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Abstract— A technique based on linear precoding is introduced two sink nodes. However, these works are based on graph
for broadcasting on linear networks. The precoding allows the theoretic arguments and their approach does not easily extend
different message components of a broadcast message to bqo general networks with more than two sink nodes
separated e_lnd de_coded at the desired sink node_s, thus provigjing In this paper. a svstematic approach is broposed fé)r network
a systematic design methodology for broadcasting over a given p_ per, a sy . PP 8 prop )
network with a given linear network code. To achieve a good broadcasting, where the information messages are first pre-
throughput, however, the network code itself must also be coded at the source node before being encoded by a predefined
chosen judiciously. Motivated by severa_l recent results on _random linear network code in such a way that each sink node can
:‘aer:‘(’j"gr?]‘ Ii%%c;lisﬁe\tl\\:\?orﬁrggg:g $h%0;npb;;?§;§r? d%fespfcftoselggirgn; successfully decode its desired messages. The idea is used in
centralized coordination for network code design. One of the Section Il to pr.oduce an alternative proof of the a}chlevabl!lty
advantages of this approach is that by simply changing the Of the rate region for the broadcast networks with two sink
precoding matrix (together with associated decoding strategies), nodes. In Section 1V, the precoding technique is applied to
di_fferent broadcast objectives can be achieved without tampering networks with multiple sink nodes, and the design criterion
with the network code, therefore one can manage the network for linear precoding is derived. A method based on the idea

operation by controlling the origin and destination nodes of f interf inimizatiori d in Secti V f
the network and without manipulating the network interior. o Interierence minimizations proposed in section or

Together, random network codes and linear precodings provide Constructing the precoding matrix. Although this method is
a simple yet powerful methodology for broadcast over linear not demonstrated to be optimal, the corresponding algorithm

networks. provides excellent results, which are demonstrated with several
examples. In Section VI, we apply the proposed broadcast
scheme to randomly generated linear network codes, which

In this work we consider the capacity of error-free networkgoes not require a centralized authority for code design and
for the purpose of broadcasting from one transmit node tan achieve different broadcast objectives by simply changing
multiple receive nodes. The subject of error-free networks atite precoding matrix at the source node and the associated
coding over such networks, also known as network codindecoding scheme at the sink nodes.
has received much attention lately. An overview of several )
important results in this area can be found in [1] and [2]. A- Notation and System Model

The multicast problem, where all sink nodes receive the An acyclic network is a network without a directed cycle.
same information, has been studied in a number of past workansider an acyclic communication network with a single
In [3], Ahlswedeet al. showed that with network coding asource node that is represented by a féir s), whereG =
source node can multicast information to the sink nodes @f, E) is a directed graph specified by the détof nodes
a rate equal to the smallest minimum cut capacity betweand the setF of edges. Each edge € FE in the graphG
the source node and any sink node. éfi al. [4] further represents a noiseless communication channel on which only
showed that linear network codes are sufficient for multicastne data unit can be transmitted per unit time. The capacity of
Koetter and Mdard [5] presented an algebraic frameworklirect transmission between two nodes is determined by the
for network coding and gave an algebraic characterization wiultiplicity of edges between them.
the multicast problem. Het al. [6] proposed a distributed Assume there arésink nodes, s, ..., t; in the network,
random linear coding approach for multicast, and showeghd information data are broadcast framthe unique source
that it achieves optimal multicast capacity with probabilityode, to these sink nodes. We wish to include in this method-

I. INTRODUCTION

exponentially approaching 1 with the code length. ology both individual messages, as well as messages that are
When the information transmitted to sink nodes are nehared among arbitrary subsets of sink nodes.Webe the
identical, the problem is referred to hsoadcast.The broad- power set of the seftq,ts,...,t;} of sink nodes excluding

cast problem is more general and has proved to be significarttlg empty set. We denote a generic subset of the sink nodes
more difficult to solve than multicast. In [7], [8], [9], thewith w € W. For convenience purposes, we need to index
achievable rate region is derived for broadcast networks withese subsets by integejs taking values froml to 2! — 1



(the empty set is not needed). To do this, we map all tld more symbols per transmission interval, compared to simple
nonempty subsets oft;, to, ..., t;} to the integers froml routing (or time division multiplexing). To arrive at this

to 2/ — 1 according to thdexicographicalorder. For example, advantage, each node in the network combines its inputs and
in the case of three sink nodes, we represent the nonemp&jculates the symbols to be sent on its outgoing edges. In

subsets of ¢y, to, t3} as follows: linear network coding, this input-output relation is linear;
therefore, all messages in the graph are linear functions of
{ti} =1, {t2} =2, {ts} =3, {t1, 02} = 4, the transmitted signal by the source.
{ti, ts} =5, {t2, t3} =6, {t1, 12,3} = 7. One may therefore formulate a linear network code as

