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Abstract

In this paper, we derive a computationally—
efficient algorithm for accurately approximating
a long FIR filter by a reduced—parameter pole—
zero filter. Our derivation successfully extends
the “embedding” approach of [1, 2] to the case of
an unequal number of poles and zeros.

Our main emphasis is on applying the algo-
rithm to reduce the implementation complexity
of the long FIR feedforward and feedback filters
of the MMSE-DFE encountered in digital sub-
scriber loops. We also describe several other ap-
plications where the algorithm leads to a signifi-
cant reduction in implementation complexity.

1 Introduction

In a variety of applications, the engineer is faced
with the task of implementing a long finite im-
pulse response (FIR) filter on a digital signal pro-
cessor. For example, this long FIR filter could
be the feedforward or the feedback filter of a
decision feedback equalizer (DFE), an echo can-
celler (EC), a simulator of a channel impulse re-
sponse (IR), etc. Moreover, in some situations
the underlying true system response is of infi-
nite length (ITR). Assuming it to be FIR (e.g.,
by truncating up to the most significant N sam-
ples) has some advantages : An ease of compu-
tation (e.g., through the use of efficient time—
domain algorithms such as the Levinson algo-
rithm or frequency—-domain algorithms such as
the FFT algorithm) and a lower sensitivity to
finite—precision effects. However, to achieve satis-
factory performance (a high decision-point SNR
for the DFE, large echo suppression for the EC,
and a low model approximation error for the
channel IR), a large number of FIR filter taps is
usually needed. This can lead to a prohibitive
implementation cost in terms of the increased
memory needed to store the filter taps and the
large record of previous input samples, in ad-
dition to the high processing power required to
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compute the filter output samples through sum-
of—products calculations. This cost even multi-
plies for high—speed applications and for time-
varying environments where the filter taps are
frequently updated.

In this paper, we study the generic problem of
approximating a long FIR filter by a pole-zero
filter with a much smaller total (numerator and
denominator) number of coefficients. This prob-
lem has been investigated by many researchers
in the contexts of IIR digital filter design (see,
e.g., [3, 4, 5]), echo cancellation (see, e.g., [6, 7]),
and more recently zero—forcing decision feedback
equalization in [8]. Our main focus will be on
the DFE application. However, our approach dif-
fers significantly from that of [8] in several as-
pects. First, the tail of the long FIR filter was
assumed in [8] to be accurately modeled by two
poles only. This assumption is specific to the
High-Bit-Rate Digital Subscriber Loop (HDSL)
environment considered in that paper. Although
we shall also use an HDSL channel in our sim-
ulations, the algorithm that we shall present is
quite general and does not make any such as-
sumptions. Second, pre—cursor ISI was assumed
to be negligible in [8], and hence the feedfor-
ward filter was assumed to be a short FIR filter.
We do not make this assumption either since for
higher data rates and less benign channel charac-
teristics, as in the Asymmetric Digital Subscriber
Loop (ADSL) environment, the feedforward filter
must be very long to achieve satisfactory perfor-
mance. Therefore, we shall attempt to approxi-
mate both the feedforward and feedback filters by
pole—zero models. Finally, the DFE coefficients
were computed in [8] using adaptive IIR algo-
rithms. Again, the environment-specific assump-
tion of a 2-pole model made stability monitoring
a simple task, which would not be the case in
situations where a 2—pole model is not adequate
(e.g. in echo cancellation). Instead, we shall
compute the DFE coefficients directly from the
available channel and noise estimates using the
efficient algorithms of [9]. In case of environment
changes, straightforward adaptation is performed
on the long FIR filter, which is then converted to
a pole—zero filter for a reduced—complexity imple-
mentation.



2 Pole-Zero Modeling of a
Long FIR Filter

2.1 Motivation

The FIR MMSE-DFE is a widely—used receiver
structure that mitigates the effects of severe ISI
and noise to restore communication integrity. As
shown in Figure 1, it consists of two FIR fil-
ters. A feedforward filter w(D), with N; taps
{w_a, -, wn,—1-a} (where A is the decision
delay) that combats pre—cursor ISI and noise, and
a strictly—causal feedback filter b(D) with Ny taps
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Figure 1: Block diagram of the FIR MMSE-DFE

The channel pulse response h(D) is assumed
to be a linear time-invariant FIR filter with a
memory of v, i.e., h(D) = hg+hiD+---+h,D".

