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Abstract

The existing derivations of conventional fast RLS adaptive filters are intrinsically de-
pendent on the shift structure in the input regression vectors. This structure arises when
a tapped-delay line (FIR) filter is used as a modeling filter. In this paper, we show that a
more general data structure is induced by other filter implementations, such as Laguerre-
based filters and, more importantly, that an exact fast RLS algorithm can still be derived
for such Laguerre-induced data structures. One of the benefits of working with a Laguerre
basis is that fewer parameters can be used to model long impulse responses.

1 Introduction

Fast RLS adaptive filtering algorithms represent an attractive way to compute the least squares
solution of growing length data efficiently. While the conventional RLS algorithm requires�������	�

computations per sample, where
�

is the filter order, its fast counterparts require only�����
�
operations. Examples of such fast schemes include the fast aposteriori error sequen-

tial technique (FAEST) [1], the fast transversal filter algorithm (FTF) [2], and least-squares
lattice algorithms [3, 4, 5]. The latter class of algorithms deal with order-recursive structures,
while the first two examples (FTF and FAEST) deal with fixed-order structures; both FTF
and FAEST can also be viewed as special cases of a general fast estimation algorithm for
state-space models, known as the (extended) Chandrasekhar recursions [6, 7].

The low complexity that is achieved by these algorithms is a direct consequence of the
shift structure that is characteristic of regression vectors in FIR adaptive structures. This fact is
evident in the conventional derivations of fast adaptive algorithms; all of which rely heavily on
the shift structure. The arguments in [6, 7], however, have shown that fast RLS algorithms can
still be derived for certain more general structures in the regression vectors, other than the shift
structure. In this paper, we show that input regression vectors that arise from Laguerre-based
networks satisfy the conditions required in [7] and, therefore, that fast RLS algorithms can still
be derived in this context.
�
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There are several important reasons to consider Laguerre basis functions instead of the
usual FIR implementations. First, the use of Laguerre models (or more generally, orthonormal
basis functions) to describe the dynamical behavior of a wide class of systems has been stud-
ied extensively in many recent works on system identification and control [8]-[11]. Second,
the orthonormality property of Laguerre models offers many benefits in estimation problems,
including better numerical conditioning of the data. Third, one of the primary motivations in
using all-pass basis functions for adaptive filtering is the fact that it requires fewer parameters
to model systems with long impulse responses.

In echo cancelation applications, for example, a long FIR filter may be necessary to model
the echo path and adaptive IIR techniques have been proposed as possible alternatives (e.g.,
[12]-[13]). These techniques are nevertheless known to face stability problems due to the
arbitrary pole locations during filter operation. Laguerre-domain adaptive filtering can offer an
attractive alternative since, in this case, the pole location is fixed. It has already been suggested
for echo cancelation and equalization applications in the works [14, 15]. However, these earlier
contributions rely only on a slow RLS-type form for Laguerre adaptive filtering that requires�������	�

operations. Fast
�����
�

Laguerre adaptive filters have been proposed before in the
literature, but only as extensions of the classical gradient adaptive lattice (GAL) algorithm,
which relies on LMS-type recursions and not on RLS-type recursions (see [16]).

In this paper, we show that a fast
� � �
�

Laguerre adaptive filter can actually be derived
in the least-squares domain, thus leading to a fast RLS Laguerre adaptive scheme. One of the
advantages of insisting on a least-squares-based adaptive scheme is that these tend to exhibit
faster convergence rates and smaller misadjustments than gradient-based adaptive schemes.
The algorithm of this paper will be presented in a compact array form, where arrays of num-
bers are transformed via suitably chosen elementary rotations. Such array forms exhibit better
numerical properties than conventional descriptions in terms of explicit sets of equations.

2 The RLS Algorithm

Given a column vector ��� C
�����

and a data matrix � � C
	 �
��������

, the exponentially-
weighted least squares problem seeks the column vector � � C

�
that solves

������ ��� ����� ����� �"! � �$# � �&% �'� � �)( � �*% �'� ��+', (1)

The matrix � � is a positive-definite regularization matrix, and ( - � � �/. � � ! �0.2131314.25 �
is a weighting matrix that is defined in terms of a forgetting factor

�
. In tracking problems,

typically we have 687 �'9 5
. The symbol : denotes complex conjugate transposition.