With this notation, we can denote a subset of sink nodes [R}!OWs. Assuming the source can transmitsymbols per

w;, and the subscript indicates that the index of the subseff@nSmission into the network, we combine these symbols into
j a row vectorc. All the symbols flowing in the network, at that

.The information messagé&(;, j = 1,2,...,2 — 1, with point in time, can be considered a function @fin a linear

entropy rater;, is generated ats for the subsetw; of network code, the signal on each edgis a linear functional

70 J .
sink nodes. Transmission of; is deemed successful if all of ¢, namelycf. (the inner product betweenandf.), where
sink nodest € w; receive X;.! The messages(; for all f. is a column vector associated with the edge. The span of
j=1,2,...,9 7]1 are mutuaJ\IIy independent. Tr]1e study othe functionals on the input of each node, which we €allis

this network and its capabilities can be summarized in tf§guivalent to the signal space observed at that node. Obviously
following two questions. What rats:; : j = 1,2 ol —1} the signals that a node can transmit must reside in its observed
. jii=12,...,

can this network support, and what (coding) strategy shoutipnal space, and thus there must be conditions between the

we use to arrive at an achievable rate? This paper strives {gctionals on the incoming and outgoing edges of each node.

answer these questions for the broadcast problem, using lineafhese ideas are demonstrated in the butterfly network in
network codes. Figure 2, where on the left, we see the well-known signaling

We adopt the following assumptions throughout the papéhat achieves the rate of 2 symbols per transmission out of the

(1) Data symbols transmitted along each edge of the graf)?nurce'. on th? right yde:, we see the equivalent edge vectors
are elements of a finite field with size |F|. <. Obviously, if the only incoming edge of a node has vector

T H T
(2) The entropy rate of the information messages is meg- 0", the outgoing edge cannot have, &g vegtorl]
sured in terms ofF-valued symbols. EactF-valued ecause the_ corresponding S|gna_l is not z_ivallz_ible to that node.
symbol carriedog, | F| bits of information. For example The above ideas can be formalized, using linear spaces, as
we can say that the entropy rate ¥fis threeF-valued fOHOW,S [4] o o
symbols per unit time. Definition 1: Let F' be a finite field andh a positive integer.
(3) The capacity of each edge in the network is ofie An n-dimensionalF-valued linear network code on an acyclic
valued symbol per unit time communication network is defined by assigning a vefior
) nx1 nx1
(4) The entropy ratesr; are integers for allj F™" to each edge € E and a vector subspadg, € 7~

1,2,...,2" — 1. This assumption can be approximately
achieved by choosing a proper time unit for network
operations.
In this paper we use the following notatioA™*™ denotes
the space ofi-by-m matrices over a field”; dim(-) returns the
dimension of a vector space, and sparis the linear subspace
spanned by the vectors in its argument; rapkand ()
represent the rank and transpose of a matfrix;denotes the
cardinality of a set; Ifw) and Outv) are the sets of incoming
and outgoing edges of node respectively; mincytl, &}
denotes the minimum cut capacity between the set of nodes
¥ and the set of nodes. With a slight abuse of notation, we Fig. 1. Labeling of nodes and edges on the butterfly network.
also write mincufs, ®}, wheres is a single node, and in that
cases represents the sdt}. _message

Il. REVIEW OF LINEAR NETWORK CODES

We first give a formal definition of linear network codes,
and then illustrate it by using the famous butterfly network
as an example. For more detailed explanation, we refer to [4]
and [2].

As seen in the famous butterfly example (see below), the
advantage of a network code is that it allows the transmission

INote that we allowr; = 0 in this setting. Fig. 2. Signaling and related functionals in the butterfly network.



to each node € V such that: ]
(1) for the source node, P, = F"*1; Theorem 1 ([2]): Every generic linear network code is a
(2) for each non-source nodg P, = spar{f. : e¢ € In(v)}; linear dispersion code. u
(3) for each edge € Out(v), f. € P,.

