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BEST-FIT PARAMETER ESTIMATION FOR A BOUNDED 
ERRORS-IN-VARIABLES MODEL* 

S. CHANDRASEKARAN, GENE H. GOLUB, MING Gu,  A N D  ALI H. SAYED 

Abstract 
We pose and solve a parameter estimation problem 

in the presence of bounded data uncertainties. The new 
formulation involves a minimization problem and admits 
a closed form solution in terms of the unique positive root 
of a secular equation. It also has interesting connections 
with errors-in-variables and H, methods. 

1. INTRODUCTION 
Parameter estimation in the presence of data uncer- 

tainties is a problem of considerable practical importance. 
Many estimators have been proposed in the literature with 
the intent of handling modeling errors and measurement 
noise. Among the most notable is the total least-squares 
method [l, 21, also known as orthogonal regression or 
errors-in-variables method in statistics and system identi- 
fication [3]. In contrast to the standard least-squares prob- 
lem, the TLS formulation allows for errors in the data ma- 
trix. But it still exhibits certain drawbacks that degrade 
its performance in some practical situations. In particu- 
lar, it may unnecessarily over-emphasize the effect of noise 
and uncertainties and can, therefore, lead to overly con- 
servative results (see, e.g., the explanation in Sec. 1.1 of 
the companion paper [4]). A similar situation arises in H, 
filtering where designs are usually formulated to  be robust 
with respect to finite-energy, but otherwise unknown, dis- 
turbances and modeling errors (see, e.g., [5 ] - [8 ] ) .  The solu- 
tions are required to meet certain worst-case performance 
specifications and may again lead to  overly conservative 
schemes. 

This discussion motivates us to  introduce a new pa- 
rameter estimation formulation that incorporates an a- 
priori bound on the size of the data  uncertainty. Con- 
nections with the TLS and H, formulations are also ad- 
dressed. In particular, the solution of the new problem 
turns out to require the minimization of a cost function 
in an “indefinite” metric space, in a way that seems at  
first sight to be similar to  recent works on robust (or H,) 
estimation and filtering (e.g., [5 ] - [8 ] ) ,  but which turns out 
to be significantly different. The significant distinction is 
that the new cost function involves norms (or distances) 
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rather than squared norms (or distances). Its solution 
turns out to lead to an automatic regularization proce- 
dure, where the regularization parameter is determined 
as the unique positive root of a certain nonlinear equa- 
tion that we refer to as the secular equatzon. The solution 
involves an SVD step and its computational complexity 
amounts to O(mn2 + n 3 ) ,  where n is the smaller matrix 
dimension. 

2. PROBLEM STATEMENT 
Let A E Rmxn be a given full rank matrix with m 2 n 

and let b E R” be a given vector. The quantities (.4.6) 
are assumed to be linearly related via an unknown vector 
of parameters x E R”, b = A . x + U ,  where U E R” 
explains the mismatch between A . x and b. 

We assume that the “true” coefficient matrix is 14+6A1 
and that we only know an upper bound on the perturba- 
tion 6A, say 116A112 5 7. The notation 11.112 denotes either 
the 2-induced norm of its matrix argument or the Eu- 
clidean norm of its vector argument. 

We pose the problem of finding an estimate 2 that 
solves: 

min min{ / I  ( A  + 6A) . i - bll2 : llSillI2 5 .I} . (1) 

Intuitively, this formulation corresponds to “choosing” a 
perturbation &A, within the bounded region, that would 
allow us to best predict the right-hand side b from the col- 
umn span of ( A + b A ) .  The situation is depicted in Fig. 1. 
Any particular choice for 2 would lead to many residual 
norms, 1 1  ( A  + 6 A )  .?  - bll2, one for each possible choice of 
SA. We want to  choose an estimate i that minimizes the 
minimum possible residual norm. 
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Figure 1: Two illustrative residual-norm curves 
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It turns out that the existence of a unique solution to 
this problem will require a fundamental condition on the 
data (-4, b,  q ) ,  which we describe further ahead. When the 
condition is violated, the problem will become degenerate. 
In fact, such existence and uniqueness conditions also arise 
in other formulations of estimation problems (such as the 
TLS and H, problems, which will be shown later to have 
some relation to the above optimization problem). In the 
H, context, for instance, similar fundamental conditions 
arise, which when violated indicate that the problem does 
not have a meaningful solution (see, e.g., [5]-[8]) .  