Closed—form expressions for the optimal feed-
forward and feedback filter settings that mini-

mize the mean square error MSE = Elex]? =
E|zr4n,-1-a — zx|* were derived in [10] for ar-
bitrary choices of Ny and N,. However, it was
shown in [9] that significant computational reduc-
tions can be achieved when we assume that the
number of feedback taps is equal to the chan-
nel memory, i.e., Ny = v. Under this assump-
tion, the feedforward filter becomes strictly anti—
causal and A = Ny —1. More specifically, assum-
ing white input with average energy of S; per
complex dimension and correlated—noise with a
(non-singular) correlation matrix R,,,, then the
optimal FIR MMSE-DFE can be computed effi-
ciently from the Cholesky factorization :

1 def

T Inp + H*'R,!H = LDL" (1)
as follows :

bopt. = LeNf (2)

Wopr, = dy;_(el, LTHH", (3)

where Iy, 4, is the identity matrix of size Ny +v,
. enotes the conjugate transpose, ey, is the
* denotes th gate t , is th

N}h unit vector, and H is the Ny x (Ny + v)
fully-windowed Toeplitz matrix given by

ho Ry h, 0 - 0

0 hg M h, 0 -
H =

0 -+ 0 hy M hy

(4)
In many applications (such as high-speed data
transmission on twisted copper lines that will be
discussed in more detail in Section 3), v is very
large, which entails the use of very long feedfor-
ward and feedback filters (a total of more than
a hundred taps) to achieve satisfactory perfor-
mance. Although these long filters can be com-
puted very efficiently using (1)-(3), implementing
them in real-time is very costly. This considera-
i tion has motivated us to develop an efficient algo-
rithm to convert long FIR filters to pole—zero fil-
ters with much fewer parameters, without loosing
stability, and while still maintaining satisfactory
performance.

Another requirement on this algorithm is the
ability to handle mixed-phase FIR filters. This
is due to the fact shown in [10] that the optimal
feedforward (feedback) filters of the FIR MMSE-
DFE are not necessarily maximum phase (mini-
mum phase), unless Ny is infinite.

2.2 The Generalized
ARMA-Levinson Algorithm

In this section, we shall derive a new algorithm
for approximating a long FIR filter by a pole-
zero stable filter with much fewer taps. The algo-
rithm is a generalization of the ARMA-Levinson
algorithm derived in [2] using the “embedding”
technique of [1]. The novelty in our algorithm
is its ability to relax the restriction of an equal
number of poles and zeros that was assumed in
[2, 1]. This flexibility will prove to be useful in
obtaining better fits, as it will become clear from
the simulation results of Section 3.

An ARMA model with ¢ zeros and p poles, de-
noted in this paper by ARMA(p, ¢), is described
by the following difference equation : !

Ye = —Q1Yk—1— - —ApYk—ptNoTr+ - +NgLr—q -
(5)
Assume first a proper transfer function so that
p > q. The case of ¢ > p requires some modifica-
tions and will be described later.
Our objective is to estimate the (p + ¢ + 1)
ARMA parameters {a1,- -, ap, no, - - -, Ng} based
on knowledge of the second—order statistics of the

Tn the sequel, the numerator polynomial coefficients
{no, -+, ng} are not to be confused with the noise samples
ng. Distinction should be clear from the context.



input and output sequences. If we denote these
estimates at the j'* recursion (1 < j < p) by

{a{,-~~,a§,né,~~,n§_5} where d déf p—4q Z 0;
then the output of this ARMA(j, j — d) filter can
be calculated as follows :

— J J J
Ye = _a1yk 1= = @Yk + gk + -

+ ) _sze-jis+ € (6)

where €, is the 4" order residual error sequence.

