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Abstract 

This paper studies the problem of state regulation for 
uncertain state-space models. It formulates a new 
weighted game-type cost function with bounds on the 
sizes of the uncertainties in the data. The cost func- 
tion is of independent interest in its own right and its 
optimal solution is shown to satisfy an orthogonality 
condition similar to least-squares designs. When used 
in the context of state-space models, the solution leads 
to a control law with design equations that are similar 
in nature to LQR designs. The gain matrix, however, 
as well as the Riccati variable, turn out to be state- 
dependent in a certain way. 

1 INTRODUCTION 

This paper develops a technique for estimation and con- 
trol purposes that is suitable for models with bounded 
- data uncertainties. The technique will be referred to 
as a BDU design method for brevity. It is based on a 
constrained game-type formulation that allows the de- 
signer to explicitly incorporate into the problem state- 
ment a-priori information about bounds on the sizes 
of the uncertainties in the model. A key feature of 
the BDU formulation is that geometric insights (such 
as orthogonality conditions and projections), which are 
widely appreciated for classical quadratic-cost designs, 
can be pursued in this new framework (see [l]). 

Consider the cost function 

J ( x )  = x T Q x  -t- R ( x )  , 

where xTQx is a regularization term, while the residual 
cost R ( x )  is defined by (a more general case is treated 
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in [2]): 

( A  + 6A)z - ( b  + 6b) ( A  + 6A)z  - ( b  + 66) 

Here, Q > 0 and W 2 0 are weighting matrices, x is an 
n-dimensional column vector, A is an N x n known or 
nominal matrix, b is an N x 1 known or nominal vector, 
{6A)  denotes an N x n unknown perturbation matrix, 
and 6b denotes an N x 1 unknown perturbation vector. 
We then pose the problem of solving: 

where the notation ( 1  1 )  stands for the Euclidean norm 
of its vector argument or the maximum singular value 
of its matrix argument. In other words, we seek that 
solution i that performs “best” in a worst-possible sce- 
nario. The above problem can therefore be regarded as 
a constrained two-player game problem, with the de- 
signer trying to pick an i that minimizes the cost while 
the opponents {6A, 6b)  try to maximize the cost. The 
game problem is constrained since it imposes a limit 
on how large (or how damaging) the opponents can be. 
The case Q = 0 and W = I, and variations thereof, 
were treated in detail in [l,  3, 41 with several applica- 
tions in image processing, digital communications, and 
estimation in [l, 41. It turns out that, unlike standard 
least-squares theory, solving a weighted problem of the 
form (1) is more complex (and also more rich) than 
solving the unweighted version (with W = I). 

2 SOLUTION OF THE BDU PROBLEM 

Note that for any given {6A,  6b) ,  the residual cost R ( x )  
is convex in x .  Therefore, the maximum 

is a convex function in x .  Now since x T Q x  is strictly 
convex in x when Q > 0, we conclude that x T Q x + C ( x )  



is strictly convex in x ,  which shows that problem (1) 
has a unique global minimum 2.' 

To determine 2 we proceed in steps. We first show 
that the two variables { S A , & }  in (2) can be replaced 
by a single variable y, which would therefore allow US 
to replace the maximization (2) over two constrained 
variables, by a maximization over a single constrained 
variable (see (4) below). 

Indeed, for any fixed value of x ,  let 2, denote the set 
of all vectors E that are generated as follows: 

2, = { E  : E = SAX - 6b , llSAll 5 , lldbll 5 q b }  

for all possible { S A ,  Sb}  within the prescribed bounds. 
Let also Y,  denote the set of all vectors y that are 
generated as follows: 

Yz = (9 : IlylI L '?llxll -k I 

Then 2, = y,. That is, if I E 2, then E E y,  (this 
direction is immediate and follows from the triangle 
inequality of norms). Conversely, if y E Y,  then y E 
2,. To establish the result for z # 0, define for a given 
y the perturbations: 

Then { b A ( y ) , S b ( y ) }  are valid perturbations and y = 
S A ( y ) x - S b ( y )  so that y E 2,, which justifies our claim. 
[When x = 0, we select Sb = -y and SA arbitrary.] 