2.1. Comparison with TLS 
Given (‘4, b ) ,  the TLS solution finds the “smallest” 6A 

(in a Frobenius norm sense) that would allow to estimate 
b from the column span of (A  + SA), viz., it solves the 
following problem [1,2]: 

min I I [  S A  
6 A , i  

( A  + 6A) i  - b ] I I F .  
We therefore see that there is not  an a priori bound on the 
size of the allowable perturbation SA. Although small in 
a certain (Frobenius) sense, the resulting correction 6A 
in TLS need not satisfy an a-priori bound on its size. 
The problem we formulated above explicitly incorporates 
a bound on the size of the allowable perturbations. 

We may remark in passing that we have posed and 
solved a related problem in the companion paper [3]; it 
guarantees optimal performance in a worst-case scenario 
with bounded data as well. 

2.2. A Geometric Interpretation 
The optimization problem (1)  admits an interesting 

geometric formulation that highlights some of the issues 
involved in its solution. 

For this purpose, and for the sake of illustration, as- 
sume we have a unit-norm vector b, l)bl)2 = 1. Assume fur- 
ther that -4 is simply a column vector, say a ,  with q # 0. 
Now problem (1) becomes 

The situation is depicted in Fig. 2 .  The vectors a and b 
are indicated in thick black lines. The vector a is shown in 
the horizontal direction and a circle of radius q around its 
vertex indicates the set of all possible vertices for a + 6a. 

For any i that we pick, the set {(a + sa )?}  describes 
a disc of center ai and radius qi. This is indicated in the 
figure by the largest rightmost circle, which corresponds to  
a choice of a positive i that is larger than one. The vector 
in { (a+6a)?} that is the closest to  b is the one obtained by 
drawing a line from b through the center of the rightmost 
circle. The intersection of this line with the circle defines 
a residual vector ~3 whose norm is the smallest among all 
possible residual vectors in the set {(a + 6 a ) i ) .  

~ 
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Figure 2: Geometric construction in a simplafied scenario. 

More generally, for any 2 that we pick, it will deter- 
mine a circle and the corresponding smallest residual is 
obtained by finding the closest point on the circle to b. 
This is the point where the line that passes through b and 
the center of the circle intersects the circle on the side that 
is closest to b. 

We need to  pick an 2 that minimizes the smallest 
residual norm. The claim is that we can proceed as fol- 
lows: we drop a perpendicular from b to the upper tangent 
line denoted by 92. This perpendicular intersects the hor- 
izontal line in a point where we draw a new circle (the 
middle circle) that is tangent to  both and 02.  This 
circle corresponds to a choice of 2 such that the closest 
point on it to  b is the foot of the perpendicular from b to 
92. The residual indicated by 7-2 is to the desired solution; 
it has the minimum norm among the smallest residuals. 

3. AN EQUIVALENT PROBLEM 
We start by showing how to reduce the optimization 

problem (1) to an equivalent problem. For this purpose, 
we note that 

The lower bound on the right-hand side of the above in- 
equality is a non-negative quantity and, therefore, the 
least it can get is zero. This will in turn depend on how 
big or how small the value of ) ) 6 A ) ) 2  can be. For example, 
if it happens that for all vectors i we always have 

then we conclude, using the triangle inequality of norms, 
that 



It then follows from (3) that, under the assumption (4), 
we obtain 

1 1  (-4 + S A )  . i - b112 2 1124. i - bll2 - 17. IlPl12 . 
It turns out that condition (4) is the main (and only) case 
of interest in this paper, especially since we shall argue 
later that a degenerate problem arises when it is violated. 
For this reason, we shall proceed for now with our analysis 
under the assumption (4) and shall postpone our discus- 
sion of what happens when it is violated until later in this 
section. 

Now the lower bound in (3) is in fact achievable by 
choosing S,4 as the rank one matrix 

This leads to a vector SAo ' i that is collinear with the 
vector (-4 . i - b)  and, hence, 

1 1  (.A + SA") . i - 4 1 2  = IIA. 2 - bll2 - ~11h112 

We are therefore reduced to the solution of the following 
equivalent optimization problem. 

Problem. Given a matrix  A E R""", wath m 2 n, a 
vector b E Rm, a nonnegative real number q, and assume 
that for  all vectors i i t  holds that 

v . I l i l l 2  < IIA.?--b(lz ( fundamental  assumption).  ( 5 )  

Determine, if possible, a n  2 that solves 

m:ln ( l lA.  f - bll2 - 7 .  11412) . (6)  

3.1. 
Before solving the above problem, we elaborate on 

its connections with other formulations in the literature 
that also attempt, in one way or another, to take into 
consideration uncertainties and perturbations in the data. 