If we define the augmented vector zg =

[ xyké ], then the ARMA model of (6) can be
k+
converted to the 2-channel AR model :

B g | Pen R
ZTg4o 0 0 Tpto—1

—(1“; n;:_(; Yk —j + 6i
0 0 Tp_jys Trts |

or more compactly,

+...+[

. . J
— J J €
zk_—®1zk_1—~-~—®jzk_j—|—[ Ikia

where we have defined

—a? 0
j def 0 0

If we multiply both sides of (8) by z;_, (0 <i <
J) and take expectations, we arrive at

R(0)+O[R(-1)+- + @/R(—j) =%] : i=0

R(i)+O]R(i—1)+ - +O'R(i—j) = 0 :

where

ey (i +0)

= R*(-i). (12)

Alternatively, (10) and (11) can be written in
matrix form as follows :

ORI = | 0 o s/,
where
o = | o o 1|
R(0) R(-(7-1)) R(-j)
R/ = :
R(j—1) R(0) R(-1)

[ RRyy(z‘) Ryq (i — 8)

Equation (13) describes a j'"-order AR
model whose vector parameters ©7 can be
calculated by solving a block—Toeplitz Hermi-
tian system of linear equations. This can be
done efficiently using the following multichan-
nel form of the scalar Levinson Algorithm, some-
times known as the Levinson-Wiggins—Robinson

(LWR) Algorithm[11, 12].

Algorithm 1 (Generalized ARMA-Levinson)
Given {R(0),---,R(p)}

Initial Conditions :

el = K/ =-ROR(1).
! = Ki=-R(OR(-1).
2 = R(O)(I-KIK{).
] s = R(0)(I-K/KY).
Recursions :

forl<j<p-1

Al = R(E+1)+R()O]+ - +R(1)0) .
K§+1 = —(= 2) 1A§+1~
b _ =1 A*f
Kj+1 - (E]) A]+1'
2§'¢+1 = Ef (- +1KJ+1) :
2?+1 = (I ]+1 ]+1)'
et = ol+@_ Kl 1<i<;.
i+l gt
05 = Kj.
It = @+ Kb, 1 1<i<j.
-
*h = K§+1 4 (14)

where the backward prediction vector ®7 =

[I & ... @

iliary block—Toeplitz system of equations :

} satisfies the following aux-

R/ =[% 0 .- 0].

Assuming the input sequence to be white
(i.e., Rype(l) = Szd;), then the output auto—
correlation and input—output cross—correlation
sequences needed to form (12) can be computed
using knowledge of the FIR filter taps as follows

Ry() = S: Zh hL, .. (15)
Ry(l) = th,_ Ry,(=0).  (16)

PP
at,nb nb ...

The parameters {af, -, b,

nh} are

"read off directly from e (1 <i<p).

Remarks :



. For the special case of an equal number of
poles and zeros, we have § = 0. Hence, the
first J terms of (7) disappear, i.e.,

Ye | _ —al njl Yk -1
[xk]_[ 0 0:||:.Z‘k—1:|+

—a nl Yk—j 1 nd e
J J J
+[ 0 0 ] [ Tg_j + 0 1 |

(17
Algorithm 1 can still be applied (with § = 0)
to compute {af, - - ~ab, nf, - nb} and nb =
=/(1,2).

. Although our algorithm uses only second-
order statistics, it can generate
minimum phase approximations (i.e., the ze-
ros of the numerator polynomial could lie
outside the unit circle) because of the use of
embedding. However, it can be shown that
the pole polynomial is always guaranteed to
be stable.

non—

. The matrices 2§+1 and 2§'+1 are called the
forward and backward prediction residual er-
ror matrices of order (j + 1), respectively.

. In the presence of additive noise that is in-

dependent of the input with a correlation se-

quence Rpp(!), Equation (15) is modified to
Ryy(l) = So Z;:o hmhy_y + Bnn ().

. The case ¢ > p can be handled by inter-
changing the roles of the input and output
sequences in (6). More specifically, consider
the following ARMA(q,p) model of the in-

verse ﬁlt€1:
_nzkl_..._njrk ]+ayk+.