Let c € F1*" be the vector of data emanating from node

The symbol transmitted along edgeis given by the inner  This section introduces the idea of precoding for network
productct.. m Droadcasting, and in the process provides an alternative proof

Remark 1:As a consequence of the above definitiony if of the sufficiency of the cutset condition on the rates of a two-
is a non-source node ande Out(v), the symbol transmitted sink-node broadcast netwofkThe proof also provides a code
alonge is a linear combination of the symbols received:y construction derived from any arbitrary generic linear network

Example 1:For the butterfly network shown in Figures 160des to achieve any rates satisfying the cutset condition given

and 2, the edge vectofs, and the corresponding signal spacel§ the following theorem.

I1l. PRECODING FORNETWORK BROADCASTING

are as follows: Theorem 2 ([7], [8]): For networks with one source and

two sink nodes, any ratels, o, 3} satisfying the following

c=x=[1] X2, bounds are achievable:

_ _ _ T

foo =fe, =fe; =1 O]T’ mincut{s, {t1}} > r1 +r3

fe2 = fe4 = fe7 [0 1]T> mincut{g7 {tQ}} > ro+r3 (1)

foo =fe, =f, =1[1 1]7, mincut{s, {t1,t2}} > r1 + 72 +73.

Ps —_ F2><1

[ |
’ To prove the theorem, we first establish the following lemma.
) Lemma 1:(The Precoding Lemmdjor an arbitrary linear

P,, =span{f., } = spar{[l 0]
P,, = spar{f.,} = spa{[0 1

)
)

]
P,, = spa{f.,, f.,} =spa{[1 0]", [0 1]} = F>*!, network code over a single-source, two-sink network, define:
P,, = spar{f., } = spar{[1 1]"}, ¢ = dim(P,) — dim(P; N P3)
Py, = spar{f.;, f..} = spar{[1 0", [1 17} = F**", ¢s = dim(Py) — dim(P; N Py)
Py, = spar{f.,, £, } = spar{[0 1]", [1 1]"} = F**1. cs = dim(Py N Py),

B \where we adopt the notation th& = P;,. Then ratec; can
We now turn our focus to a class of network codes thak privately transmitted to noda, rate c, can be privately
have a wide diversity of edge vectors, because as is evidgahsmitted to node,, and ratec; can be multicast to nodes
from the butterfly example, we would like the subspaées t; andt,. ]
associated with the sink nodes to have as large a dimension Proof: Consider the spac€ = spa{ P, U P>} which is
as possible. This property will result in a large informatiothe entire signal space under consideration at this point. We
flow to the sink nodes. This idea can be expressed in termswih to identify subspaces corresponding to private messages
linear independence of subsets of edge vectors, as followsand common messages (via the corresponding bases). The
Definition 2: Consider a network in which the following basis vectors for private messages are catled and as g,
property holds. For any arbitrary set of edgese;, where and those for common messages arg,. We follow an
m < n, and the set of their originating nod¢s;}, where intuitive design and choose each of the private signal spaces
er € Out(vy), if we have to avoid interference with the other node. For example, we
) . choosea; , from P;-, where hereP;- denotes the orthogonal
Py, Espanife, 1i=1,2,...,m,i#k}, k=12,..,m, complement space tB, in S, i.e.,52: P, @ Ps- (and, he?]ce,
it follows that them edge vectors,. are linearly independent. dim(Ps") = ¢;). But we also want to allow maximum possible
Then the code on this network is called generic linear rate, which translates into larger spans, and so we cheagse
network code. m such that, together with any basis Bf, will result in a basis
If the base field is sufficiently large, it has been showior spaf{P; U P»}. The common message is sent through a
in [2] that a generic linear network code always exists arglibspace that is visible to both nodes, i.e., it can be a subspace
furthermore it can be systematically constructed. of P, N P,. To summarize:
Another interesting class is the so-calllaaear dispersion (1) Find ¢; vectorsa; ; in P~ such that, together with a
codes, where the information available in any subset of nodes basis forP,, result in a basis for spd®; U P»}.
is directly related to the cutset between them and the sourc€2) Find c, vectorsa, ; in Pi- such that, together with a
In a manner of speaking, one may say that information transfer  basis forP;, result in a basis for spd®; U P,}.
in linear dispersion codes (in a dimensional sense) is efficien{3) Find c; vectorsas; to form a basis for the subspace
Definition 3: A network code is dinear dispersioncode if P, N Ps.

for every collection® of non-source nodes,
2The original proof appeared in two independent works [7] and [8] using
dim (spar{ Upea PU}) = min {n, mincut{s, <I>}} graph-theoretic arguments.



