
On the Limiting Behavior of Distributed Optimization Strategies

Jianshu Chen and Ali H. Sayed

Abstract— Motivated by recent developments in the context
of adaptation over networks, this work establishes useful
results about the limiting global behavior of diffusion and
consensus strategies for the solution of distributed optimization
problems. It is known that the choice of combination policies
has a direct bearing on the convergence and performance of
distribued solutions. This article reveals what aspects of the
combination policies determine the nature of the Pareto-optimal
solution and how close the distributed solution gets to it. The
results suggest useful constructive procedures to control the
convergence behavior of distributed strategies and to design
effective combination procedures.

I. INTRODUCTION

In multi-agent systems, agents interact with each other
to solve a problem of common interest, such as an opti-
mization problem in a distributed manner. Such networks of
interacting agents are useful in solving distributed estimation,
learning and decision making problems [1]–[18]. They are
also useful in modeling biological networks and bio-inspired
cognition [19]–[21]. Two useful strategies that can used to
guide the interactions of the agents are consensus strategies
[3]–[6] and diffusion strategies [8]–[16]. Both classes involve
self-learning and social-learning steps. During self-learning,
each agent updates its state using its local data. During
social learning, each agent aggregates information from its
neighbors. A useful feature that results from these localized
interactions is that the network ends up exhibiting global
patterns of behavior. For example, in biological networks,
fish schools move together towards food or away from preda-
tors [21]. Likewise, in distributed estimation and learning,
each agent is able to attain the performance of centralized
solutions by relying solely on local cooperation [4], [10],
[14].

In this article, we consider a general class of distributed
strategies and study the resulting global behavior by address-
ing four important questions: (i) where does the distributed
algorithm converge to? (ii) when does it converge? (iii) how
fast does it converge? and (iv) how close does it converge to
the intended point? An interesting conclusion that will follow
from our analysis is that the performance of the multi-agent
system is largely dependent on the right-eigenvector of the
combination matrix corresponding to the eigenvalue at one.
This result reveals the manner by which the network topology
influences performance in a compact and interesting way.

Most prior studies on distributed optimization and estima-
tion tend to focus on the performance and convergence of

This work was supported in part by NSF grants CCF-1011918 and CCF-
0942936.

The authors are with Department of Electrical Engineering, University of
California, Los Angeles, CA 90095. Email: {jshchen, sayed}@ee.ucla.edu.

the algorithms under diminishing step-size conditions [2]–
[6], [10], [17], [18], or on convergence under deterministic
conditions on the data [6]. In this paper, we instead examine
the global behavior of the distributed strategies from a
mean-square-error perspective at constant step-sizes. This
is because constant step-sizes are necessary for continuous
adaptation, learning, and tracking, which in turn enable the
algorihtms to perform well even under data that exhibit
statistical variations and measurement noise.
Notation. All vectors are column vectors. We use bold-
face letters to denote random quantities (such as uk,i) and
regular font to denote their realizations or deterministic
variables (such as uk,i). We use diag{x1, . . . , xN} to denote
a (block) diagonal matrix consisting of diagonal entries
(blocks) x1, . . . , xN , and use col{x1, . . . , xN} to denote a
column vector formed by stacking x1, . . . , xN on top of each
other. The notation x � y means each entry of the vector x is
less than or equal to the corresponding entry of the vector y.
We use the tilde notation to represent the error with respect
to the limit point: w̃ = wo − w. The notation x = vec(X)
denotes the vectorization operation that stacks the columns
of a matrix X on top of each other to form a vector x, and
X = vec−1(x) is its inverse operation. The operators ∇w
and ∇wT denote the column and row gradient vectors with
respect to w. When ∇wT is applied to a column vector s, it
generates a matrix.

II. PROBLEM FORMULATION

A. Distributed Strategies: Consensus and Diffusion

We consider a network of N agents that are connected
according to a certain topology — see Fig. 1. Each agent k
implements a distributed algorithm of the following form:

φk,i−1 =

N∑
l=1

a1,lkwl,i−1 (1)

ψk,i =

N∑
l=1

a0,lkφl,i−1 − µkŝk,i(φk,i−1) (2)

wk,i =

N∑
l=1

a2,lkψl,i (3)

where wk,i ∈ RM is the state of the agent k at time i,
usually an estimate for the solution of some optimization
problem, φk,i−1 ∈ RM and ψk,i ∈ RM are intermediate
variables generated at node k before updating to wk,i, µk is
a nonnagative constant step-size parameter used by node k,
and ŝk,i(·) is an M × 1 update vector function at node k.
In deterministic optimization problems, the update vectors

1535

Fiftieth Annual Allerton Conference
Allerton House, UIUC, Illinois, USA
October 1 - 5, 2012

978-1-4673-4539-2/12/$31.00 ©2012 IEEE

TABLE I
DIFFERENT CHOICES FOR A1 , A0 AND A2 CORRESPOND TO DIFFERENT

DISTRIBUTED STRATEGIES.