+al_sye—jro e (18)

Tk =

where § ¢ g—pand 1 < j <gq. Then, the
embedding relation of (7) is modified to

Lo =0 e )
Yk+s | X X Yk+6-1
i g
—77,5 ao Th—_§
Al

+ _"§+1 af Lh-s-1
X X Yr-1

+...+[ —n; a;—ti :| [ Lr—j :|_|_ ekj :|
X X Ye—j+s Yk+s
(19)
~ def Rz (1) Rey(i = 9) ]
Define R(z) = AN v ,
0| aile 286

then Algorithm 1 can be applied to compute

the parameters of the ARMA model h(D) ~
1+niD+ - 4niD?

ag+a§D+~~~+aZ_5Dq_5 :

6. A useful way to interpret Algorithm 1 is as
follows : we apply the ®g+1 recursion in
(14) only for 6 < i < j. The parameters
{@‘i_l, cee @gj}, or equivalently the all-
pole prediction coefficients {a?_l, cee agj

can be computed by applying the classical

(scalar) Levinson Algorithm. That is, we

first find the best d** order AR model and

then use it for the initialization of Algorithm

1 that will successively generate the best

ARMA (7 4 4,¢) models (1 < ¢ < ¢), until it

finally arrives at the desired ARMA(q+4,q)

model.

7. The formulation of (7) accommodates the
more general case where the input sequence
is also modeled as an ARMA process. Our
assumption of a white input sequence is a
special case of that general formulation.

8. It was brought to our attention recently 2
that a multichannel least squares algorithm
with a different number of parameters to be
estimated in each channel was previously de-
rived in [13]. However, the algorithm of [13]
is distinct from ours in that it is of lattice
type, time-recursive, and was not derived
using the “embedding” approach that we fol-
lows here. In addition, the intended appli-
cation of this algorithm being investigated
in this paper, namely pole-zero modeling of
long FIR filters, is new, to the best of our
knowledge.

2.3 Model Order Selection

A critical component in generating an accurate
ARMA (p, q) approximation is the choice of p and
q. Several tests have been proposed in the liter-
ature for determining p and ¢ from the output
data record or from the output auto—correlation
sequence [11] (which can be computed from (15)
using knowledge of the FIR filter taps and as-
suming a white input sequence). These tests
include an information-theoretic criterion (AIC)
by Akaike [14] and singularity tests of an output
auto—correlation matrix [15]. More recently, Pil-
lai et al. proposed an order—determining method
based on a degree-reducing procedure from pas-
sive network theory [16].

For the purposes of this paper, we shall choose
p and ¢ according to the following two consider-
ations. The first consideration is cost—driven in
that we assume a maximum allowable implemen-
tation complexity, which in turn sets an upper
bound on the values of p and q. Therefore, we
seek to find the best, in terms of low normalized

2Thanks to Professor H. Lev-Ari of Northeastern
University.



norm tap error NNTE = W
N is the number of FIR filter taps), pole-zero
approximation, subject to this complexity con-
straint. It is worth emphasizing that increasing
p and/or q could result in a worse approximation
depending on the FIR filter response, as it will be
shown in Section 3. The second consideration is
performance—driven and requires an exhaustive
search over different choices of p and ¢, within
the allowable range determined by the first con-
sideration above, until we arrive at an acceptable
fit. Depending on the application, complexity
might be partially traded for performance (as in
echo cancellation) or vice versa, although in most
cases a compromise between the two is more de-
sirable.

(where

3 Simulation Results

In this section, we shall evaluate the performance
of Algorithm 1 by applying it to a representative
example from the HDSL environment to imple-
ment the FIR, MMSE-DFE filters in a pole—zero
form that reduces complexity while still retaining
satisfactory performance.

Approximating the feedforward filter :

As mentioned previously in Section 2.1, when
Np = v, the optimal feedforward filter of the
FIR MMSE-DFE becomes strictly anti—causal
and can be realized with a delay of (Ny —1) sym-
bol periods, i.e.,

w*(D_l) = wi(Nf_l)D_(Nf_1)+~ . ~+w*_1D_1+w’6 .

(20)
We have found through extensive computer
simulations that a direct reduced—parameter
pole—zero approximation of D™/ w*(D™!) is very
difficult to obtain. This is due to the fact that
the initial part of the impulse response (IR) prior
to the peak could be very long. Pole-zero mod-
els can more easily model the decaying tail of the
IR following the peak. With this observation in
mind, we propose the following procedure for de-
riving pole-zero models of (20). Denote the peak
sample of the feedforward filter IR by w* . (0 <
T < N;y —1). Shift the feedforward IR by 7
samples to center the peak sample at the origin.
The resulting IR, namely D™ w*(D~!), will have
a causal and a strictly anti—causal components
that we shall denote by wi (D) and w3(D™1), re-
spectively.
D™w*(D™Y) = wi (D) + wi (D7) . (21)
Now, each of wy(D) and ws(D) has the shape of
a decaying IR tail that can be easily modeled as a

pole—zero filter with few parameters. Therefore,

(21) becomes

n¥1(D)
a¥1 (D)

n*wz(D—l)
a*we (D—l) ’