Now let the code vectoe generated at be given by that

c1 . . ca . c3 - dlm(Pl) = mincut{s, {t1}} =c1 +c3

= kz_:lll*kal*k + kZ_le’kaz”“ + ’;x&ka&k’ (2) dim(P,) = mincut{s, {t2}} = c2 +c3

wherez, , andz,; are data intended far, andt,, respec- dim(spar{ P U P> }) = mincut{s, {t1, t2}} = c1+ 2 + 3.

tively, and z3; are data intended for bothy and t,. For For the generic linear network code, if (1) holds, i.e.,

convenience, we concatenate all data into one vector and all

basis elements into one matrix, that is cLtes 2ri+rs
ca+c3>rotrs3

x =[xz xs) citeptce32ri+ry+rs

wherex; = [z;1 iz ... Zic], and then we can encode the information messaggs X, and
B P X3 as follows. Ifr; < ¢;, it meansX,; can be transmitted
Q=1Q Q: Qi completely with rate:; or less. If anyr; > ¢;, it means trans-
whereQ; = [a;1 as ... ai]. Using matrix notation, mission of X; needs to “borrow” rate from other components,

namely, X; and/or X, borrow fromcs, or X3 borrows from

Equation (2) can be rewritten as . "
c1 ande,. The above inequalities guarantee that enough rates

c=xQ. are always available for successful transmission. The details
are relegated to the appendix. [ ]
Here Q is a matrix that maps our “segmented” data vector
x to the generic data vectar at the source node. Thus we IV. NETWORKS WITHMULTIPLE SINK NODES
considerQ as a pre-coder. We now show that each of the |n general, the cutset condition given in Lemma 3 (see
receive nodes can decode its intended data. Appendix A) is not sufficient for networks with more than
At the receiver sidet; receives the following signal on onetwo sink nodes. That is, if condition (3) is satisfied for some
of its incoming edges: rates{r;}, it does not follow that these rates are achievable.
We can demonstrate this with an example.
ye = cfe =xQfe Example 2: A network with three sink nodes is shown in
_ { q Figure 3. Recall that for three sink nodes, we can have a
= [Xl Xg] QT fe . . . .
3 combination of seven different types of private and common

. r messages, which are denoted Ky through X;. Two mes-
sincef. € P, and, henceQ, f. = 0. We now concatenate all gagesx, and X; are generated at with 75 = 7 = 1, and

@ncoming signals td; into one vectoly, and gll correspond- {ha objective is to transmik; to ¢; and X to all ¢, ¢, and
ing edge vectord. are collected into a matri¥,. Then we ;. |t js easy to verify that the necessary condition given in
have Lemma 3 holds, i.e.,

_ Qf
y1 = [x1 X3] {Q;ﬂ F, mincut{s, {t}} =1>r; =1,

Since the matrix multiplying[x; xs] has full rank (see mincut{s, {fz}} = 1>rr =1,

Appendix B for a proof), the system of equations above has mincut{s, {ts}} =2 >rs +r; =2,
a unigue solution and the destination node can recover the mincut{s, {t1, tg}} =2>r;=1,
data that is intended for it. A similar argument holds fer mincut{s {t, tg}} — 2>yt =2

Consequently, we can send j, t0 t1, x2x 0 t2, andzs j .
to botht, andt,, simultaneously. This concludes the proof of . mincut{s, {tz, ts}} =2 >3 +r7 =2,
the precoding Lemma. [ mincut{s, {t1, ta, t3}} = 2> 13 +r7 = 2.

Proof: [Theorem 2] However, the ratess; = r7 = 1 in this example cannot be

Recall that messagexr’]l, X2 an%Xg are thehprivate agd achieved: botht; andt, demandX; from s, which exhausts
°°m’.“°” messages to t (_a two nodes. We wish to consi e,rtﬁg capacity of the links from to ¢; andt,. Consequently, it
possible ways of messaging; therefore, we note the foIIowmig:impossible to sendks to £ m

we do not care if nodes receive each other’s private message n this section, we generalize the precoding method of the

an_d thus a pr!vate message may, in principle, be t_ransmﬂtls t section to networks with multiple receive nodes. Similar
using both private and common parts of the available rale the last section, we take; to be thej-th component of

(although using common rate is wasteful). In a similar manneg, \s it data meant for subsej of receive nodes. Recall that

the common message can be transmitted by using both privase, component; can be a private message, common to a

an_d common components_ Of. available rates, althqugh us| set of receive nodes, or common to all receive nodes. We
private rates requires duplicating the message and is waste ldlncatenate alk; into one large vectok. Then
J . !

