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Regularized Robust Filtering for Discrete Time Uncertain
Time-Delayed Stochastic Systems

Ananth Subramanian∗and Ali H. Sayed†‡

The Kalman filter is the optimal linear least-mean-squares estimator for systems that are described by linear
state-space Markovian models [1]. However, when the model is not accurately known, the performance of the
filter can deteriorate appreciably. There have been many approaches to robust filtering in the literature (see, e.g.,
[2]). In [3, 4], frameworks for robust filter designs were discussed that perform regularization as opposed to de-
regularization. In this paper, we pursue the design of such regularized robust filters for state-delayed systems. We
also allow for stochastic uncertainties in the state matrices and deterministic uncertainties for the output matrices
and design a robust filter that bounds the state error covariance matrix. Thus consider ann−dimensional state-space
model of the form

xk+1 = Fxk + Fdxk−τ + Guk (1)

yk = (H + δHk)xk + vk, k ≥ 0 (2)

where{uk, vk} are uncorrelated white zero-mean random processes with covariance matricesEukuT
k = Qk <

ρuI, EvkvT
k = R < ρvI, andx0 is a zero-mean random variable that is uncorrelated with{uk, vk} for all k.

Here, the symbolE denotes expectation. The uncertaintiesδHk are modeled asδHk = M∆kE whereM andE
are known matrices, while∆k is an arbitrary contraction,‖∆k‖ < 1. We shall consider two types of uncertainty
descriptions for the state matrixF . One type is in terms of polytopic uncertainties and the other is in terms of
stochastic uncertainties. We assume thatF is described by

F = Fo + δFk, δFk = N∆̄kJ (3)

for some known{N, J} and where∆̄k is a random matrix whose entries are zero mean and uncorrelated with
each other, and such thatE∆̄k∆̄T

k ≤ ρ∆̄I, for some known positive scalarρ∆̄. Moreover,Fo lies inside a convex
bounded polyhedral domainK that is described bym vertices as follows:

K =

{
Fo =

m∑

i=1

αiFi, αi ≥ 0,

m∑

i=1

αi = 1

}
(4)

Our objective is to design a robust linear estimator for the state variablexk of the form

x̂k|k = Fpx̂k|k−1 + Kpyk, x̂k+1|k = Fcx̂k|k (5)
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for some matricesFp andKp to be determined in order to minimize the state error covariance matrix and whereFc

denotes the centroid of the polytopeKk: Fc = 1
m

m∑
i=1

Fi.

Robust filter: For positive definite matricesW , P1 andP2 of appropriate dimensions, and matricesS1, S2 andS3

such thatI <

(
S1 S3

ST
3

S2

)
, define

Fp = Fc(I − β̂WET E −WHT R̂−1H), Kp = FcWHT R̂−1

Q1 = FT
p P2, Q2 = KT

p P2

whereR̂−1 = (R− β̂−1MMT )−1 for some positivêβ chosen as explained in [3], and also define

X =




B −S3 J̃ 0

−ST
3

P2−S2 −Q1Fd 0

J̃T −F T
d QT

1 S1−F T
d (P1+P2)Fd S3

0 0 ST
3

S2


 , Y T =




P1F 0 0 0

ĴT QT
1

0 0

0 0 0 0

0 0 0 0


 , Z =




P1 0 0 0

0 P2 0 0

0 0 I 0

0 0 0 I


 (6)

where

B
∆= P1 − ρ∆JT NT (P1 + P2)NJ − S1

Ĵ
∆= −HT Q2 −Q1 + FT

c P2

J̃
∆= −FT

c (P1 + P2)Fd + HT Q2Fd + Q1Fd

Solve the following convex optimization problem over the variables{P1, P2, Q1, Q2,Λ}:
min Tr(ρuGT (P1 + P2)G + ρvΛ) (7)

subject to conditions (
X Y
Y T Z

)
> αI,

(
Λ Q2

QT
2 P2

)
> 0 (8)

Then setFp = P−1
2 QT

1 , andKp = P−1
2 QT

2 .
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