The above argument shows that we can replace the 
maximization problem (2) by the equivalent problem: 

where we are defining 4 ( x )  = qllxll 4- 776. 

The Maximization Problem 

We now solve (4) for any fixed x .  Note first that the 
cost 

( A x  - b + Y ) ~ W ( A X  - b + y) 
is convex in y, so that the maximum over y is achieved 
at the boundary, llyll = 4 ( x ) .  We can therefore replace 
the inequality constraint in (4) by an equality. Intro- 
ducing a Lagrange multiplier A, the solution to (4) can 
then be found from the unconstrained problem: 

( ~ z  - b + y ) T ~ ( ~ z  - b + 9) - x(lly112 - 4211. ( 5 )  

'It is easy to see that in the special case t)b = 0 and Wb = 
0 ,  the unique solution of (1) is 2 = 0. In the sequel we shall 
therefore assume that qb  and Wb are not zero simultaneously. 

Note that since the original problem has an inequality 
constraint, the Lagrange multiplier must be nonnega- 
tive: A 2 0 [5]. Differentiating (5) with respect to y 
and A, and denoting the optimal solutions by {yo, A"}, 
we obtain the equations 

( A O I  - W ) y o  = W ( A X  - b) , I/yoll = 4 ( ~ )  . ( 6 )  

It turns out that the solution A" should satisfy A" 2 
IlWll. This is because the Hessian of the cost in (5) 
w.r.t. y must be nonpositive-definite [5]. We should 
further stress that the solutions {y",A"} of (6) are 
functions of x and we shall therefore sometimes write 
{ y " ( x ) ,  A%)}. 

At this stage, we do not need to solve the equations 
(6) for {yo, A"). It is enough to know that the optimal 
{yo, A"} satisfy (6).2 Using this fact, we can verify that 
the maximum cost in (4) is equal to  (where Xt denotes 
the pseudo-inverse of X): 

C(z) = (Az - b)T [W + W(Xo(x)I - W)'W] (Az - b )  

+ Xo(x)42(z) . (7) 

The Minimization Problem 

We are now in a position to  address the original prob- 
lem (l), which is equivalent to  the minimization prob- 
lem below: 

min [xTQx + C ( x ) ]  . 
5 

However, rather than minimizing the above cost over 
n variables, which are the entries of the vector x ,  we 
shall instead show how to reduce the problem to one of 
minimizing a certain cost function over a single scalar 
variable (see (13) further ahead). 

For this purpose, we introduce the following function 
of two independent variables x and A, 

C(z,X) = (Az - b)T [W + W ( X I  - W)'W] (Ax - b )  

+ Xd2(X) 1 

Then it can be verified, by direct differentiation with 
respect to A and by using the expression for A"(x)  from 
(6), that 

Ao(z) = arg min C ( x , A )  . 
ellwll 

This means that problems (1) or (8) are equivalent to 

min min [ x T Q x  + C ( x ,  A)] . 
ellwll (9) 

fact, we can show that the solution Xo is always unique 
while there might be several yo. 

420 



Note that the cost function in the above expression, 
viz., J ( x , A )  = x T Q x  + C ( x , A ) ,  is now a function of 
two independent variables { x ,  A}. This should be con- 
trasted with the cost function in (8). 

Now define, for compactness of notation, the quantities 

M ( A )  = Q + AT [W + W(AI - W)'W] A,  

d(X) = AT [W + " ( A I  - W ) + W ]  b ,  

To solve problem (9), we first search for the minimum 
over x for every fixed value of A, which can be done by 
setting the derivative of J ( x ,  A) w.r.t. x equal to zero. 
This shows that any nonzero minimum x must satisfy 
the equality 

Note that x appears on both sides of the equality (ex- 
cept when 7]b = 0, in which case the expression for x is 
complete in terms of { M ,  A, q, d} ) .  To solve for x in the 
general case we define a = 1 1 ~ 1 1 ~  and square the above 
equation to obtain the scalar equation in a: 

It can be shown that a unique solution d ( X )  > 0 exists 
for this equation if, and only if, Xq?& < lld(A)l12. Oth- 
erwise, ."(A) = 0. In the former case, the expression 
for x ,  which is a function of A, becomes 

In the latter case we clearly have ."(A) = 0. 

