
mization,” in Convex optimization in Signal Processing and Commu-
nications, D. P. Palomar and Y. C. Eldar, Eds. Cambridge University
Press, NY, 2010.

[10] F. Yan, S. Sundaram, S. Vishwanathan, and Y. Qi, “Distributed
autonomous online learning: Regrets and intrinsic privacy-preserving
properties,” to appear in IEEE Transactions on Knowledge and Data
Engineering. Also available as arXiv:1006.4039v3, Feb. 2011.

[11] S. S. Ram, A. Nedic, and V. V. Veeravalli, “Distributed stochastic
subgradient projection algorithms for convex optimization,” Journal
of Optimization Theory and Applications, vol. 147, no. 3, pp. 516–
545, Jul. 2010.

[12] J. Chen and A. H. Sayed, “Diffusion adaptation strategies for dis-
tributed optimization and learning over networks,” IEEE Transactions
on Signal Processing, vol. 60, no. 8, pp. 4289–4305, Aug. 2012.

[13] ——, “Distributed Pareto optimization via diffusion strategies,” IEEE
Journal of Selected Topics in Signal Processing, vol. 7, no. 2, pp.
205–220, Apr. 2013.

[14] S. Y. Tu and A. H. Sayed, “Diffusion strategies outperform consensus
strategies for distributed estimation over adaptive networks,” IEEE
Transactions on Signal Processing, vol. 60, no. 12, pp. 6217–6234,
Dec. 2012.

[15] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, NY, 2004.

[16] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over
adaptive networks: Formulation and performance analysis,” IEEE
Transactions on Signal Processing, vol. 56, no. 7, pp. 3122–3136,
Jul. 2008.

[17] F. S. Cattivelli and A. H. Sayed, “Diffusion LMS strategies for dis-
tributed estimation,” IEEE Transactions on Signal Processing, vol. 58,
no. 3, pp. 1035–1048, Mar. 2010.

[18] D. P. Bertsekas, “A new class of incremental gradient methods for
least squares problems,” SIAM Journal on Optimization, vol. 7, no. 4,
pp. 913–926, Nov. 1997.

[19] B. T. Polyak, Introduction to Optimization. Optimization Software,
NY, 1987.

[20] A. H. Sayed, “Diffusion adaptation over networks,” in E-Reference
Signal Processing, R. Chellapa and S. Theodoridis, editors, Elsevier,
2013. Also available as arXiv:1205.4220v1, May 2012.

[21] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Program-
ming: Theory and Algorithms. John Wiley & Sons, NJ, 2006.

[22] D. G. Luenberger, Optimization by Vector Space Methods. Wiley,
NJ, 1997.

1277

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryList_V1
 qi2base