By Theorem 1, ifn > mincut{s, {t;, t2}}, we can
construct am-dimensional generic linear network code such c=xQ



L Remark 2:Based on the above discussion, the proposed

broadcasting scheme consists of the following four stages:

X3, X; —s ts . .

(1) Construct a linear network codén this stage, a code
vector is selected for each edge in the network according

t to Definition 1. In this paper, we will not discuss how
to design a linear network code to optimize network
broadcasting by assuming that the linear network code
is either predefined or randomly generated. An optimal
linear network code may be able to obtain a larger
achievable rate region than a predefined or randomly
generated linear network code, but it requires more
centralized coordination and incurs the overhead of

Fig. 3. Necessary condition of Lemma 3 is not always sufficient.

whereQ is the precoding matrix. The precoding matrix must
be chosen such that, at each receive node, all data meant for
that node can be decoded. We collect all edge vectors at receive
nodet; into one matrixF,;, and all the receive signals at these

edges into vectoy;. Then, d_esigning and deploying a new netwo_rk code every
time when the broadcast requirement is changed. In
yi = cF; = xQF; Section VI, a broadcasting scheme is proposed based

on randomly generated linear network codes.

Precode the information messages using a precoding
matrix Q. The information vectorx is mapped to the
data vectok by ¢ = xQ. The conditions orQ are given

in Lemma 2, which can be used to construct algorithms

We now segment the information vector into [z; z;],
wherez; is relevant to node; andz, is the remaining data @)
(some re-arrangement of elements may be necessary). We
can correspondingly segment the precoding ma@xinto

[AT BT]T (with the same re-arrangement of columns as for

x). Then for finding Q.
' vi = (z;A; + 2/B,)F, (3) Encode th_e data vectar using the Iinear_network che.
For each linke € E, the symbol transmitted alongis
We wish to recover,; while z/ essentially acts as interference given by cf..
and must be removed at node We now establish conditions  (4) Decode via interference cancellatioblse the method-
on precoding matrix componenss;, B; to guarantee that this ology introduced in Lemma 2 to null the interference
is possible. and then solve linearly for desired messages.

Lemma 2:ConsiderN; to be the projection matrix onto
the null space ofB;F;. Then the information intended for
nodet;, hamelyz;, can be correctly recovered if, and only if,

In the following, we give an example to illustrate how linear
precoding can be used to achieve broadcasting.

rankA;F;NT) is equal to the dimension of;. [ | Example 3:Consider the network in Figure 4, a modified
Proof: To show sufficiency, assume rguk; F;N7) = butterfly network, where messagdé, with r, = 1 is intended
dim(z;). Then, we can recovez; from y; in the following for nodest; andt,, and messag&l; with r; = 1 is intended
manner. Multiplyy; by N7 to find: for nodest,, ¢t andts.
yiNT =2, A,F;NT + 2/B,F;NT Assume that a generic linear network code over the network
— 7, A F,N7 is given by

Because of the rank condition, this system of equations can
be solved to yieldz;. £, =f, =f, =[1 1"
. €1 €3 €5 b)
Conversely, assurﬁeank(AiFiNf) < dim(z;). Then there £ —f —f. —f —[1 9T
exists a nonzero vect@ such that e2 = foy =fer =fep = [1 27,
_ _ _ T
T f,=f.,=f,=[2 3]".

Hence the vectogA F; is orthogonal to the null space of
B;F;, i.e., it is in the row space aoB;F;. This implies that
there also exists a vectg such that

gAF, = g'B,F,.
It then follows that the information vectde; z;] = [g 0]
cannot be distinguished from the information vedwrz}] =
[0 g'] att;, and perfect decoding is impossible. [ ]

Each of the receive nodes provides one set of constraints
as seen above. The network code needs to satisfy all such
conditions simultaneously.

3Because of the dimension &, rank(AiFiNiT) cannot be greater than ) -
dim(z;). Fig. 4. A modified butterfly network.



Then,

Let
=[zq4 x7] and Q= [? 21] .

At ¢, we have

pesam [t 3[4 3] )

We introduce the sel/’ for the message components that
have already been included in the precoder. At the beginning,
U’ = (). Sometimes the rates requested of the algorithm cannot
be supported, and therefore we also have al/5enitialized
to V = 0, as the components that cannot be transmitted at the
requested rate.