The individual entries of � will be denoted by ;=< �?> ��@ , and the individual rows of � will be
denoted by ;=A�B @ ,
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The RLS algorithm computes the optimal solution of problem (1) recursively as follows:

�MB ��� - �MBN#$OPB ���RQ < �?> # 5 � % A�B ��� �MB�S K � ! � -T6 K (2)OPB ��� - � ! �VU BWAX�B ���ZY �[> # 5 � K (3)Y ! � �?> # 5 � - 5 # � ! � A\B ��� U B�AX�B ��� K (4)U B ��� - � ! �VU B % OPB ��� Y ! � �?> # 5 � ON�B ��� K U ! � -]� � , (5)



The computation of the gain vector O B ��� in the above solution relies on the propagation of
the Riccati variable

U B . This method of computation requires
����� �	�

operations per iteration.
Fast

����� �
RLS schemes, on the other hand, avoid the propagation of

U B and therefore evaluate
the necessary gain vector in an alternative more efficient manner. It turns out that the choice of� � plays a crucial role in the derivation of such fast schemes, as we now explain.

Assume for the time being that there exists a square matrix
�

that relates two successive
regression vectors as A\B -]A\B ��� � , (6)

Then using Eq. (2) we can relate the two successive gain vectors ;3O B K OPB ��� @ as follows. Note
that � OPB Y ! � �?> � - � ! � � U B ! � AX�B - � ! � � U B ! � � ��A �B ��� ,
Subtracting this equality from O�B ��� Y ! � �[> # 5 � - � ! � U BWA �B ��� , we find that

O B ��� Y ! � �[> # 5 � - � O B Y ! � �[> � # � ! � � U B % � U B ! � � � � AX�B ��� , (7)

This equation shows that in order to update the (scaled) gain vector from time
>

to time
> # 5 ,

it is not necessary to evaluate the individual ; U��B�� @ but rather the differences

���	��
� ��� - U B % � U B ! � � � , (8)

It turns out that such differences can be updated fast for certain choices of � � and
�

(as ex-
plained in [6, 7] in a more general state-space context), and this fact can be used to derive fast
RLS schemes for input data vectors with or without shift structure.

3 Fast RLS Laguerre Algorithm

Thus consider the Laguerre-based model of Figure 1 where

� � ��� � - � 5 %�� �5 %�� � ! � and � ��� � - � ! � %��5 %�� � ! � K � � � 9 5 , (9)

Note that � ��� � is a first-order all-pass system and that, unlike a general IIR structure, the
poles of the Laguerre-based model are fixed at � .1 [The choice of � can be optimized off-line
according to some criterion.] The input to the Laguerre filter at time

>
is denoted by � �[> � , and

the coefficients that combine the outputs of the successive sections ;P� � ��� � K � ��� � @ are denoted
by ;=��� @ .

1The case of complex poles can also be handled. For simplicity, we assume real � .
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Figure 1: A transversal Laguerre structure for adaptive filtering.

Let A\B �- Q A � 6 K > � A � 5 K > � 13131 A ��� % 5 K > � S K
denote the regression vector at time

>
. Observe that the individual entries of A B are not shifted

versions of each other; instead, they are the outputs of the successive sections ;P� � ��� � K � ��� ��@at time
>
. Let us now verify that two successive regression vectors ;=A B K A\B ��� @ lead to a relation

similar to (but not exactly of the same form as) Eq. (6) for some
�

. [Later we shall show that
we can handle the slight discrepancy in the relation by properly defining extended vectors.]

Using (9) we can write difference equations relating the entries of two successive regression
vectors A\B and A�B ��� . For example, the first three entries satisfy the relations:

A � 6 K > � -
5
� A � 6 K > # 5 � %

� 5 %�� �
� � �[> # 5 �

A � 5 K > � -
5
� A � 5 K > # 5 � #

� 5 % 5
� ��� A � 6 K > # 5 � #

� 5 %�� �
� � � �?> # 5 �

A ��� K > � -
5
� A ��� K > # 5 � # � 5 % 5

� ��� A � 5 K > # 5 � %
5
�
� 5 % 5

� ��� A � 6 K > # 5 � %
� 5 %�� �

��� � �[> # 5 �
In matrix form, we can express the above difference equations as (say, for

� -
	 ),

A\B - Q A\B ��� � �?> # 5 � S��� ��� K (10)

where  is the (
� � �

) upper triangular Toeplitz matrix

 -
CDDDDD
E
�� � 5 % ������ % ���� 5 % ������ ������ 5 % ������6 �� � 5 % �� � � % ���� 5 % �� � �6 6 �� � 5 % �� � �6 6 6 ��

GIHHHHH
J K (11)

and
�

is the (
� � 5

) row vector� - � %�� � ! � �� � � ! � �� � %�� � ! � ���� � � ! � ��� + ,
(12)

Except for the additional term � �?> # 5 � , relation (10) is of the same form as (6). This slight
difference in the nature of the relations can be handled easily by properly defining extended
quantities.