Distributed Strategeis A1 A0 A2 A1A0A2

Consensus I A I A
ATC diffusion I I A A
CTA diffusion A I I A

ŝk,i(·) can be the gradients or Newton steps associated
with the cost functions [6]. On the other hand, in stocastic
approximation problems, such as adaptation, learning and
estimation problems [3]–[5], [7]–[18], the update vectors
are usually computed from realizations of data samples that
arrive sequentially at the nodes. In the stochastic setting,
the quantities appearing in (1)–(3) become random and we
use boldface letters to highlight their stochastic nature. In
Example 1 below, we will illustrate the choices for ŝk,i(w)
in different contexts.

The combination coefficients a1,lk, a0,lk and a2,lk in (1)–
(3) are nonnegative weights that each node k assigns to
the information arriving from node l; these coefficients are
required to satisfy:

N∑
l=1

a1,lk = 1,

N∑
l=1

a0,lk = 1,

N∑
l=1

a2,lk = 1 (4)

a1,lk ≥ 0, a0,lk ≥ 0, a2,lk ≥ 0 (5)
a1,lk = a2,lk = a0,lk = 0, if l /∈ Nk (6)

Observe from (6) that the combination coefficients are zero
if l /∈ Nk, where Nk denotes the set of neighbors of node k
(including node k itself). Therefore, each summation in (1)–
(3) is confined within the neighborhood of node k. In algo-
rithm (1)–(3), each node k first combines the states {wl,i−1}
from its neighbors and updates wk,i−1 to the intermediate
variable φk,i−1. Then, the {φl,i−1} from the neighbors are
aggregated and updated to ψk,i by ŝk,i(φk,i−1). Finally,
the intermediate estimators {ψl,i} from the neighbors are
combined to generate the new state wk,i at node k.

The general distributed strategy (1)–(3) can be specialized
into various algorithms. We let A1, A0 and A2 denote the
N ×N matrices that collect the coefficients {a1,lk}, {a0,lk}
and {a2,lk}. Then, condition (4) is equivalent to

AT1 1 = 1, AT0 1 = 1, AT2 1 = 1 (7)

which means that the matrices {A0, A1, A2} are left-
stochastic. Different choices for A1, A0 and A2 correspond
to different distributed strategies, as summarized in Table
I. Specifically, the consensus [3]–[6] and diffusion (ATC
and CTA) [8]–[16] algorithms are given by the following
iterations:

Consensus : wk,i =
∑
l∈Nk

a0,lkwl,i−1 − µkŝk,i(wk,i−1)

(8)

Nk

k

k

1

2

3

4

5

6

7

8

9

Fig. 1. A network representing a multi-agent system. The set of all agents
that can communicate with node k (including node k itself) is denoted as
Nk .

ATCdiffusion :


ψk,i = wk,i−1 − µkŝk,i(wk,i−1)

wk,i =
∑
l∈Nk

a2,lkψl,i
(9)

CTAdiffusion :

φk,i−1 =
∑
l∈Nk

a1,lkwl,i−1

wk,i = φk,i−1 − µkŝk,i(φk,i−1)

(10)

Therefore, the convex combination steps appear in different
locations in the consensus and diffusion implementations.
However, in our analysis, we will proceed with the general
form (1)–(3) to study all three schemes within a unifying
framework.

We observe that there are two types of learning processes
involved in the dynamics of agent k: (i) self-learning in (2)
from locally sensed data and (ii) social learning in (1) and
(3) from neighbors. All nodes implement the same self- and
social learning structure. As a result, the learning dynamics
of all nodes in the network are coupled; knowledge exploited
from local data at node k will be propagated to its neighbors
and from there to their neighbors in a diffusive learning
process. It is expected that some global performance pattern
will emerge from these localized interactions in the multi-
agent system. In this work, we are interested in addressing
the following questions:

• Limit point: where does each state wk,i converge to?
• Stability: under which condition does convergence oc-

cur?
• Learning rate: how fast does convergence occur?
• Performance: how close is wk,i to the limit point?

The answers to these questions provide useful insights about
how to tune the algorithm parameters in order to reach
desired performance levels.

Example 1: The distributed algorithm (1)–(3) can be ap-
plied to optimize global costs of the following form [15]:

Jglob(w) =

N∑
k=1

Jk(w) (11)

1536

or to find Pareto-optimal solutions to multi-objective opti-
mization problems:

min
w
{J1(w), . . . , JN (w)} (12)

where Jk(w) is an individual cost associated with each agent
k. Optimization problems like (11)–(12) arise in various
applications — see [2]–[18]. Depending on the context, the
update vector ŝk,i(·) may be chosen in different ways:
• In deterministic optimization problems, the expressions

for {Jk(w)} are known and the update vector ŝk,i(·)
at node k can be chosen as the deterministic gradient
(column) vector ∇wJk(·).

• In distributed estimation and learning, the individual
cost function at each node k is usually given as the
expected value of some loss function Qk(·, ·), i.e.,
Jk(w) = E{Qk(w,xk,i)} [10], [15], where the ex-
pectation is with respect to the randomness in data
samples {xk,i} collected at node k at time i. The
exact expression for∇wJk(w) is usually unknown since
the probability distribution of the data is not known
beforehand. In this case, the update vector ŝk,i(·) is
chosen as an instantaneous approximation for the true
gradient vector, namely, ∇̂wJk(·) = ∇wQk(·,xk,i).
Note that the update vector ŝk,i(w) is now evaluated
from the random data sample xk,i collected at agent k at
time i. Therefore, it is also random and time dependent.