Let

F =F, Vvieco.

Then, execute the following steps iteratively far= 0,1, ...,
until U is empty:

Step )} Randomly choose an indgkfrom U. Then,r; vectors

ajr k=1,2,...,r;, are selected such that

a) rank{ATF('”)} r; for all i such that; € w;;
b) maxico.,¢u, rank{ATF } is minimized;

from which where
[1 1]1 B { 8 —é} A=laj; a2 ... aj,].
"3 8 i -2 Step 2 IF Step 1is successful AND Lemma 2 satisfied (mes-
At £, we have sages can be recovered) THEN
Go to Step 3
. . 2 1| (1 2| 0 1 ELSE
yz_XQFQ_XL QHQ 3}"‘[5 8}’

. U« U-{j}

from which 1 Ve VU
— 0 1 — *% % O « {indices of receive nodes still participating in
AN Y211 o
uuu'}

At t3, we have Go to Step 1

— xQF N P N D R (1) ENDIF

s = ST 2 (2 s T T Step 3 Recall thatA denotes the precoder components in this
from which iteration. L(?EDF be the pl‘OjECthﬂ matnx.ont.o the raqge
1 space ofF;"’, and (Pp, ) be the projection matrix
=5 Y onto the orthogonal complement of the range space of
Therefore, symbolz, can be transmitted to, and ¢,, and PrA. Then
symbolz; can be transmitted tey, t, andts. [ F{" o (Pp,a)'F™  VicO
V. DESIGNING THEPRECODING MATRIX Q U—U-{j}
In the last section, a technique based on linear precoding is U= U'u{j}

presented for network broadcasting. However, how to construct
the precoding matriXQ has not been addressed yet. In this

section, we propose an efficient method for constructing

We must note that this method, which is based on interferenc

cancellation, is not guaranteed to arrive at the opti@gal

however, it is computationally efficient and generates gooo( )

results.

Consider the index sefl,...,2¢ — 1} representing the

single-cast and multi-cast messages. The precoder is designgg
in a multi-step greedy fashion. We start with an empty pre-
coder, and in each step add one of the single-cast or multi—caa)

components to the precoder.

During the execution of the algorithm, we start with the set
r; > 0} of single-cast and multi-cast messaging

U=1{j:
components with nonzero rates. We denote Witk {i : ¢; €

w; for somej € U} the indices of receive nodes represente ?1
in U. As the algorithm progresses we take care of messag
components one-by-one, and thiuiggets successively smaller

and the algorithm stops whei = ().

m «— m+ 1 (increment the algorithm counter)

Remark 3:

gl) The vectorsa;, are used to construct the precoding
matrix Q.

In Step 1 Criterion a) ensures that messagean be
decoded by allt; € w;, while Criterion b) tries to
minimize the “interference” caused by message

In Step 3 F,E”“’l) represents the unused degree of
freedom that can be exploited to encode other message
components.

The setO labels all the sink nodes that intend to receive
at least one message from the source node. It is updated
in each iteration to exclude the sink nodes that do not
receive any messages in the whole encoding process.
Assume that the precoding vectors have been obtained by

the proposed algorlthm fak;1y, X2y -+ Xy, 1-€., the
ﬂ?lU’_{j @), ..., J0D)}. Lot
x = [X(1) Xj2) Xj(n);



Wherer = [ZL’J‘J Tj2 ...
matrix Q is given by

Q=1[Q;n) Qj --- Qunl",

where Qj = [aj71 ajo ...

3(1),3(2), -, 3 (M).

A. Construction ofQ

a; ., ]. As verified by Lemma 2
in Step 2 the construction ofQ guarantees that the mes-
sages X, can be decoded by alt; € w; for all j =

z;r,;]. The associated precodingStarting withj = 14, we choose

ajg1 =101 17,

because

ran k(aﬁ,ngO))

ran k(a1T471Fflo))

rank(af, ,F{”) = 1,

1,
L,
and

rank(a{, ;F1) = 0.

Example 4:Consider the broadcast network in Figure 5. Wgtep 30btains
use the proposed algorithm to construct a precoding matrix

for this network. Two messages;, and X5 are required to
be broadcast to the sink nodés, t5,t4} and {t1,ts, t3,t4},
respectively. The entropy rates arg, = 1 andri5 = 1. A

linear network code on the network is given by

f, =f,=f. =f,=[10 07,
f,="f,=f,=[010",
f,="f,="f,=[00 1]

€10

Hence,

T
1 0 0
F2 - [f€5 f€7] = |:0 1 0:| ’
T
100
F3 - [fe5 feg] = |:0 O 1:| b}

01 0"
esfelo]:001 .