DTw*(D™1)
and the causal feedforward filter IR is approxi-

mated by

n“t(D) n*“2(D71)

DNi=1y*(D=1) & DNe-1-7
w™( ) ( +a*w2(D—1)

22)

avt(D)

—_

— DNf—l—T(

n"*(D)a**2(D~1) 4 a* (D)n**2 (D~ 1)

a¥1(D)a*vw2(D~1)
(23)
Realizing the feedforward as in (22) is prefer-
able over the form of (23) since the former re-
quires a smaller number of taps. This further ex-
plains the difficulty encountered when attempt-
ing a direct reduced-parameter pole—zero ap-
proximation of the overall IR of the feedforward

filter.
Example 1 :

For the HDSL environment we shall assume
the worst case 9 kft 26 AWG DSL. The input
power level is 17 dBm evenly—distributed over the
transmission bandwidth and the 2-sided AWGN
power spectral density (psd) is taken to be —113
dBm/Hz. The standard |H.(f)|* = kNEXTf%
near—end crosstalk (NEXT) model is adopted
with kygpxr = 10713, The target bit rate is set
at 800 kbps and the input signal constellation is
16 QAM which is near-optimum [17]. A fixed
probability of error P, = 10~7 is assumed and
a 4.2 coding gain is included. The finite-length
MMSE-DFE is assumed to have 96 feedforward
taps and 64 feedback taps. This choice results in
an operational margin of around 4.9 dB [17].

In Tables 1-3 we present some of the best pole—
zero approximations of the 64-tap feedback filter
and the two components of the 96-tap feedfor-
ward filter obtained using Algorithm 1 and their
corresponding NNTE’s. The impulse responses
of the those approximations together with that
of the desired response are given in Figures 2,4,
and 5.

It is evident that the proposed algorithm gen-
erates fairly accurate pole—zero approximations
with the added advantages of significant reduc-
tion in the number of filter coefficients, fast com-
putation, and guaranteed stability.

4 Other Applications

Although our main motivation for deriving Algo-
rithm 1 was to reduce the implementational com-
plexity of the finite-length MMSE-DFE, these

).



[ ] b(D) | NNTE(dB) |
—1+40.5354D40.5056 D> H - H
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Table 1: ARMA approximations for b(D) of Example 1 using Algorithm 1 and their achievable NNTE’s
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H (6 2) H 47.1549—6.5874D —24.4024 D> H —49.9905 H

Table 2: ARMA approximations for w; (D) of Example 1 using Algorithm 1 and their achievable NNTE’s
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Figure 2: Pole-zero approximations of the feed-
back filter of Example 1 generated using Algo-
rithm 1.
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Figure 3: Impulse Response of the feedforward
filter of Example 1.
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Figure 4: Pole-zero approximations for w; (D) of
Example 1 generated using Algorithm 1.
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Figure 5: Pole-zero approximations for wy(D) of
Example 1 generated using Algorithm 1.



g w2 (D) [ NNTE(dB) |
[0 ] T [ —26.0219 ]
133 ] =L T T D el el | —26.4864 |
| (6,6) || = e D Tt | —30.4245 |

Table 3: ARMA approximations for ws(D) of Example 1 using Algorithm 1 and their achievable NNTE’s

algorithms can be used in several other applica-
tions. We briefly explore some of these applica-
tions next.