The update vectors may not necessarily be the gradients of
the cost functions or their stochastic approximations. They
may also take other forms for different reasons:
• In [4], a certain gain matrix K is multiplied to the left

of the stochastic gradient vector ∇̂wJk(·) to make the
estimator asymptotically efficient for a linear observa-
tion model.

• In gradient temporal-difference (GTD) learning [22] and
its distributed version [9], the cost function Jk(w) is
chosen to be the mean-square projected Bellman error
(MSPBE), which can be expressed as a product of
three expectation terms. As a result, the instantaneous
approximation of its gradient is implemented with the
help of an auxiliary recursion, and the equivalent update
vector becomes non-gradient type.

III. MODELING ASSUMPTIONS

In this section, we list the assumptions and definitions that
are used in the analysis.

Assumption 1 (Standard network): The N × N matrix
product A = A2A0A1 is a primitive left-stochastic matrix,
i.e., AT1 = 1 and there exists a finite integer jo such that
all entries of Ajo are strictly positive.

Let A = [alk] denote the entries of A. Assumption 1 is
readily satisfied if the network is connected and there is at
least one akk > 0 for some node k. It then follows from
the Peron-Frobenius Theorem [23] that the matrix A1A0A2

has an eigenvalue one of multiplicity one and all other
eigenvalues are strictly less than one. Obviously, 1T is a

left eigenvector of A1A0A2 corresponding to the eigenvalue
at one. Let θ denote the right eigenvector corresponding to
the eigenvalue at one and whose entries are normalized to
add up to one, i.e., 1T θ = 1. Then, the Peron-Frobenius
Theorem further ensures that all entries of θ are positive.
Note that, unlike [3]–[6], [17], [18], we do note require the
matrix A1A0A2 to be doubly-stochastic (in which case θ
would be 1). Instead, we will study the performance of the
algorithms in the context of general left-stochastic matrices
{A1, A0, A2} and we will examine the influence of θ on both
the limit point and performance.

Definition 1 (Step-sizes): Without loss of generality, we
express the step-size at each node k as µk = µβk, where µ
is a positive scalar, and βk ≥ 0.

Definition 2 (Useful vectors): Let π and p be the follow-
ing N × 1 vectors:

π , A2θ (13)

p , col{π1β1, . . . , πNβN} (14)

where πk is the kth entry of the vector π.

The vector p will play a critical role in the performance of
the distributed strategy (1)–(3). Furthermore, we introduce
the following assumptions on the update vectors ŝk,i(·) in
(1)–(3).

Assumption 2 (Update vector: Randomness): There exist
an M × 1 deterministic vector function sk(w) such that for
all w ∈ Fi−1:

E {ŝk,i(w)|Fi−1} = sk(w) (15)

for all i, k, where Fi−1 denotes the past history of estimators
{wk,j} for j ≤ i − 1 and all k. Furthermore, there exist
αk ≥ 0 and σ2

v,k ≥ 0 such that for all i, k and w ∈ Fi−1:

E
{
‖ŝk,i(w)−sk(w)‖2

}
≤ αk ·E‖sk(w)‖2+σ2

v,k (16)

The above assumption requires the variance of the random
update vector ŝk,i(w) to be bounded by the variance of
sk(w) due to the randomness inw. It is a generalized version
of Assumption 2 from [15], [16] and the assumptions from
[17], [24], [25], where ŝk,i(w) was instead taken as the
stochastic gradient:

∇̂wJk(w) = ∇wJk(w) + vk,i(w) (17)

In this case, sk(w) = ∇wJk(w), and (15)–(16) become the
following conditions on the gradient noise vk,i(w):

E {v̂k,i(w)|Fi−1} = 0 (18)

E
{
‖v̂k,i(w)‖2

}
≤ αk ·E‖∇wJk(w)‖2+σ2

v,k (19)

In Example 2 of [15], we illustrate why these conditions are
necessary in modeling stochastic approximation algorithms.
Assumption 2 given by (15)–(16) is more general because
we allow the update vector ŝk,i(·) to be of other forms (e.g.,
[4], [9]).

1537

Assumption 3 (Update vector: Lipschitz): There exist a
nonnegative λU such that for all x, y ∈ RM and all k:

‖sk(x)− sk(y)‖ ≤ λU · ‖x− y‖ (20)

where the subscript U in λU means upper bound.

Assumption 4 (Update vector: Strong monotonicity): Let
pk denote the kth entry of the vector p defined in (14).
There exists λL > 0 such that for all x, y ∈ RM :

(x− y)T ·
N∑
k=1

pk

[
sk(x)− sk(y)

]
≥ λL‖x− y‖2 (21)

where the subscript L in λL means lower bound.