We thus have a procedure that allows us to determine 
the minimizing xo for every A. This in turn allows us to 
re-express the resulting cost J ( x " ( A ) ,  A) as a function 
of X done, say G(A) = J ( x o ( A ) , A ) .  In this way, we 
conclude that the solution 2 of the original optimiza; 
tion problem (1) can be solved by determining the A 
that solves 

min G(A), 
el lwl l  

and by taking the corresponding x o ( f i )  as 2.  That is, 

2 = [M(i) + i q  (. + A)] -l d ( i )  . 

We summarize the solution in the following statement. 

Theorem 1 (Solution). The unique global minimum 
of (1 )  can be determined as follows. Introduce the func- 
tion G(X) = x o T ( A ) Q x o ( A )  + C[x' (A) ,  A], where ."(A) 
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is given b y  (12) if Aqqb < lld(X)112 (and zero otherwise), 
and &(A) in (12) is the unique positive root of (11). 
Let 1 denote the minimum of G(A) over the interval 
X 2 IlWll. Then 

2 = [Q + ATi@A] AT@(, , (14) 

i f  i q r ] b  < lld(i)(12 (and zero otherwise), where 

w = w + W ( i I - W ) + W .  

We thus see that the solution of (1) requires that we 
determine an optimal scalar parameter i, which corre- 
sponds to the minimizing argument of a certain non- 
linear function G(X) (or, equivalently, to the root of its 
derivative function). This step can be carried out very 
efficiently by any root finding routine, especially since 
the function G(X) is well defined and, moreover, i is 
unique. 

The Orthogonality Condition 

Observe that, when i 7 ) q b  < 11d(i)112, the optimal solu- 
tion i satisfies the orthogonality condition 

& + A W ( A ~  - b )  = 0. 

Compared with the solution to the standard regularized 
least-squares problem, 

min [ x T Q z  + ( A x  - b ) = W ( A x  - b ) ]  , 

whose unique solution satisfies 

Q i  + A T W ( A 2  - b)  = 0, 

we see that the solution to the BDU problem satisfies a 
similar orthogonality condition, with the given weight- 
ing matrices {&, W }  replaced by new matrices {&, W } !  
To determine the necessary corrections to { Q ,  W } ,  one 
determines the optimal 1 from the minimization (13). 
The power of such a geometric viewpoint is demon- 
strated in [l]. We omit further details here for brevity. 

3 APPLICATION TO STATE REGULATION 

We now provide one application for the weighted BDU 
problem in the context of state regulation for uncer- 
tain state-space models. Thus consider the linear state- 
space model xi+l = Fix,  + Giu,, where xo  denotes the 
value of the initial state, and the {u i }  denote the con- 
trol (input) sequence. The classical linear quadratic 



regulator (LQR) problem seeks a control sequence {U;} 
that regulates the state vector towards zero while keep- 
ing the control cost low. This is achieved as follows. 
Introduce, for compactness of notation, the local cost 

K(xi+i, U;) = (zs+,Ri+ixi+i + ~ T Q i u i )  

with R N + ~  = PN+1. Then the optimal control is de- 

Consider the problem of determining a control sequence 
{a,, 0 I j I N} that solves the nested min-max opti- 
mizations: 

(17) x,T&xo + 
A 

minmax Vo + minmax VI + . . . + minmax VN 

where we are writing, for compactness of notation, 
{6F;,6G,} under the max symbols instead of the com- 
plete notation. 

Let { C j }  denote a solution of (17), and let us focus on 
the innermost optimization in (17): 

termined by solving the nested minimizations: 6 0 0  { U1 6 0  6 F 1 {  1 U N  JCN 6FN { 11 U0 6Fo 

{ u1 { V I +  ...+ rnin{viv) , z ~ ~ o s o  + min ~ o + m i n  >> U0 UN 

with Qj > 0, Rj 2 0 ,  and P N + ~  2 0 (note that xo 
does not really affect the solution). Only the inner- 
most minimization in the above problem is dependent 
on U N  (through the state-equation for x N + l ) .  Hence 
we can determine GN by solving min max [ ~ G Q N U N  + z ~ + 1 p N + i z N + i  1 . 

