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Abstract-A robust filter is designed for uncertain discrete 
time models. The filter is based on a regularized solution 
and guarantees minimum state error variance. Simulation 
results confirm its superior performance over other robust 
filter designs. 
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I. INTRODUCTION 

Most robust filtering designs perform de-regularization 
and involve existence conditions (see, e.g., [ 11-[4]). This 
property can be problematic for real time/online filter- 
ing operations on time varying models because it entails 
checking the conditions on a regular basis. When the con- 
ditions fail, the filter robustness is lost. In [ 5 ] ,  a robust fil- 
ter was proposed that performs regularization as opposed 
to de-regularization. The design procedure in [5] involved 
choosing a certain Ricatti variable so as to enforce a local 
optimality property. In this paper, we show how to de- 
termine the weighting regularization matrices in order to 
minimize the state error covariance matrix globally. Simu- 
lation results are included to illustrate the performance of 
the proposed filter in comparison to other robust designs. 

11. LEAST-SQUARES WITH UNCERTAINTIES 

Many estimation and control problems rely on solving 
regularized least-squares problems of the form (see, e.g., 
[GI): 

min [xTQz + ( A x  - ~ I ) ~ W ( A ~  - b ) ]  (1) 

where zTQx is a regularization term, Q > 0 and W 1 
0 are Hermitian weighting matrices, x is an unknown 
n-dimensional column vector, A is a known N x n data 
matrix, and b is a known N x 1 measurement vector. The 
solution of (1) is 
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When the nominal data { A , b }  are subject to uncertain- 
ties, especially large ones, the performance of the optimal 
estimator (2) can degrade appreciably. In [8], a general- 
ization of (1) that accounts for uncertainties in { A ,  b}  was 
introduced. Let J ( z ,  y) denote a cost function of the form 
J ( z ,  y) = xTQx + R(z,  y) with 

R(z,y) = ((A+dA)z--(b+db) (A+dA)a:-(b+db) 

(3) 
where SA denotes an N x n perturbation to A,  Sb denotes 
an N x 1 perturbation to b, and {SA, Sb}  are assumed to 
satisfy a model of the form 

[ S A  S b ]  = H A [  Ea E b ]  (4) 

where A is an arbitrary contraction, IlAll 5 1, and 
{ H ,  Ea, &} are known quantities of appropriate dimen- 
sions. Consider then the constrained two player game 
problem 

2 = argmin max J ( z , y )  ( 5 )  
2 {6A,6b) 

subject to (4). The following result is proven in [8]. 

Theorem I: The problem (4)-(5) has a unique solution 
2 that is given by 

i = [ij + AT@A]-l [AT%% + &?3zEb] 

where 

6 Q+BE:E~ (7) 

w w + WH@I - HTWH)+HTW (8) 
h 

and the scalar p̂  is determined from the optimization 

where the function G(P) is defined as follows: 

(9) 
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and IV. ROBUST STATE SPACE FILTERING 

When uncertainties are not present in the model (14)- 
(15), it is known that the optimal linear estimator for the 
state vector is the Kalman filter [IO]. This filter admits a 
deterministic interpretation as the solution to a regularized 
least-squares problem as follows. Let 

[The notation X t  denotes the pseudo-inverse of X.] 

It is shown in [8], [9] that the function G(P) has a unique 
global minimum (and no local minima) inside this interval, 
which means that the determination of Fcan be pursued by 
employing standard search procedures without worrying 
about convergence to undesired local minima. Actually, it 
was argued in [5] that a reasonable approximation for ,8 is 
to choose it as ,b = (1 + a)llHTWHll for some Q > 0. 

111. THE DATA MODEL 

Now consider an n-dimensional state-space model of 
the form : 

where { W k ,  V k }  are uncorrelated white zero-mean random 
processes with variances 

and 20 is a zero-mean random variable that is uncorrelated 
with { W k ,  V k }  for all IC.  The uncertainties A H ,  are mod- 
elled as 

A H ,  = M k A k E k  (16) 

where M k  and E k  are known matrices, while A k  is an ar- 
bitrary contraction, < I .  