In the context of distributed optimization with stochas-
tic gradient, i.e., sk(w) = ∇wJk(w) and ŝk,i(w) =

∇̂wJk(w) = ∇wJk(w) + vk,i(w), the above Assumptions
3–4 are equivalent to requiring

∇2
wJk(w) ≤ λUIM (22)
N∑
k=1

pk∇2
wJk(w) ≥ λLIM > 0 (23)

On the other hand, in [15], [16], we assumed ∇2
wJk(w) ≥

λmin,kIM (see Assumption 1 in [15], [16] with the com-
bination matrix C = I). This was meant to require each
individual cost function Jk(w) to be strongly convex, which
is a stronger condition than (23). Condition (23) is equivalent
to requiring a certain weighted sum of the individual cost
functions {Jk(w)} to be strongly convex:

Jglob(w) =

N∑
k=1

pkJk(w) (24)

Such a relaxation of the assumptions introduces some chal-
lenges into the analysis, as we explain in Sec. IV-B.

IV. LIMITING BEHAVIOR OF DISTRIBUTED
STRATEGIES

In this section, we study the global behavior that emerges
from the local interactions in the distributed strategy (1)–
(3). First, we establish the existence of a unique limit point
wo under the assumptions of Sec. III. Second, we show that
under certain conditions on the constant step-sizes, the state
vector wk,i at each node k converges to the same limit
point wo with certain steady-state MSE performance. We
also evaluate the convergence rate and steady-state mean-
square-error at small step-sizes, and show that each agent
achieves approximately the same performance.

A. Limit Point

To study the limiting global behavior of (1)–(3), the first
step is to identify the potential limit point wo of the algorithm
if it converges. We also need to show the existence and
uniqueness of such a vector.

Theorem 1 (Limit point): Given Assumptions 3–4, there
exists a unique M × 1 vector wo such that

N∑
k=1

pksk(wo) = 0 (25)

where pk is the kth entry of the vector p defined in (14).
Proof: Omitted for brevity.

Example 2: In the special case that sk(w) = ∇wJk(w),
where Jk(w) is the individual cost function asssociated with
agent k, the above equation (25) becomes:

N∑
k=1

pk∇wJk(wo) = 0 (26)

which means the vector wo is the minimizer of the following
global cost function:

Jglob(w) =

N∑
k=1

pkJk(w) (27)

We will see that minimizing the above Jglob(w) is equivalent
to finding a Pareto-optimal solution to the multi-objective
optimization problem in (12) — see Sec. V further ahead.

B. Error Recursion

We are going to show next that the vector wo defined
above is actually the limit point of the distributed algorithms
(1)–(3); the state vector wk,i at each node k converges to
wo at a certain rate and with a certain steady-state MSE.
First, note from (1)–(3) that the recursion at each node k is
coupled with the recursions at its neighbors. Therefore, it is
necessary to study the evolution of the states {wk,i} over
the entire network. Introduce the following global quantities

φi , col{φ1,i, . . . ,φN,i} (28)

ψi , col{ψ1,i, . . . ,ψN,i} (29)

wi , col{w1,i, . . . ,wN,i} (30)

Ω0 , diag{β1, . . . , βN} (31)

M0 , Ω0 ⊗ IM (32)

A1 , A1 ⊗ IM (33)

A0 , A0 ⊗ IM (34)

A2 , A2 ⊗ IM (35)

ŝi(φi−1) , col{ŝ1,i(φ1,i−1), . . . , ŝN,i(φN,i−1)} (36)

Then, recursions (1)–(3) can be expressed as

φi−1 = AT1wi−1 (37)

ψi = AT0 φi−1 − µM0ŝi(φi−1) (38)

wi = AT2 ψi (39)

which leads to

wi = AT2AT0AT1wi−1 − µAT2M0ŝi(AT1wi−1) (40)

1538

To measure how close each wk,i is to wo, introduce a global
error vector of the following form

w̃i , 1⊗ wo −wi
= col{w̃1,i, . . . , w̃N,i} (41)

We analyze the mean-square performance of the distributed
algoirthm by studying the evolution of the error covariance
matrix

Pi , E
{
w̃iw̃

T
i

}
(42)

from which we can evaluate any weighted mean-square-error
by using the following relation:

E‖w̃i‖2Σ = E
{
w̃T
i Σw̃i

}
= Tr(PiΣ) (43)

where Σ is an arbitrary positive semidefinite weighting
matrix. Specifically, we are going to study how Pi evolves
over time, under what condition it converges, how fast it
converges, and the expression of its limit value when it
converges:

P∞ , lim
i→∞

Pi (44)

However, this is a challenging task because of the coupling
and nonlinear natures of the recursions (1)–(3). Further-
more, since we further relaxed the assumptions (especially
Assumption 4) relative to previous results [15], [16], the
analysis becomes more demanding. Nevertheless, we are
still able to analyze the mean-square-error performance by
introducing a useful transformation. Specifically, we analyze
the performance in two steps: (i) we first study the evolution
of the error covariance in a transformed domain and establish
bounds on the mean-square-error, and (ii) we then evaluate
the convergence rate and P∞ for small step-sizes.