To begin with, we perform the following initialization:
U={14,15}, U' =0, V=0, O ={1,2,3,4},
and

F=F, =10 07,

- 4T
o) _ |1 0 0
For=F2=1y 1 o -
r T
0) _ (100
Fs =F=1op o 1) -
- 4T
0) _ {010
Fi'=F 0 0 1]

X Xis—> S O

Fig. 5. A broadcast network with four receive nodes.

Fi =10 0],
M =1007,

F" =[10 07,

F"=[01 -1,

and
U={15}, U ={14}, V=0, O ={1,2,3,4}.
Let j = 15, and we choose
a;s;=[11 0],
because
rank(alT571F§1)) =1, rank(alTsleél)) =1,
rank(aleFgl)) =1, rank(aleFff)) =1
Then, Step 3gives
U=0, U ={14,15}, V=0, O=1{1,2,3,4}.
Let

X = [$14,1 1515,1];
and

0 1 1
Q= [314,1 a15,1]T = L 1 0} .

At sink nodet;,

X T T
y1 = xQF1 = 1418y, F1 + 2151855 1 F1
T
= 1518151 F1 = 2151,
and hence
T15,1 = Y1-

At sink nodets,

0 1 1
yvo = xQF3 = [2141 %15.1] [1 1 O}

— ] 0 1
= |T14,1 T15,1 1 1|

and hence
-1 1
T14,1 !1015,1] =Yy2 ol

[y



At sink nodets, Hence,

01 1 1 0 Fi=f,, Fo=1£, Fs=1,.
y3 =xQF3 = 1141 715,.1] [1 1 O} 00
0 1 Different broadcast objectives can be achieved as follows:
= [r141 ®15,1] {O 1] ) (1) If x =[a11 22.], let
’ 10
10
and hence _
o )

0 1
[51314,1 3315,1] =Ys3 1 ol
Then, z; ; can be transmitted té; and z; can be

At sink nodety, transmitted tot,.
0 0 (2) If x = [x1,1 31371], let
0 1 1
va=xQFy = [z141 215,.1] 10
110 01 1 -1
o=l )
11
= [I14,1 1715,1} L O] ) .
Then, z; 1 can be transmitted té; and z3; can be
and hence transmitted tois.
0 1 3) If x= 3.1], let
[T141 T151] = ya {1 _J . (3) If x = [z, 23]
Therefore, the broadcast requirement can be achieved. The Q= [11 (ﬂ .

symbol transmitted along each edge is given by

Then, zo; can be transmitted té, and z3; can be

€1 SXQfel = X15,1, €4 XQfe4 = 21?1571, €5 . X(Qfe5 = $1571, ;
transmitted tats.

es 1 xQfe; = w151, €2 1 xQfe, = 14,1 + 2151,
er 1 xQf., = x1a1 + 15,1, es 1 xQfey, = 141 + 2151,
e3 : xQf., = w141, eg 1 xQf, = 7141,

e1o : xXQfe,, = 7141

V1. COMPLETING THE CIRCLE: PRECODING IN RANDOM
NETWORKS

_ _ _ So far, we have concentrated on the design of precoders
B. Precoding for a Given Achievable Rate Vector for a given network code. However, we have not addressed

The rate vector for a network may lie anywhere in thée question of designing the network code itself (namely, the
achievable region_ In generaL a separate code needs toegge vectors). In this section we outline the methodology with
designed for each of the rate vectors. One of the advantayé¥ch a complete network code may be designed, although the
of the precoding approach is that we can fix the network cod¢€tails are outside the scope of this paper and are a subject
and only vary the precoder to arrive at various points in tHer future work. There are many works in the literature that
achievable rate region. We demonstrate this via an exampléoncern themselves with the design of linear network codes,

Examp|e 5:Consider the network shown in Figure 6. Aand the issue is in general not a Simple one. However, it has

predefined linear network code is given by been recently discovered that randomly selected network codes
can asymptotically achieve the multicast capacity [6].
fo, = fe, = [1 0", Motivated by this result, we propose to use precoding
f.,=f.,=1[0 17, with random network codes in a straightforward manner. We
£, = 17 propose that for each instance of a random network code, an

appropriate precoding matrix can be constructed. Then, data
will be transmitted using the precoder, and will be decoded

at each receive node according to the precoder structure.
This requires a certain communication overhead: the signal
subspaces at destination nodes must be known for precoder
design, and the precoder must be known at the source and
destination nodes. One may argue that if enough codewords
are transmitted at each random realization of the network code,
then the overhead rate may be made arbitrarily small. The
details of the communication process for the overhead is the

Fig. 6. A 5-node network. We demonstrate various achievable rates on taigbject of system design, which is beyond the scope of this
network via precoding matrices. paper.