We consider two types of uncertainty descriptions for the 
state matrices Fk: one is in terms of polytopic uncertain- 
ties and the other is in terms of norm bounded uncertain- 
ties. In the first case, we assume that the Fk lie inside 
convex bounded polyhedral domains x k  described by p 
vertices as follows: 

z=p i=p 

ai$ 2 0, z % , k  = 1 
i=l 

(17) 
In the second case, we assume that the F k  are described by 

for some known Ff .  

A 

A 

2 k l k - l  = an estimate of Z k  given {yo, y1, . . . , y k - 1 )  

?klk = an estimate of Z k  given {yo, 9 1 , .  . . , y k - 1 ,  yk} 

Given the predicted estimate 2 k l k - l  and an observation Y k ,  

the filtered estimate 2 k l k  computed by the Kalman filter is 
the solution of 

min []]E - 2k lk - l l l p ; l  2 + IlYk - H k Z l l & 1 ]  (19) 

where P k  and RI, are the state-error and the measurement 
noise covariance matrices, respectively. When uncertain- 
ties are present in { H k ,  F k } ,  we could formulate a robust 
version of (19), by solving instead a min-max problem of 
the form: 

This formulation was proposed in [ 5 ] .  Compared with 
other robust designs it has the advantage of performing 
regularization as opposed to de-regularization. This prop- 
erty is useful for on-lineheal-time opertaion. In [5] ,  how- 
ever, the weighing matrices Pk in (19) were determined 
through Ricatti equations that enforce a local optimality 
criterion. In the sequel, we shall determine p k  to mini- 
mize the state error covariance matrix globally. We do so 
by re-parametrizing P k  and RI, in terms of a single param- 
eter Q k ,  over which the global minimization of the error 
covariance is shown to reduce to a linear convex problem. 

A .  Polytopic Uncertainties 

We consider first the case of polytopic uncertainties in Fk 
as in (17). Our objective is then to design a robust linear 
estimator for the state variable ~ k :  of the form 

?klk = F p , k g k l k - l  + K p , k y k ,  2 0 (21) 
?k+llk = Fi3klk  (22) 

for some matrices Fp,k and K p , k  to be determined in order 
to minimize the worst case error variance of the state for 
all uncertainties, and where F j  denotes the centroid of the 
polytope XI,:  

_. i=p 

I .  2=1 
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Assume first that the F k  are fixed; we will incorporate the 
uncertainties in F k  soon. With uncertainties in the output 

Then q k  satisfies 

matrices H k  alone, problem (20) becomes 

m i n m a  ( ~ ~ ~ - ~ k ~ k - l ~ ~ p k - i  + l lyk - ( H k  + 6 H k ) 2 1 1 i k - i  ) where 

qk+l  = F k q k  + G k p k  

2 
I  HI. 

which can be written more compactly in the form (3)-(5) 
with the identifications: 

Noting that W k  is a zero-mean white random process, we 
let the following be an estimate of Zk+l  given the mea- 
surement g k  : 

?k+llk - k klk (29) a FO? 

We then get 

Denoting z k  = X k - 2 k l k - 1 ,  we define the extended weight 
vector 

q k  (z:> (33) 

where 

(38) 

(39) 

and no is the covariance of qo. 