First, we introduce the transform that we are going to
use in the analysis. To begin with, we introduce the Jordan
canonical decomposition [26]:

AT2 A
T
0 A

T
1 = UDU−1 (45)

By Assumption 1, AT2 A
T
0 A

T
1 is a primitive right-stochastic

matrix. Therefore, the matrices U , D and U−1 can be
expressed in the following block forms:

U =
[
1 UL

]
, D =

[
1 0

0 DN−1

]
, U−1 =

[
θT

UTR

]
(46)

where DN−1 is the (N−1)×(N−1) matrix with all Jordan
blocks that have eigenvalue strictly less than one. It follows
that

AT2AT0AT1 = UDU−1 (47)

where U , U ⊗ IM , D , D ⊗ IM , and U−1 , U−1 ⊗ IM .
Let

w′i , U−1wi (48)

We can express w′i as a block vector that is formed by
stacking N vectors of size M × 1 on top of each other:

w′i = col{wc,i, e1,i, . . . , eN−1,i} (49)

Then, the transform relation (48) implies that the vector wc,i
is a weighted average of the state vectors {wk,i} at all agents,
or equivalently, wc,i is the “centroid” of {wk,i}:

wc,i =

N∑
k=1

θkwk,i (50)

Furthermore, from (48), we obtain

wi = Uw′i = 1⊗wc,i + (UL ⊗ IM)


e1,i

...
eN−1,i

 (51)

We observe that the transform (48) actually decomposes
the state vector wi into a centroid component wc,i and
perturbation terms {en,i}; the state vector wk,i at each agent
k can be expressed as wc,i plus a perturbation term:

wk,i = wc,i +

N−1∑
n=1

[UL]kn · en,i (52)

where [UL]kn denotes the (k, n)-th entry of the matrix UL.
This observation allows us to study the evolution of the
error vector w̃k,i by studying the evolution of w̃c,i and
{e1,i, . . . , eN−1,i} because of the following relation:

w̃k,i = w̃c,i −
N−1∑
n=1

[UL]kn · en,i (53)

Next, we use this observation to (i) establish a bound on the
following mean-square-error vector:

W ′i , col
{
E‖w̃c,i‖2,E‖e1,i‖2, . . . ,E‖eN−1,i‖2

}
(54)

and to (ii) evaluate the evolution of the error covariance
matrix Pi defined in (42) at small step-sizes.

C. Mean-Square-Error Performance

We establish in the following theorem a bound on W ′i
and stability conditions on the step-sizes. The theorem shows
that when the step-size parameter µ is small enough, the state
vector wk,i at each node k would converge to the same limit
point wo defined in (25) with a certain steady-state mean-
square-error. It also provides bounds on how fast and how
close it converges to the limit point wo.

Theorem 2 (Bound on mean-square-error): The follow-
ing non-asymptotic bound on W ′i holds for all i ≥ 0:

W ′i � Γi
[
W ′0 −Wub′

∞

]
+Wub′

∞ (55)

1539

if the matrix Γ is stable, where

Wub′

∞ , µ2σ2(IN − Γ)−11 (56)

Γ ,

[
1−µλL+ µ2

2 ‖p‖21λ2
U µhc1

T

0 Γ0

]
+ µ2α11T

(57)

Γ0 ,


d2

4
1−d2
.

. . . 4
1−d2
d2

 (58)

Moreover, d2 is the magnitude of the second-largest eigen-
value of the matrix A1A0A2, and the parameters σ2, hc
and α are constant numbers that are determined by A1, A2,
U , Ω0, αk, λU , σ2

v,k, and p (we omit their definitions for
brevity). Furthermore, a sufficient condition that guarantees
the stability of the matrix Γ is that

0 < µ < min

{
λL

1
2‖p‖21λ2

U + ατ
,

1−d2
2

hc
(1−d2)2

8 + λL

}
(59)

where

τ ,

(
(1− d2)2

8

)N−1 [
1− (1− d2)2

8

]
(60)

Under condition (59), the spectral radius of the matrix Γ is
upper bounded by

ρ(Γ) ≤ 1− µλL + µ2

(
1

2
‖p‖21λ2

U + ατ

)
(61)

Proof: Omitted for brevity.
Note from (55) that, as i → ∞, each entry of W ′i is upper
bounded by the corresponding entry of the vector Wub′

∞ :

lim sup
i→∞

W ′i � Wub′

∞ (62)

An important implication of the above theorem is that each
entry of W ′i (i.e., E‖w̃c,i‖2,E‖e1,i‖2, . . . ,E‖eN−1,i‖2) can
be made arbitrarily small for a sufficiently small step-size
µ. To see this, we evaluate the expression of Wub′

∞ by
substituting (57) into (56) to obtain

Wub′

∞ =
σ2

1− α
[
µ(1+µhc1T (I−Γ0)−11)

λL−µ 1
2‖p‖

2
1λ

2
U

+ µ21T (I − Γ0)−11
]

×
[
µ 1+µhc1

T (I−Γ0)−11

λL −µ 1
2‖p‖

2
1λ

2
U

µ2(I − Γ0)−11

]

≈
[

µ σ
2

λL

µ2(I − Γ0)−11

]
(63)

Expression (63) implies that

lim sup
i→∞

E‖w̃c,i‖2 ≤ O(µ) (64)

lim sup
i→∞

E‖en,i‖2 ≤ O(µ2) (65)

We see that the mean-square-error between the centroid point
and the limit point is on the order of O(µ) at steady-state,

while the mean-square values of the perturbation terms are on
the order of O(µ2). Therefore, from (53) and using Jensen’s
inequality, we obtain1