U N  I I ~ F N I I S W ~ , N  
116GN ll<?,,N min VN , given X N  , (15) 

UN In order to determine an expression for i i ~  from the 
above, the state vector X N  has to  be taken as f ~ ,  which 
is the value that would result had the earlier optimal 
control signals {Cj,O 5 j I N - 1) been determined 
already and using the worst-case disturbances (as ex- 
plained in the next section). Then expanding the term 
XG+,PN+lXN+1 by using the state equation for x N + 1 ,  

the above problem reduces to a problem of the same 
form as the weighted BDU problem that we considered 
before with the identifications: 

and then progress backwards in time to determine the 
other control values. By carrying out this argument 
one finds the well-known LQR state-feedback solution: 

fi. - - K . x .  a -  a t 3  

K;  = (Qi + GFP;+lG;)-'GTP;+,Fi , 
P; = R; + KTQ;Ki + (F, - G;K;)TP;+l(Fi - G;Ki )  . 

It is well known that the above LQR controller is sen- 
sitive to modeling errors. Robust design methods to 
ameliorate these sensitivity problems include the Rw 
design methodology (e.g., [6, 7, 8, 91) and the so-called 
guaranteed-cost designs (e.g., [lo, 11, 121). We suggest 

solved above. At the end of this exposition, we shall 
compare our result with a guaranteed-cost design. [A 
comparison with an Rw design is given in [l] for a 
special first-order problem.] We may mention that the 
BDU formulation can also treat more general classes of 

A + G N ,  W + P N + l ,  Q ~ Q N ,  b f - - F N f N ,  

2 f- U N ,  7 + qg,N, 7 8  f- q f , N \ I ~ N l I  9 below a procedure that is based on the BDU problem 
and 6 A  + 6GN, 6b f- -6FNfN. Using (14), and the 
above identifications, we conclude that the optimal con- 
trol value O N  is given by 

-KN$N, ifiNqg,Nqf,NI(fN/I < 
I I G T N @ N + ~ F N ~ N I I ~  i 0, otherwise 

uncertainties than those treated so far in the literature O N  = 
(see [21)* 

K N  = ( Q N  + G ~ W N + ~ G N ) - '  GGWN+IFN , 
State Regulation 

Consider the perturbed state-equation 
Q N  = Q N  + i N r ] g , N  qg,N + ~ ~ ~ f ~ l ~ )  

WN+1 = pN+1 + pN+1 ( A N I  - PN+l) p N + 1  
t 

( X ; + I  = (Fi + 6 F i ) ~ ;  + (Gi + 6Gi)~; , (16) 

with known XO, and where the uncertainties {bF,, 6G;) 
are assumed to satisfy 

where i~ is the optimal parameter that corresponds 
to the above data { A ,  b, W ,  Q ,  q, qb}, and which can be 
found as explained in Thm. 1. [We can assume KN = 0 
when G N  = 0.1 

Moreover, using (7)-(8) and the above identifications 
again, we find that 

ll6Fall 5 V f , i  1 116GiII I qg,i 9 

for known bounds {qf,;, qg,;}. Note that, for generality, 
we are allowing for time-variant bounds. Note also that 
we are not restricting the perturbations to be related in 
any way. They are treated independently here. In the 
related work [2], we treat other classes of perturbations 
including some where there is common structure among ~ T , R N ~ N  + minmax VN = ? T , P N ~ " ,  

( U N  6FN ) the perturbations. 6 G N  422 



where PN = RN when f~ = 0, otherwise 

PN = RN + K ~ Q N K N +  

+(FN - G N K N ) ~ W N + I ( F N  - G N K N )  + (18) 