Thus note that using Eq. (2), we can write

� O B ��� Y ! � �?> # 5 �6 � - � ! � � U B 66 6 � � A �B ���
� � �[> # 5 � � , (13)

Likewise, we have

�  ��� OPB Y ! � �[> � - � ! � �  ��� U B ! � AX�B - � ! � �  ��� U B ! � Q  � � �VS�� A �B ���
� � �[> # 5 � � , (14)

Subtracting (13) from (14), we obtain

� � B ����� ! �������
	�� ��� � � � � � B � ! � �������
� ! ��� ��� B   ��� � � � � � B ! ��� � � � ����� �  �B ���! � �����"	�� �
(15)

This shows that in order to update the (scaled) gain vector from O B to O B ��� , we only need to
know how to update the difference

� �	��
 � ��� �- � U B 66 6 � % � � U B ! � 66 6 � � � K
where we are now defining the

��� # 5 � � � � # 5 � square matrix
�

as

� - �  6� 6 � ,
We shall now verify that it is possible to update the differences

� �	��
 � ���
efficiently. For this

purpose, we first note that for the case of pre-windowed input data (i.e., � �?> � -]6 for
>$# 6 and

zero initial conditions), we obtain at the initial time instant
> -T6 ,

� �	�&% � ��� - � � ! � � � 66 6 � % � � � � 66 6 � � � , (16)

Assume that � � is chosen such that the above difference has low rank (say ' , where ' is inde-
pendent of

�
— see Sec. 5). We can then factor

� �	� % � ���
as

� �	� % � ��� -)(0��*+( �� K (17)

where (0� is
� � # 5 � � ' and * is a signature matrix with as many , 5 � � as

� �	� % � ���
has positive

or negative eigenvalues. It will then follow that the rank of all successive differences,
� �	��
 � ���

for
>.- 6 , will not exceed ' and, more importantly, that the inertia of all these successive

differences can also be taken as * . In other words, by forcing the initial difference to have
low rank, and a certain inertia, we end up forcing all successive differences to have a similar
property. This fact is essential to the derivation of a fast algorithm.

To establish the above claims we proceed by induction. Thus assume that the difference� �	��
 � ���
at time

>
can be factored as

� �	��
� ��� -/(�B�*�( �B for some
��� # 5 � � ' matrix (0B . Define

further, for compactness of notation, the extended quantities:0A\B ��� �- Q A\B ��� � �?> # 5 � S K 0OPB �- � OPB6 � K 01 B - 0O B Y ! ��2 �B �?> � K and
0U B �- � U B 66 6 � ,



Now implement a
� 5M. * � -unitary transformation matrix

� B (i.e.,
� B satisfies

� B � 5 . * ��� �B -� 5 . * � ) that transforms the following pre-array to the formCE Y ! ��2 � �?> � �� � � A\B ��� � �?> # 5 � + (�B� 01 B �� � (�B
GJ � B - � � 6� � � K (18)

where � is a scalar, � is a column vector, and � is a matrix. Then we claim that we can make
the identifications

� - Y ! ��2 � �?> # 5 � K � - 01 B ��� K � -/(0B ��� K
and also show that

� �	��
���� � ��� - � * � � . [This last equation means that the inertia of
� �	��
����	� ���

can also be taken as * , and that the above array algorithm provides the desired low rank factor(�B ��� as well.]
To determine the ; � K � K � @ as above, all we need to do is simply compare entries on both

sides of the following equality (which holds in view of the
� 5 . * � -unitarity of

� B ):CE Y ! ��2 � �[> � �� � � A�B ��� � �[> # 5 � + (�B� 01 B �� � (0B
GJ � 5 * � CE Y ! ��2 � �?> � �� � � A\B ��� � �[> # 5 � + (�B� 01 B �� � (0B

GJ � -
� � 6� � � � 5 * � � � 6� � � � , (19)

The resulting fast algorithm can be summarized as follows.