E‖w̃k,i‖2 = E

∥∥∥∥∥w̃c,i −
N−1∑
n=1

[UL]kn · en,i
∥∥∥∥∥

2

≤ 2E‖w̃c,i‖2 + 2E

∥∥∥∥∥
N−1∑
n=1

[UL]kn · en,i
∥∥∥∥∥

2

≤ 2E‖w̃c,i‖2 + C ·
N∑
n=1

E‖en,i‖2 (66)

where C is some constant number. This means that, as i→
∞, we have

lim sup
i→∞

E‖w̃k,i‖2 ≤ O(µ) +O(µ2) = O(µ) (67)

Therefore, the mean-square-error between wk,i at each node
k and the limit point wo can be made arbitrarily small for
sufficiently small step-size µ.

Theorems 1 and 2 together establish the fact that, for
sufficiently small constant step-sizes, the state vector wk,i
generated by the distributed algorithm (1)–(3) at each node
k converges to the same limit point wo defined in (25). And
the steady-state mean-square-error can be made arbitrarily
small for small step-sizes. Inequalities (61) and (63) also
provide estimates for the convergence rate and steady-state
mean-square-error. However, for small step-sizes, we are able
to evaluate the approximate values (rather than bounds) of
the convergence rate and steady-state error covariance matrix
P∞. The main results are summarized in the following
theorem.

Theorem 3 (Convergence rate and error covariance):
For sufficiently small step-sizes and after long enough time
(i ≥ i0 for some large enough i0), the error covariance
matrix Pi evolves approximately according to the following
relation:

vec(Pi) = (B ⊗ B)
i−i0 [vec(Pi0)−vec(P∞)] + vec(P∞)

(68)

where

B , AT2 [AT0 − µM0R∞]AT1 (69)

R∞ , diag {∇wT s1(wo), . . . ,∇wT sN (wo)} (70)

vec(P∞) , (I − B ⊗ B)−1vec(Y) (71)

Y , AT2M0RsM0A2 (72)

Rs , E
{

[ŝi(φi−1)−s(φi−1)]

× [ŝi(φi−1)−s(φi−1)]T
}∣∣

φi−1=1⊗wo (73)

s(φi−1) , E
{
ŝi(φi−1)

∣∣Fi−1

}
= col {s1(φi−1), . . . sN (φi−1)} (74)

When the step-size parameter µ is small, the convergence
rate and the steady-state weighted mean-square-error at each

1In the second inequality, we used the following relation: ‖x + y‖2 ≤
‖x‖2 + 2‖x‖ · ‖y‖+ ‖y‖2 ≤ 2‖x‖2 + 2‖y‖2.

1540

node k is given by

r , [ρ(B)]2 ≈ 1− 2µλmin(Rc) (75)

MSEΣ
k , lim

i→∞
E‖w̃k,i‖2Σ

= µ · Tr
{

(pT⊗IM)Rs(p⊗IM)Z
}

+O(µ2) (76)

where the M ×M matrix Rc is defined by

Rc =

N∑
k=1

pk∇wT sk(wo) (77)

and the M ×M matrix Z is the solution to the following
Lyapunov equation:

RTc Z + ZRc = Σ (78)

which is given by

Z = vec−1
{

(IM ⊗RTc +RTc ⊗ IM)−1vec(Σ)
}

(79)
Proof: Omitted for brevity.

D. Global Behavior: Centralized Performance

We observe from (76) that the weighted mean-square-error
at each node k is the same across all agents in the entire net-
work for small step-sizes. This is an important “equalization”
effect observed in diffusion adaptation strategies [8]–[16].
The next theorem will further reveal that such performance is
close to the centralized strategy that collects all the data from
the agents and processes it using the following recursion:

wcent,i = wcent,i−1 − µ
N∑
k=1

pkŝk,i(wcent,i−1) (80)

Theorem 4 (Centralized Performance): Suppose
Assumptions 2–4 hold and the step-size µ satisfies the
following condition

0 < µ <
2λL

‖p‖21λ2
U (1 + 2α)

(81)

where α , max1≤k≤N αk. Then the centralized strategy (80)
converges to the same limit point wo defined in (25). Fur-
thermore, for sufficiently small step-sizes, the convergence
rate and steady-state mean-square-error are the same as (75)–
(76).

Proof: Omitted for brevity.
Theorems 1–4 answer the four questions we posed in Sec.

II-A about distributed processing. They show that, via local
interactions and learning, the distributed strategies (1)–(3)
lead to the same global behavior as that of a centralized
strategy. Specifically, for sufficiently small step-sizes, the
state vector wk,i at each node k converges to the same
limit point wo as the centralized strategy (80) with the same
convergence rate and steady-state mean-square-error (up to
the first order term of µ) as (80). We may note that it
was shown in [27] that, in distributed LMS estimation, the
diffusion strategies (9)–(10) outperform the cosensus strategy
(8) in the high-order term O(µ2).