We now proceed to determine an approximation for the 
optimal control value at time N - 1 by solving 

where we assume that f ~ - l  is available. We take the 
solution as G N - ~ ,  and so on. Note that this step is an 
approximation because we are employing the PN found 
above, which is a function of 2 ~ .  For optimality, we 
would need to determine the functional form P N ( X N )  
- this form is defined by the same equations as above 
with X N  replacing f ~ .  It turns out that for single-state 
models, the value of PN is independent of the state and 
therefore the above C N - ~  agrees with the optimal value 
PI. 
Compared with the solution to the LQR problem we 
see that there are three main differences in the recur- 
sions. First, the gain matrix KN is not defined directly 
in terms of the original quantities { Q N ,  P N + ~ }  but in 
terms of modified quantities { Q N ,  W N + ~ } .  Secondly, 
the term PNf-1 in the LQR Riccati recursion for PN is 
replaced by W N + ~  in (18), in addition to a new correc- 
tion term that is equal to ~ N @ ( C N ) .  Finally, the above 
solution in fact has the form of a two-point boundary 
value problem (TPBVP). This is because the expres- 
sions for ( K N , P N }  are dependent on the worst-case 
state vector f ~ .  We can denote this dependency more 
explicitly by writing, for any i, 

(19) fi. - - K i ( f . ) ^ .  1 2, * a -  

A reasonable state-feedback implementation would be 
to choose Ci = -Ki(Li)xi (see simulation further 
ahead). 

A n  Iterative Solution to the TPBVP 

We are currently studying the TPBVP more closely. 
An iterative solution that we found performs reason- 
ably well is the following. 

I .  Initialization. Choose initial values for all variables 
Po to PN (for example, by running the LQR Riccati 
recursion or by using a suboptimal guarante!d-cost 
design). Choose also initial values for all Xi, say 

II. Forwards Iteration. Given va!ues (20, P;+l, A i } ,  we 
evaluate the quantities {t%'i+l, Qi, Ki, &, ii;} by using 
the recursions derived above, as well as propagate the 
state-vectors ( 5 , )  by using fi+l = Fi5i + G,C, + pi, 

where, from (6), 9; is found by solving the equation 

(&I - P;+1) pi = P;+l(F& + G;ii,) . 

If the matrix &I - P;+l 
possible solutions we choose one that satisfies 

is singular, then among all ( 1 
110i112 = (Vg,illCill f V f , i 1 1 ~ ~ 1 1 ) 2  * 

111. Backwards Iteration. Given values { P N + ~ ,  iii, &} we 
find new approximations for {Pi, I,} by using the re- 
cursions derived above for the state regulation problem. 

IV. Recursion. Repeat steps I1 and 111. 

We compare in Fig. 1 the performance of the above 
design with a guaranteed-cost design (using, as men- 
tioned above, C; = Ki(5,)x; with the true state and 
with K; computed from the earlier recursions - see 
[2] for a simulation with ii, = -K;(fi)fi. The exam- 
ple presented here is of a 2-state system with vf = 0, 
q9 = 0.4, G = [I -0.51 , and N = 20. The nomi- 
nal model is stable with only one control variable. The 
central horizontal line is the worst-case cost that is pre- 
dicted by our BDU construction (solid line). The upper 
horizontal line is an upper bound on the optimal cost. 
It is never exceeded by the guaranteed-cost design (dot- 
ted line). The situation at the right-most end of the 
graph corresponds to the worst-case scenario. Observe 
the improvement in performance in the worst-case (ap- 
prox. 20% for this example - at the right-end of the 

T 

graph) * 

4 CONCLUDING REMARKS 

Earlier work in the literature on guaranteed-cost 
designs found either sub-optimal steady-state and 
finite-horizon controllers (e.g., [ll]), or steady-state 
controllers over the class of linear control laws [lo]. 
Our solution has the following properties: i) It has a 
geometric interpretation in terms of an orthogonality 
condition with modified weighting matrices, ii) it does 
not restrict the control law to linear controllers, iii) it 
allows for independent uncertainties and can also be 
extended to other classes of uncertainties [2], and iv) 
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Figure 1: 100 random runs with qg = 0.4 and a stable 2-dimensional model. 

it handles both regular and degenerate situations. We 
are currently studying these connections more closely, 
as well as the TPBVP. 
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