4.1 Revisiting the infinite-length
MMSE-DFE

It is well known (see e.g. [18, 19]) that the opti-
mum settings of the infinite-length MMSE-DFE
can be computed from the spectral factorization

ﬁ +h(D)h* (D7) 33g(D)g* (D7) (24)
as follows
b(D) = g(D) : v taps (25)
* -1 — iw . v,V
w* (D7) 7(2) g*(D-1) t ARMA (v, v)(26)

In some applications, such as high—speed data
transmission on DSL, the channel impulse re-
sponse is very long (large v), which makes the
spectral factorization of (24) very costly to com-
pute. However, if we use Algorithm 1 to convert
h(D) to a pole-zero model, h(D) =~ %% =

2 il
1+Zf:1 ai’D’ ’

1
SNR®

then (24) becomes

h(D)a*h(D—l) 4 nh(D)n*h(D—l)

X

19(D)g™(D™H)a" (D)a™ (D7) = 43r(D)r* (D7)

since a”(D) is a canonical response.
the optimum filter settings of the infinite—length
MMSE-DFE can be calculated approximately
from :

: ARMA (p, max(p, ¢)) (28)

*h -1

1n (D7) : ARMA (max(p, q),q) -
(29)

The spectral factorization
of (27) requires finding the roots of a polyno-
mial of degree=max(p, ¢), which is of much lower
complexity (even after adding in the complexity
of converting h(D) to a pole-zero model) than
finding the roots of a v'"~degree polynomial as

w* l)_1 ~ _—
P~ 2w 0

in (27), since v > max(p, ¢). Nevertheless, we
need to take into consideration the degradation
of the decision—point SNR when calculating the
MMSE-DFE filter settings from (28) and (29) in-
stead of (25) and (26). This issue is addressed in
[20].

Another point that deserves attention is the
concern that implementing the feedback filter in
a pole—zero form might exacerbate the problem
of error propagation. However, a little reflection
shows that when error propagation occurs, the
resulting performance degradation should be al-
most the same whether we implement the feed-
back filter in an FIR or IIR form, as long as the
NNTE is low enough to ensure that the IR’s of
both implementations are almost the same. Fur-
thermore, error propagation can be avoided ei-
ther by ensuring a high decision—point SNR that
prevents initial errors from occurring or by mov-
ing the feedback filter to the transmitter, where
no errors can occur, using the precoding tech-
nique.

4.2 Adaptive IIR filtering

In adaptive filtering applications, the reductions
in the implementation cost of pole—zero filters
over long FIR filters become more dramatic since
a larger memory size and a higher computational
power is needed (to store the filter taps and previ-
ous input samples and to compute the filter out-
put samples) when the FIR filter coefficients are
updated frequently.

The two most common methods for adap-
tive IIR filtering are the equation—error method
and the output—error method [21]. Unlike the
well-understood adaptive FIR algorithms, sev-
eral problems arise in adaptive IIR filtering in-
cluding bias in equation—error methods and local
minima in output—error methods; many other is-
sues (such as stability monitoring) remain open
to date [22].

Algorithm 1 could also find useful applica-
tion in adaptive IIR filtering, as follows. Apply
standard adaptive algorithms (such as the robust
LMS algorithm) to adapt a long FIR filter, then
use Algorithm 1 to convert the updated long FIR
filter to a pole—zero filter with much fewer pa-
rameters to reduce the real-time implementation
cost. Continue the FIR adaptation process in



the background and the conversion process in the
foreground.

4.3 Echo Cancellation

Echo cancellation for full-duplex transmission on
DSL might prove to be one of the most challeng-
ing applications for the algorithm of Section 2.
The stringent requirement of an NNTE of —60
dB or less in this application makes the pole—zero
modeling process more difficult than it is; e.g., in
the DFE application. Furthermore, the echo path
IR is typically characterized by a rapidly varying
initial part followed by a very long tail that could
span hundreds of taps, especially as the sampling
rate increases.

Additional procedures will be needed to ob-
tain high—quality pole—zero approximations of
the echo response. Among those are use of the
“splitting” technique (see [7, 8] and Section 4.4)
to model the initial part of the echo IR by an FIR
filter and only the tail of the IR by a pole—zero
filter. We might also need to relax the require-
ment of p, ¢ < 10 that was made in the DFE sim-
ulations of Section 3, and consider higher—order
approximations.

4.4 Channel Identification

Very accurate and efficient channel identification
can be carried out in the frequency domain using
the Fast Fourier Transform (FFT) algorithm and
special periodic training sequences [23]. However,
for high spectral resolution, the FFT size N has
to be large (typically 512 or 1024) which results in
a long N-tap FIR representation of the channel.
Algorithm 1 can then be used to convert this long
FIR filter to a pole—zero filter.