V. APPLICATION TO DISTRIBUTED
OPTIMIZATION

In this section, we illustrate the results of Sec. IV in the
context of distributed Pareto optimization. Each agent k is
associated with an individual convex cost function Jk(w),
k = 1, . . . , N . We would like to find a Pareto-optimal solu-
tion to the following multi-objective optimization problem:

min
w
{J1(w), . . . , JN (w)} (82)

We choose the update vectors to be stochastic gradients:

sk(w) = ∇wJk(w), ŝk,i(w) = ∇̂wJk(w) (83)

Without loss of generality, we assume µk = µ (i.e., βk = 1).
Then, by definition (14), the vector p = π = A2θ, where θ
is the right eigenvector of the matrix A1A0A2 of eigenvalue
one. For any of the three distributed strategies in Table I, the
vector θ is the right eigenvector of the matrix A of eigenvalue
one, and A2θ = θ (because A2 is either A or I). In these
three cases, the vector p is the right eigenvector of the matrix
A of eigenvalue one. In the following discussion, we are
going to show how this right eigenvector p influences the
limit point. Furthermore, we also derive a simplified mean-
square-error expression from (76) to quantify how close each
wk,i is to the Pareto-optimal point.

A. Moving along the Pareto-optimal Tradeoff Curve
By Theorems 1–2, the distributed strategy (1)–(3) con-

verges to the limit point wo defined by (25). Substituting
sk(w) = ∇wJk(w) into (25), we obtain

N∑
k=1

pk∇wJk(wo) = 0 (84)

In other words, wo is the minimizer of the following global
cost function:

Jglob(w) =

N∑
k=1

pkJk(w) (85)

It is shown in [28, pp.178–180] that the minimizer of (85) is a
Pareto-optimal solution for the multi-objective optimization
problem (82). And different choices of the vector p lead
to different Pareto-optimal points on the tradeoff curve.
Therefore, in order to converge to a certain Pareto-optimal
point corresponding to a given set of positive coefficients
{pk}, we need to design a left-stochastic matrix A so that
its right eigenvector of eigenvalue one is p. It was shown in
[14] that one way to construct such a matrix A is by applying
a procedure due to Hasting [29], [30] to set the (l, k)-th entry
of A to be:

alk =


p−1
k

max
{
|Nk| · p−1

k , |Nl| · p−1
l

} , l ∈ Nk\{k}

1−
∑

l∈Nk\{k}

alk, l = k
(86)

where |Nk| denotes the cardinality of the set Nk. The above
combination matrix can be constructed in a decentralized
manner, where each node only requires information from its
own neighbors.

1541

B. Mean-Square-Error Performance

When stochastic gradients are used, we can further sim-
plify the mean-square-error expression in (76). To see this,
we substitute sk(w) = ∇wJk(w) into (77) and obtain

Rc =

N∑
k=1

pk∇2
wJk(wo) (87)

Now the matrix Rc is the weighted sum of the Hessian
matrices of the individual costs {Jk(w)} and is therefore
symmetric. Then, the Lyapunov equation (78) becomes

RcZ + ZRc = Σ (88)

As a result, we have simple solutions to the Lyapunov
equation (78) for the following two choices of Σ:

1) When Σ = IM , we have Z = 1
2R
−1
c and

lim
i→∞

E‖w̃k,i‖2

=
µ

2
· Tr

{
(pT⊗IM)Rs(p⊗IM)R−1

c

}
+O(µ2) (89)

2) When Σ = 1
2Rc, we have Z = 1

4IM and

lim
i→∞

E‖w̃k,i‖2Rc

=
µ

4
· Tr

{
(pT⊗IM)Rs(p⊗IM)

}
+O(µ2) (90)

VI. CONCLUDING REMARKS

In this paper, we studied the limiting behavior of a class
of distributed strategies, namely, diffusion and consensus
strategies. We showed how and in what manner the choice of
combination policies has a direct bearing on the convergence
and performance of the distributed solutions. Specificially,
we showed that the right eigenvector of the combinaton
matrix corresponding to the eigenvalue at one influences
the limit point, the convergence rate and the steady-state
mean-square-error (MSE) performance. A key observation is
that, for sufficiently small step-sizes, the distributed strategies
approach the performance of the centralized strategy in both
convergence rate and steady-state MSE.

REFERENCES

[1] S. Barbarossa and G. Scutari, “Bio-inspired sensor network design,”
IEEE Signal Process. Mag., vol. 24, no. 3, pp. 26–35, 2007.

[2] D.P. Bertsekas and J.N. Tsitsiklis, Parallel and Distributed Computa-
tion: Numerical Methods, Athena Scientific, Belmont, 1997.

[3] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans, “Distributed
asynchronous deterministic and stochastic gradient optimization al-
gorithms,” IEEE Trans. Autom. Control, vol. 31, no. 9, pp. 803–812,
1986.

[4] S. Kar and J. M. F. Moura, “Convergence rate analysis of distributed
gossip (linear parameter) estimation: Fundamental limits and trade-
offs,” IEEE J. Sel. Topics. Signal Process., vol. 5, no. 4, pp. 674–690,
Aug. 2011.

[5] S. Kar, J. M. F. Moura, and K. Ramanan, “Distributed parameter
estimation in sensor networks: Nonlinear observation models and
imperfect communication,” IEEE Trans. Inf. Theory, vol. 58, no. 6,
pp. 3575–3605, June 2012.