First, cost functions similar to ( 6 )  but with squared 
distances, say 

Connections to TLS and H, 

(7) 

for some y, often arise in the study of indefinite quadratic 
cost functions in robust or H" estimation (see, e.g., the 
developments in [5, 91). The major distinction between 
this cost and the one posed in (6) is that the latter in- 
volves distance terms and it will be shown to provide an 
automatic procedure for selecting a "regularization" fac- 
tor that plays the role of y in (6). 

Likewise, the TLS problem seeks a matrix 6A and a 
vector i that solve (2). The solution of the TLS prob- 
lem is well-known and is given by the following construc- 
tion [2][p. 361. Let {ol,.. . ,on} denote the singular val- 
ues of A,  with u1 2 0 2  2 . . .  2 on 2 0. Let also 

(51,. . . , 5,, 5n+l}  denote the singular values of the ex- 
tended matrix [ A b ], with 8, > 0. If (jn+1 < on. then 
a unique solution i of the TLS problem exists and is given 
by 

For our purposes, it is more interesting to consider the 
following interpretation of the TLS solution (see, e.g., [91). 
Note that the condition Sn+1 < on assures that ( -dT . 
A - 8:+11) is a positive-definite matrix, since U: is the 
smallest eigenvalue of i lTrl .  Therefore, we can regard (8) 
as the solution of the following optimization problem, with 
an indefinite cost function, 

2 = ( A T .  '4 - 8:+lI)-'AT. b. (8) 

mjn (llA. i - b11; - . IliIl;) . 
X 

This is a special form of (7) with a particular choice for 
y. It again involves squared distances, while (6) involves 
distance terms and it will provide another choice of a y-like 
parameter. In particular, compare (8) with the expression 
(12) derived further ahead for the unique solutibn of (6). 
We see that the new problem replaces a;+, with a new 
parameter Q: that will be shown to be the unique positive 
root of a secular (nonlinear) equation. 

3.2. The Degenerate Case 
We solve problem (6) in the next section assuming 

(5) holds. When this condition is violated, it can be 
shown that the problem becomes degenerate in the fol- 
lowing sense. If (5) is violated a t  some point d '),  viz., 

7 .  (IP("ll2 > IIA. P(l) - bll2 , 

then it turns out that x(') can be taken as a solution to 
(1). Moreover, once such x(l) has been found, an infinite 
number of others can be constructed from it. For details, 
see [IO]. 

We shall not treat the degenerate case in this paper (as 
well as the case when ( 5 )  is violated only with equality). 
We shall instead assume throughout that the fundamental 
condition (5) holds. Under this assumption, the problem 
will turn out to always have a unique solution. 

3.3. The Fundamental Assumption 
The fundamental condition (5) needs to be satisfied for 

all vectors f. This can be restated in terms of conditions 
on the data ( A , b , q )  alone. To see this, note that (5)  
implies, by squaring, that we must have, for all i, 

J ( f )  iT. (q2 . I - A T .  A )  .f + 22' . A T .  b - bT b < 0 . 

Since J ( f )  is quadratic in 2 ,  this is only possible if 

(i) J ( f )  has a maximum with respect to 2 ,  and 

(ii) the value of J ( P )  a t  its maximum is negative. 
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The necessary condition for the existence of a unique 
maximum (since we have a quadratic cost function) is 
(q2 . I - AT . A )  < 0, which means that q should sat- 
isfy q < amin(A). Under this condition, the expression 
for the maximum point P,,, of J ( i )  is 

ima, = ( A T .  A - q2 . I)-' . A T .  b .  

Evaluating J ( i )  at i = ?m,z we obtain 

J ( i m a z )  = b T .  [ .A. ( A T .  A - q2 . I)-' . AT - I ]  . b .  

Therefore, the requirement that J ( i m a s )  be negative cor- 
responds to 

b T .  [ I  - A .  (AT. A - q 2 .  I ) - l  . AT] . b > 0 .  

In summary, we are led to  the following result. 

Lemma. The necessary and sufficient conditions in terms 
of (.4, b, q )  for the fundamental relation (5) to hold are: 

b T . [ I  - A . ( A T . A - q 2 . 1 ) - l . A T ] . b  > O .  (10) 

Note that for a well-defined problem of the form (1) 
we need to assume q > 0 which, in view of (9), means that 
.4 should be full rank. 

Note also that the fundamental condition (5) rules out 
the condition A . i = b, i.e., it rules out the case when b 
lies in the range space of A.  