Direct identification of ARMA(p,¢) channel
models can also be achieved using Algorithm 1 by
computing estimates of the correlation sequences
based on known training sequences and measured
output samples.

For a variety of other tasks, including trans-
mitter optimization (optimizing the input sym-
bol rate and the transmit power spectrum shape
[19, 17]), receiver optimization of the MMSE-
DFE (c.f. Section 4.1), and performance evalua-
tion using computer simulations, significant com-
putational savings can be accrued by obtaining
a more compact (i.e., has fewer parameters) de-
scription of the channel.

Example 2

Consider again the 9 kft 26 AWG DSL of Ex-
ample 1. In Table 4, we list a number of pole—zero
approximations to the channel impulse response,
obtained using Algorithm 1, together with their
achievable NNTE’s.

Magnitude Response

Phase Response (in radians)

To illustrate the ability of the algorithm to
model non minimum-—phase responses such as the
channel response of this example (which has 7
non minimum-phase zeros), we have plotted in
Figures 6-7 the magnitude and phase responses
of the channel and its pole—zero approximations
generated using Algorithm 1.

9 kft 26 AWG DSL
10t
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o
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—— Channel
RMA(7,7)
ARMA(8,7)
ARMA (10,7)
+ & ARMA(10,10)

esponse

R

[0] 0.5 1 1.5 2 25 3 35
Frequency (in radians)
Figure 6: Magnitude response of h(D) of Exam-
ple 3 and its pole-zero approximations generated
using Algorithm 1.
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Figure 7: Phase response of h(D) of Example 3
and its pole-zero approximations generated using
Algorithm 1.

Nevertheless, we have found that by split-
ting h(D) into a short FIR filter, call it hy(D)
(that models the initial part of the channel IR
prior to the peak sample), and a pole-zero fil-
ter, call it iLg(D) (that models the tail of the
IR), better fits with lower orders were obtained,3
as shown in Table 5. The impulse response of
those approximations superimposed on the re-
sponse of ha(D) are shown in Figure 8. The
taps of the FIR filter ill(D) are set equal to
the corresponding ones in h(D) and are given by

hi(D) = 10-4(D — D* + 2D —4D* + 11D%).

4.5 Digital Filter Design

Recursive digital filters are generally more dif-
ficult to design than nonrecursive ones. Tradi-
tional methods for designing recursive digital fil-

3This agrees with conclusions arrived at in [8, 7].
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Table 4: ARMA approximations for A(D) of Example 3 using Algorithm 1 and their achievable NNTE’s
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Table 5: ARMA approximations for ha (D) of Example 3 using Algorithm 1 and their achievable NNTE’s
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Figure 8: Pole-zero approximations of hy(D) of
Example 3 generated using Algorithm 1.

ters make use of the existing wealth in analog fil-
ter design methods by applying a transformation
(as in the impulse-invariant or bilinear methods)
on an analog filter that meets the given desired
frequency response characteristics [24, 25].

Algorithm 1 can be used as a computationally—
efficient time-domain recursive digital filter de-
sign method, however, the design criterion is now
related to matching second-order statistics.

As pointed out earlier, recursive digital filters
can usually achieve a similar magnitude response
to an FIR filter with much fewer parameters, es-
pecially in situations where there is a sharp tran-
sition between band edges. However, we should
point out that the exact amount of reduction in
implementation cost depends on the architecture
of the signal processor used for filter implemen-
tation. Moreover, recursive digital filters have
other limitations including their inability to have
an exactly constant group delay and their sen-
sitivity to finite—precision effects such as coef-
ficient errors, quantization noise, overflow, and
limit cycles. The finite—precision effects can be
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partially offset by using alternative realizations
(other than the direct pole-zero form) such as
parallel, cascade, or lattice forms. The latter re-
alization can be constructed using the set of for-
ward and backward reflection coefficients gener-
ated by Algorithm 1.

5 Conclusion

We have derived a computationally—efficient sta-
ble algorithm that reduces the implementation
complexity of the MMSE-DFE by accurately ap-
proximating its long FIR feedforward and feed-
back filters by pole—zero filters with fewer coeffi-
cients.

Extensive simulation results on a representa-
tive loop from the HDSL environment demon-
strated the viability of the proposed algorithm.
Finally, a host of other applications where the
derived algorithm could be used were described
and discussed.
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