VII. CONCLUSIONS B. Completion of the Proof of Lemma 1

In the paper, the network broadcast problem is studied jn Proof: [Lemma 1] Assume the following matrix is not
the context of linear network codes. A systematic way bas#y! rank, i.e.,
on linear precoding is proposed to achieve broadcasting, and QT
the criterion for choosing an appropriate precoding matrix is rank{ {QST] Fl} <t es.
derived. The scheme can be used with random linear netwc].rrI?en there exists a nonzero vectosuch that
codes to perform broadcasting, and different broadcast re- .’ .
guirements can be achieved by simply changing the precoding 2T {QlT] F, = [z7 2] [QlT} F, =0.
matrix and its associated decoding scheme. Nevertheless, how Q3 Q3
to characterize the achievable rate region for a network Wig’]ncepl is the range space dfl: the Vectorlel + QBZS
multiple sinks and how to generalize the work to nonlineag orthogonal toP; and thus in the subspace spanned by the
codes are still open research problems. {ag ). This implies that the vectors, ;, ay;, andas, are
linearly dependent, i.e., there exists a veasgrsuch that

Q1z1 + Q222 + Q323 = 0.
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space ofQs. Hence,
APPENDIX Qiz1 + Q222 =0, Qzz3 =0,
A. A Necessary Condition for Broadcast Achievability which implies z3 = 0 becauseQs is full rank. From

Cgé_zl + QQZQ =0, we haveQ1Z1 = —QQZQ. SinceQ2Z2 is

In this appendix, we use the cutset bound to deduce a ne .
PP Eﬁthogonal toP;, thenQz; is orthogonal to bothP; and Ps.

sary condition for achievable rates under broadcast conditio B UP.Y. This implies that, — 0 and
To do so, for each subset of sink nodes, we generate a dum _e(;/le;r,lel ebs;:ar{ 1% 2} |fs “np I?(S The'l 1 y art]h t
node absorbing all their information. We then apply the cutsf e_vectgf;use 0 Q;n?jn Qchrr’lan(; brznliﬁear:s 3 eovr\elideit

, Aok as ,
bound on that dummy node. Lk 82,k < 3.k y dep

Lemma 3:Consider a network with a single source nodwhich shows that[ %p} F, is full rank.

s and [ sink nodest;, i = 1,2,...,l. If ratesr;, j = 3 -
1,2,...,2" — 1, are achievable, then the network satisfies
C. Proof of Theorem 2
mincut{s, w;} > > 3) Proof: [Theorem 2] The details of rate arithmetic for this
wgNw; #D theorem are as follows:

n (1) If ez < rg, X3 is split into two independent part¥s; ;
Proof: Since the rates are achievable, there exists a and Xs» with ratescs and rs — c3, respectively. The

coding scheme such that each nagean receive or deduce its private rates td, are used by, data symbols fromx,
desired message setX;, : t; € wy}. Consider the subset of andrs — c3 data symbols fromX; 5, the private rates
sink nodesw,;. We construct a new networ&’ by adding to ¢, are used by, data symbols from¥, andr; — c3
a new nodez and connecting every; € w; to z with data symbols fromXs,, and the common rates tq

infinite-capacity edges. Then, by extending the original coding  @ndt2 are used by:; data symbols fromX ;.
scheme,> can receive the message $6€; : w, Nw; # 0}. (2 If ¢ > 73, the private rates tof, are used by

Information transmission froms to z is essentially a single- min {ry, ¢} data symbols fromX;, the private rates
source-node single-sink-node problem. The Max-flow Min-cut ~ tO t2 are used bymin{r;, c;} data symbols fromXs,
theorem for single-source networks implies [3]: and the common rates t and ¢, are used by the
restr; — min{ry, ¢1} data symbols fromX;, the rest
mincut {s, {z}} > Z - ro — min {ry, co} data symbols fromX,, and r; data
w20 symbols fromXs.
|
Since each newly added edge has an infinite capacity, we have
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