Algorithm 1 (Fast Array Laguerre Algorithm) Consider input regression vectors A B arising
from the Laguerre structure of Figure 1. The solution to the minimization problem (1) can be
recursively computed as follows. Start with � ! � -T6 , Y ! ��2 � � 6 � - 5 , O4� -]6 , (0� and * from the
factorization (17), and repeat for each

>$- 6 ,CD
E Y ! ��2 � �?> � �� � Q A\B ��� � �[> # 5 � S (�B�  � � O B Y ! ��2 �B �?> � �� � (�B

GIH
J � B -

CD
E Y ! ��2 � �?> # 5 � 6� OPB ��� Y ! ��2 � �[> # 5 �6 � (�B ���

GIH
J K

where
� B is a

� 5
. * � -unitary matrix that produces the zero entries in the post-array, and (MB is��� # 5 � � ' . The transformation matrix
� B can be implemented according to the procedure

described below. The upper triangular Toeplitz matrix  and the row vector
�

are as defined
in Eqs. (11 ) and (12). Moreover,

�MB ��� - �MBN#$OPB ���RQ < �?> # 5 � % A�B ��� �MB�S ,
	

4 Implementation Issues

Although from a theoretical point of view, any
� 5X. * � -unitary matrix

� B that produces the zero
entries in the first row of the post-array will do, we have noticed that different implementations
lead to different numerical behavior. To see this, consider for simplicity the case

� -�
 and*'- � 5 . % 5 � . Then the pre- and post-arrays will be of the generic forms:CDDDDDD
E

� � �� � �� � �� � �� � �
GIHHHHHH
J
� -

CDDDDDD
E

� 6 6� � �� � �� � �
6 � �

GIHHHHHH
J
,



In order to create the zero pattern in the first row of the post array, the
� 5 . * � -unitary rotation�

can be evaluated based only on the first row of the pre-array, which means that only the
information needed to update Y ! � �?> � to Y ! � �?> # 5 � is required in order to generate the matrix�

. In other words, in this case no information from the other equations is used to update the
rest of the entries of the array. We have observed in simulations (see Sec. 6) that even for� - 5 , this type of transformation can cause the algorithm to diverge in finite precision.

To mitigate this problem, we propose to apply
�

as follows. First create one zero in the
first row of the post-array by means of a circular rotation, using the entries

� 6 K 6 � and
� 6 K 5 � (as

indicated by the arrows) in the pre-array:� �CDDDDDD
E

� � �� � �� � �� � �� � �
GIHHHHHH
J

Givens%��
CDDDDDD
E

� 6 �� � �� � �� � �� � �
GIHHHHHH
J
,

Now, note that the additional hyperbolic rotation that is needed to zero out the remaining entry
in the first row of the post-array, also needs to create a zero in the entry

��� # 5 K 6 � of the post-
array. Rather than determining this hyperbolic rotation by using the entries

� 6 K 6 � and
� 6 K 
 � of

the first row of the pre-array, we propose instead to determine the hyperbolic rotation by using
the entries

��� # 5 K 6 � and
��� # 5 K 
 � of the last row of the pre-array. That is,CDDDDDD
E

� � �� � �� � �� � �
� � �

GIHHHHHH
J

Hyperbolic%��
CDDDDDD
E

� 6 6� � �� � �� � �
6 � �

GIHHHHHH
J
,

� �
This choice is actually more reasonable, since in this case, the rotation matrix

�
is determined

by using all the equations that constitute the fast recursions. We have verified by simulations
that this method of constructing

�
presents no signs of instability for the case

� - 5 .
On another matter, the algorithm also requires the evaluation of a matrix-vector product

of the form �� for some vector � . Now since the matrix  is upper triangular Toeplitz, this
product amounts to a convolution operation. Actually, the entries of �� can be obtained by
filtering the (reversed) entries of � through the maximum-phase all-pass filter � ��� � - ��� ! � #� ! � �
	 � 5 # � ! � � ! � � .

Another possibility for the evaluation of �� is to rely on fast transform techniques. One
well-known technique (known as the extension approach) is to embed the Toeplitz matrix into
a larger � � � circulant matrix, which can then be diagonalized by the DFT matrix. A second
technique, known as the decomposition approach, is to express  as the sum of circulant and
skew-circulant matrices. Both techniques can also be extended to trigonometric and Hartley
transforms (see [17]), which are better suited for cases with real-valued data.