Observe that the expressions for ( F p , k , K p , k }  are 
parametrized in terms of the free parameter Q k .  We shall 
choose Q k  so as to minimize the covariance of q k .  In this 
way, the resulting filter will satisfy the robustness condi- 
tion (24) in addition to minimizing the state error variance. 
This is achieved as follows. First note that Qk in (27) is to 
problem (24) as the matrix Q^+AT@A in (6) is to problem 
(3)-(5). Therefore, Q k  must be positive definite matrices 
so that the ?,Z+ are guaranteed to be minima of (24). Then 
we shall choose Q k  > 0 so as to minimize n k + 1  of (40). 
This can be obtained by solving 

subject to the following inequality 

or, equivalently, 

- n k + ,  F k n k  G k s 1 / 2  

n k F z  - n k  0 ) 5 0 (41) ( S T m ;  0 -I 

In order to incorporate the polytopic uncertainties in the 
F k ,  as defined by the sets &, we need to solve the 
above optimization problem with F k  taking values at the 
vertices of the convex polytope &, i.e., from the set 
{ F l , k ,  F 2 , k ,  ......, F p , k } .  Since the inequality (41) is affine 
in F k ,  the Qk thus found will ensure minimum error co- 
variance n k  over all possible F k  in x k .  Therefore, the 
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time varying robust filter is given by (30)-(32) where Qk 
is the positive definite solution of (41) with Fk taking 
values on the vertices of the convex polytope &, and 

= diag{Fo, € I } .  

Remark : To guarantee mean square stability in the infi- 
nite horizon case for a stable stationary model with con- 
stant matrices {F ,  G, H } ,  we may proceed as follows. We 
assume IlFll < 1 and choose Qk to satisfy (41) as well as 
IlFkll < 1. This additional constraint is easily represented 
in terms of a linear matrix inequality in the variable Qk as 

(ik T )  > o  

B. Norm Bounded Uncertainties 

We now consider the case of norm bounded uncertainties 
in Fk as in ( 1  8) for a finite horizon operation. In this case 
the covariance matrix of the extended state vector qk will 
satisfy 

n k + l  = ( p k  + f i k a j k ) n k ( p k  + fiknjk)' + GkSGF 
(43) 

where 

(45) 

where in the second inequality we used the fact that for 
any real matrices { X ,  Y, J }  with J T J  5 P I ,  it holds for 
any scalar E > 0, 

X J T Y  + Y T J X T  5 e - lpXXT + eYTY (47) 

that is inde- We have thus found an upper bound on 
pendent of A. We can now choose Qk > 0 so as to solve 

min Trace( n k + l )  
Qk > 0,  a k ,  u k  

TABLE I 
ERROR VARIANCE WITH UNCERTAINTIES IN Fk ALONE. 

Filters 
Proposed filter 

filter of [ 5 ]  
Guaranteed-cost filter [ 11 

Set-valued filter [2] 
Kalman filter with nominal model 

error variance 
150.9 
175.5 
503.4 
1606.7 
2404 

V. SIMULATIONS 

To illustrate the developed filter, we choose an imple- 
mentation of order 2 with & = [.12 .12], h f k  = 1 for 
all IC.  The uncertain state matrices Fk are assumed to lie 
inside the convex polytope 

(51) 
(.9802 .0196 + 6) 

0 .5802+6 
Fk = 

with IS[ 5 0.4982 

Table 1 shows the average squared state-error values (av- 
eraged over 50 experiments) for the Kalman filter, the pro- 
posed filter, the set-valued estimation filter [2], the guaran- 
teed cost filter [I], and the filter of [5] .  

When there are uncertainties in the output matrices Hk, 
in addition to those in Fk, the proposed filter outperforms 
the other filters (which actually have not been designed to 
deal with output uncertainties). In the above example, if 
the uncertainties in Hk are determined by Mk = 1 and 
El, = .4, the robust filter performs better as shown in table 
2. 

VI. CONCLUSION 

In this paper we developed a robust filter for state-space 
estimation. The design procedure is through the solution 
of a regularized weighted recursive least squares problem 
and enforces a minimum state error variance. 
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TABLE I1 
ERROR VARIANCE WITH UNCERTAINTIES I N  Fk A N D  H k .  

Filters 
Proposed filter 

filter of [SI 
Guaranteed-cost filter [ 11 

Set-valued filter [2] 
Kalman filter with nominal model 

error variance 
190.9 
500.5 
1000.4 
2800.7 
3904.6 
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