[6] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1, pp.
48–61, 2009.

[7] S. Theodoridis, K. Slavakis, and I. Yamada, “Adaptive learning in a
world of projections,” IEEE Signal Process. Mag., vol. 28, no. 1, pp.
97–123, Jan. 2011.

[8] S. Chouvardas, K. Slavakis, and S. Theodoridis, “Adaptive robust
distributed learning in diffusion sensor networks,” IEEE Trans. Signal
Process., vol. 59, no. 10, pp. 4692–4707, Oct. 2011.

[9] S. V. Macua, P. Belanovic, and S. Zazo, “Diffusion gradient temporal
difference for cooperative reinforcement learning with linear function
approximation,” in Proc. IEEE International Workshop on Cognitive
Information Process. (CIP), Parador de Baiona, Spain, May 2012, pp.
1–6.

[10] Z. J. Towfic, J. Chen, and A. H. Sayed, “On the generalization ability
of online learners,” in Proc. IEEE Workshop on Machine Learning
for Signal Processing (MLSP), Santander, Spain, Sep. 2012, pp. 1–6.

[11] A. H. Sayed, “Diffusion adaptation over networks,” to appear in E-
Reference Signal Processing, R. Chellapa and S. Theodoridis, editors,
Elsevier, 2013 [Also available online as arXiv:1205.4220v1], May
2012.

[12] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over
adaptive networks: Formulation and performance analysis,” IEEE
Trans. Signal Process., vol. 56, no. 7, pp. 3122–3136, July 2008.

[13] F. S. Cattivelli and A. H. Sayed, “Diffusion LMS strategies for
distributed estimation,” IEEE Trans. Signal Process., vol. 58, no. 3,
pp. 1035–1048, March 2010.

[14] X. Zhao and A. H. Sayed, “Performance limits for distributed
estimation over LMS adaptive networks,” IEEE Trans. Signal Process.,
vol. 60, no. 10, pp. 5107–5124, Oct. 2012.

[15] J. Chen and A. H. Sayed, “Diffusion adaptation strategies for
distributed optimization and learning over networks,” IEEE Trans.
Signal Process., vol. 60, no. 8, pp. 4289–4305, Aug. 2012.

[16] J. Chen and A. H. Sayed, “Distributed Pareto-optimal solutions via
diffusion adaptation,” in Proc. IEEE Workshop on Statistical Signal
Process. (SSP), Ann Arbor, MI, Aug. 2012, pp. 1–4.

[17] S. S. Ram, A. Nedic, and V. V. Veeravalli, “Distributed stochastic
subgradient projection algorithms for convex optimization,” J. Optim.
Theory Appl., vol. 147, no. 3, pp. 516–545, 2010.

[18] K. Srivastava and A. Nedic, “Distributed asynchronous constrained
stochastic optimization,” IEEE J. Sel. Topics Signal Process., vol. 5,
no. 4, pp. 772–790, Aug. 2011.

[19] P. Di Lorenzo and S. Barbarossa, “A bio-inspired swarming algorithm
for decentralized access in cognitive radio,” IEEE Trans. Signal
Process., vol. 59, no. 12, pp. 6160–6174, Dec. 2011.

[20] F. S. Cattivelli and A. H. Sayed, “Modeling bird flight formations
using diffusion adaptation,” IEEE Trans. Signal Process., vol. 59, no.
5, pp. 2038–2051, May 2011.

[21] S.-Y. Tu and A. H. Sayed, “Mobile adaptive networks,” IEEE J. Sel.
Topics. Signal Process., vol. 5, no. 4, pp. 649–664, Aug. 2011.

[22] R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar, D. Silver,
C. Szepesvári, and E. Wiewiora, “Fast gradient-descent methods
for temporal-difference learning with linear function approximation,”
in Proc. ACM International Conf. on Machine Learning (ICML),
Montreal, Canada, Jun. 2009, pp. 993–1000.

[23] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University
Press, 1990.

[24] D. P. Bertsekas and J. N. Tsitsiklis, “Gradient convergence in gradient
methods with errors,” SIAM J. Optim., vol. 10, no. 3, pp. 627–642,
2000.

[25] B. Polyak, Introduction to Optimization, Optimization Software, NY,
1987.

[26] A. J. Laub, Matrix Analysis for Scientists and Engineers, SIAM, PA,
2005.

[27] S.-Y. Tu and A. H. Sayed, “Diffusion networks outperform
consensus networks,” in Proc. IEEE Statistical Signal Process-
ing Workshop, Ann Arbor, MI, Aug. 2012, pp. 1–4. [See also
http://arxiv.org/abs/1205.3993, May 2012.]

[28] S. P. Boyd and L. Vandenberghe, Convex Optimization, Cambridge
University Press, 2004.

[29] W. K. Hastings, “Monte Carlo sampling methods using Markov chains
and their applications,” Biometrika, vol. 57, no. 1, pp. 97–109, Apr.
1970.

[30] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing markov chain on
a graph,” SIAM Rev., vol. 46, no. 4, pp. 667–689, Dec. 2004.

1542