5 Choice of the Regularization Matrix

We now examine choices for the positive-definite matrix � � such that the rank of the initial
difference

� �	�&% � ���
is low (

�
or 
 ). For any such choice of � � , all successive differences

� �	��
 � ���
will also have low rank with the same inertia. [The actual value of �*� is not needed in the fast



algorithm, but rather the corresponding factors ; ( � K * @ . This initial calculation is performed
off-line and can be assigned to overhead costs.]

Assume first that
� - 5

. Then the choice � � - ���
, for any

� - 6 , leads to a difference� �	� % � ���
of the form

� �	� % � ��� - � � � � � 66 6 � % �  6� 6 � � � � 66 6 � �  � � �6 6 � � - � � � %   � %  � �% �  � %�� � � � � ,
This difference can be easily seen to have rank

�
. This is because

� %   � has rank one, viz.,� %   � - %�� ���	� � with

� - � 5 %�� �
� � K � - col ; 5 K % � K � � K % � � K ,R,R, K � % � � � ! � @ K

and the vector  � � is collinear with
�
, since  � � - %�
 � with 
 - � 	 � � . Therefore,

� �	� % � ���
has rank 2, with * - � 5 % 5 � K (0�M- � � 1 � 6 � �5 % ��� � ,

Let us now consider the case
���- 5 , for which the difference

� �	�&% � ���
becomes

���	�&% � ��� - � � ! � � � %  � �  � %  � � � �% � � �  � % � � � � � � , (20)

We want to argue that there are choices of � � that lead to at least a rank 
 difference. This can
be seen as follows. Assume first that

� � 	 � 9 5 . Then any vector � such that the pair
� � ��2 �  K � �is controllable will result in a positive-definite solution � � for the Lyapunov equation� ! � � � %  � �  � -��	� � , (21)

If, on the other hand,
� � 	 � - 5 , then any vector � such that the pair

� � ��2 �  K � � is controllable,
will result in a positive-definite solution � � for the following Lyapunov equation� ! � � � %  � �  � - % ��� � , (22)

In either case, the point is that we can choose a � (and consequently, �*� ) such that the difference� ! � � � %  � �  � has rank one (and inertia
5

or % 5 depending on whether
� � 	 � is smaller or

larger than one). It then follows that the rank of
� �	� % � ���

in (20) will be 
 and its inertia will be;�� K % 5 K 5 @ , where � - # 5 or � - % 5 . [We may remark that once a vector � has been chosen,
it can be scaled arbitrarily by a number

� �
. This helps guarantee that the resulting � � will be

sufficiently large, as is often required in such least-squares applications.]
[Also, if one insists on a rank

�
matrix

� �	� % � ���
, then we need to find a � such that %  � � � �

is collinear with � as well.]

6 Simulation Results

The simulation results in this section were obtained by averaging over 10 runs in a system
identification scenario with 50 dB signal-to-noise ratio. The input to the unknown model was
taken as colored noise.

Figure 2 shows the results of two experiments with
� - 5

and a Laguerre filter with �
taps and poles at � - 6 , � . The regularization matrix was chosen as � ��- 5 6�� � . The figure
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Figure 2: Learning curves for the fast RLS Laguerre using two forms of hyperbolic transfor-
mations.

shows two learning curves corresponding to the two different implementations of the rotation
matrices

� B , as explained in Sec. 4. We can see from the figure that the classical method of
implementation of the rotations leads to divergence in a few iterations. Figure 3 compares
the performance of the fast Laguerre filter with the fast FIR filter (both implemented in array
forms). The model used for the system identification example in Figure 3 is the same from
[16]):

� ��� � -T6 , 6�6 5�� � ! � � 5 # 6 ,�� � 
 � ! � �
� 5 % 6 , 
 ��� � ! � � � 5 % 6 ,�� 5�� � ! � � � 5 % 6 , ��� � � ! � � ,

The Laguerre filter was implemented with
�

taps and the FIR filter with �46�6 taps. Both filters
used

� - 6 , ����� . We see from the figure that the Laguerre-RLS algorithm presents faster
convergence and achieves a lower MSE level compared to the fast FIR-RLS algorithm.