4. ALGEBRAIC SOLUTION 
To solve (6), we define the non-convex cost function 

C(2) = IIA. 5 - bllz - q .  llj.112 , 

which is continuous in f and bounded from below by zero 
in view of (5). A minimum point for C ( i )  can only occur 
at CO, at points where L(E) is not differentiable, or at 
points where its gradient, vC(f), is 0. In particular, ndte 
that C ( 2 )  is not differentiable only at 2 = 0 and at any 
i that satisfies A . 2 - b = 0. But points 2 satisfying 
A . i - b = 0 are excluded by the fundamental condition 

We first consider the case in which C ( i )  is differen- 
(5).  

tiable in which case the gradient of C(2)  is given by 

where we have introduced the positive real number 

77 . 11-4. 2 - bl12 

I1412 
a =  

In view of the fundamental condition (5) we see that the 
value of a is necessarily larger than q2 ,  a > q2.  

~ 
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By setting v C ( i )  = 0 we obtain that any stationary 
solution 2 of L ( S )  is given by 

Expressions (11)-(12) define a system of equations 
with two unknowns {?,a}. If we replace (12) into (11) 
we obtain a nonlinear equation in a,  which will further 
lead to what we shall refer to as the secular equation. We 
shall show later that the secular equation has only one pos- 
itive root. Hence, determining its positive root uniquely 
determines a,  which in turn uniquely determines i. 

Since we are also interested in the numerical reliabil- 
ity of the resulting computational procedure, we find it 
useful to perfbrm these substitutions and calculations by 
invoking the SVD of A ,  say 

A = U .  [ ;] . V T ,  

where U E Rmxm and V E Rnxn are orthogonal, and C = 
diag(a1,. . . , a,) is diagonal, with a1 2 . . . 2 a,, > 0. We 
further partition the vector U T b  into U T b  = col(b1, b z } ,  
where bl E Rn and b2 E R"-". 

In this case, the expression (11) reduces to 

Note that only the norm of b2, and not b2 itself, is needed 
in the above expression. 

4.1. The Secular Equation 
Define the nonlinear function in a,  

It follows that a is a positive solution to (14) if, and only 
if, it is a positive root of G(a). Following [l], we refer to 
the equation G(a) = 0 as a secular equation. 

It can be shown that, under the the fundamental con- 
dition (5), the function G(a) has a unique positive root 
and that this root lies in the interval (q2 ,  a;) (proofs are 
omitted for brevity). 

Figure 3 provides a sketch of the behaviour of the 
secular equation G(a) as a function of a.  In particular, 
note that lima-,+oo G(a) = 0. 

4.2. Finding the Global Minimum 
Our original motivation has been to solve ( 6 ) ,  and 

hence minimize the cost function 

Since C ( i )  2 0, and it is continuous in 2,  it necessarily 
has a minimum (possibly at infinity). The candidates for 
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Figure 3: A plot of the secular func t ion  for a 2 0. 

a minimizing 2 are either the points at  which the gradient 
of C ( i )  vanishes or the points 2 = 0 and i = ca. 

It is clear that we can rule out 2 = 0;) since 
limllel~z+oo C ( i )  = ca. Likewise, we can rule out 
the choice j. = 0 since we can show that C(0) > 
C( (*dT A - CUI)- '  . A T .  b).  

Theorem. Given  A E Rmxn, with m 2 n and A 
full  rank, b E R", and a nonnegative real number 77 < 
amzn(-d) .  A s s u m e  fur ther  that the conditions (9)-(10) are 
satisfied. T h e n  problem (1) has a unique solution that can 
be constructed as follows. 

0 Introduce the SVD of A as in (13). 

0 Partit ion the vector U T b  in to  U T b  = col(b1, b2).  

0 Introduce the secular func t ion  G(a) as in (15). 

0 Determine the unique positive root ti of G(a) - i t  lies 
i n  the interval (q2,a:). This  can be achieved via a 
bisection method with cost 0 n log 5 , where e i s  
the desired precision. 

( :> 
0 T h e n  i = (AT . A - 8 .  I ) - lAT .  b .  

5 .  FURTHER REMARKS 
The discussion can be further extended to handle cases 

when only selected columns of A are uncertain (see [4,10]). 
The solution proposed herein requires the computa- 

tion of the SVD of the data matrix and the determination 
of the unique positive root of the nonlinear secular equa- 
tion. In the companion paper [ll], we pursue an iterative 
solution that exploits a certain contraction mapping rela- 
tion. 

Moreover, in the second companion paper [4] we con- 
sider an alternative formulation of the estimation problem 

that is suitable for worst-case identification with bounded 
data uncertainties. 
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