We should also mention that for
�29 5

, the fast recursions may encounter convergence
difficulties. For

� - 5
, and by using the proposed method for implementing the rotations,

we did not notice such problems even over long simulations. [Actually, even the fast array
algorithm for regression vectors with shift structure is also unstable for

� - 5
if the rotations

are not implemented with care.] Methods to stabilize the recursions in the general case are
under investigation.

References
[1] G. Carayannis, D. Manolakis, and N. Kalouptsidis, “A fast sequential algorithm for least squares

filtering and prediction,” IEEE Trans. on Acoust., Speech, Signal Proc., vol. ASSP-31, pp. 1394–
1402, December 1983.

[2] J. Cioffi and T. Kailath, “Fast recursive-least-squares transversal filters for adaptive filtering,” IEEE
Trans. on Acoust., Speech Signal Processing, vol. ASSP-32, pp. 304-337, April 1984.



0 200 400 600 800 1000 1200 1400 1600 1800 2000
−60

−50

−40

−30

−20

−10

0

10

ITERATION

M
S

E
(d

B
)

Laguerre−RLS

FIR−RLS

Figure 3: Comparison of a 6-tap fast Laguerre filter with a 500-tap fast FIR filter.

[3] D. T. L. Lee, M. Morf, and B. Friedlander, “Recursive least-squares ladder estimation algorithms,”
IEEE Trans. on Circuits. and Syst., no. 6, pp. 467–481, June 1981.

[4] B. Friedlander, “Lattice filters for adaptive processing,” Proc. IEEE, vol. 70, pp. 829–867, Aug.
1982.

[5] H. Lev-Ari, T. Kailath, and J. Cioffi, “Least-squares adaptive lattice and transversal filters: A
unified geometrical theory,” IEEE Trans. on Inform. Theory, vol. IT-30, pp. 222-236, March 1984.

[6] A. H. Sayed and T. Kailath, “Extended Chandrasekhar recursions,” IEEE Trans. on Automatic
Control, vol. AC-39, no. 3, pp. 619-623, March 1994.

[7] A. H. Sayed and T. Kailath, “A state-space approach to adaptive RLS filtering,” IEEE Signal
Processing Magazine, vol. 11, no. 3, pp. 18-60, Jul. 1994.

[8] B. Wahlberg, “System Identification using Laguerre models,” IEEE Trans, Automat. Control.,
vol. 36, pp. 551-562, May. 1991.

[9] P. M. Makila, “Approximation of stable systems by Laguerre filters,”Automatica, vol. 26, pp. 333-
345, Feb. 1990.

[10] G. A. Dumont and C. C. Zervos, “Adaptive control based on orthonormal series representation,”
Proceedings of

�����
IFAC Workshop on Adaptive Systems in Control and Signal Processing, Lund,

Sweden, pp.371-376, 1988.

[11] P. Heuberger, B. Ninness, T. Oliveira e Silva, P. Van den Hof and B. Wahlberg, “Modeling and
Identification with Orthogonal Basis Functions,” �����
	 IEEE CDC Pre-Conference Workshop no. 7,
San Diego, CA, Dec. 1997.

[12] J. J. Shynk, “Adaptive IIR filtering,” IEEE AASSP Magazine, vol. 6, pp. 4-21, April 1989.

[13] P. A. Regalia, Adaptive IIR Filtering in Signal Processing and Control, Marcel Dekker, NY, 1995.

[14] J. W. Davidson and D. D. Falconer, “Reduced complexity echo cancelation using orthonormal
functions,” IEEE Trans. on Circuits Syst., vol. 38, no. 1, pp. 20-28, Jan. 1991.



[15] L. Salama and J. E. Cousseau, “Efficient echo cancelation based on an orthogonal adaptive IIR re-
alization,” ITS’98 Proceedings. SBT/IEEE Int. Telecom. Symposium, São Paulo, Brazil, Aug. 1998.

[16] Z. Fejzo and H. Lev-Ari, “Adaptive Laguerre-lattice filters,” IEEE Trans. on Signal Processing,
vol. 45, no. 12, pp. 3006-3016, Dec. 1997.

[17] G. Heinig and K. Rost, “Representations of Toeplitz-plus-Hankel matrices using trigonometric
transformations with application to fast matrix-vector multiplication,” Linear Algebra and its Ap-
plications, vol. 257-276, pp. 225-248, 1998.


