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Abstract 
We formulate and solve a new parameter estimation 

problem in the presence of bounded model uncertainties. 
The new method is suitable when a-priori bounds on the 
uncertain data are available, and its solution guarantees 
that the effect of the uncertainties will never be unneces- 
sarily over-estimated beyond what is reasonably assumed 
by the a-priori bounds. This is in contrast to other meth- 
ods, such as total least-squares and robust estimation, 
that do not incorporate explicit bounds on the size of the 
uncertainties. A geometric interpretation of the solution 
of the new problem is provided, along with a closed form 
expression for it.  We also consider the case in which only 
selected columns of the coefficient matrix are subject to 
perturbations. 

1. INTRODUCTION 
The central problem in estimation is to recover, to 

good accuracy, a set of unobservable parameters from cor- 
rupted data. Several optimization criteria have been used 
for estimation purposes over the years, but the most im- 
portant, at  least in the sense of having had the most ap- 
plications, are criteria that are based on quadratic cost 
functions. The most striking among these is the linear 
least-squares criterion, which was perhaps first developed 
by Gauss (ca. 1795) in his work on celestial mechanics. 
Since then, it has enjoyed widespread popularity in many 
diverse areas as a result of its attractive computational 
and statistical properties. 

Alternative optimization criteria have also been pro- 
posed over the years including, among others, regularized 
least-squares, ridge regression, total least-squares, and ro- 
bust (or H,) estimation (see, e.g., [1]-[5]). These different 
formulations allow, in one way or another, incorporation of 
further a priori information about the unknown parameter 
into the problem statement. They are also more effective 
in the presence of data errors and incomplete statistical 
information about the exogenous signals (or measurement 
errors). 
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1.1. The TLS Method 
A notable variation is the total least-squares (TLS) 

method, also known as orthogonal regression or errors- 
in-variables method in statistics and system identification 
[6 ] .  In contrast to the standard least-squares problem, the 
TLS formulation allows for errors in the data matrix. But 
it still exhibits certain drawbacks that degrade its perfor- 
mance in some practical situations. In particular, it may 
unnecessarily over-emphasize the effect of noise and un- 
certainties and can, therefore, lead to overly conservative 
results. 

To clarify this remark, assume A E R""" is a given 
full rank matrix with m 2 n, and b E R" is a given 
vector. Consider the problem of solving the inconsistent 
linear system A i  M 6 in the least-squares sense. The TLS 
solution assumes data uncertainties in A and proceeds to 
correct A and b by replacing them by their projections, a and b, onto a specific subspace and by solving the now 
consistent linear system of equations A i  = b. The spec- 
tral norm of the correction ( A  - A)  in the TLS solution 
is bounded by the smallest singular value of [ A b 1 .  
While this norm might be small for vectors b that are close 
enough to the range space of A,  it need not always be so. 
In other words, the TLS solution may lead to situations 
in which the correction term is unnecessarily large. 

Consider, for example, a situation in which the uncer- 
tainties in A are very small, say A is almost known ex- 
actly. Assume further that b is far from the column space 
of A .  In this case, it is not difficult to visualize that the 
TLS solution will need to rotate ( A ,  b )  into (a, &) and may 
therefore end up with an overly corrected approximant for 
A ,  despite the fact that A is almost exact. 

1.2. Motivation 
These facts motivate us to introduce a parameter es- 

timation formulation that imposes bounds on the size of 
the allowable corrections to the data. More specifically, 
we formulate and solve a new estimation problem that is 
more suitable for scenarios in which a-priori bounds on the 
uncertain data are known. In this case, the solution will 
guarantee that the effect of the uncertainties will never be 
unnecessarily over-estimated, beyond what is reasonably 
assumed by the a-priori bounds. 

We note that while preparing this paper, the related 
work [7] has come to our attention, where the authors 
have independently formulated and solved a similar es- 
timation problem by using convex semidefinite program- 
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ming techniques and interior-point methods. The result- 
ing computational complexity of the proposed solution is 
O(7“ + m3 5 ) ,  where m is the larger matrix dimension. 

The solution proposed in this paper proceeds by first 
providing a geometric formulation of the problem, followed 
by an algebraic derivation that establishes that the op- 
timal solution can in fact be obtained by solving a re- 
lated regularized problem. The regression parameter of 
the regularization step is further shown to be obtained as 
the unique positive root of a secular equation and as a 
function of the given data. In this sense, the new formu- 
lation turns out to provide automatic regularization and, 
hence, has some useful regularization properties: the regu- 
larization parameter is not selected by the user but rather 
determined by the algorithm. Our solution involves an 
SVD step and its computational complexity amounts to  
O(mn2 + n3) ,  where n is the smaller matrix dimension. 
In the companion paper [8] we study an alternative prob- 
lem formulation that involves a non-convex cost function, 
with further interesting connections with TLS and H, 
methods. 

2. PROBLEM FORMULATION 
Let A E RmXn be a given full rank matrix with m 2 n 

and let b E R” be a given vector. The quantities ( A ,  b )  
are assumed to be linearly related via an unknown vector 
of parameters z E Rn, b = A . z + U ,  where U E R” 
explains the mismatch between A ’ 3 :  and b. 

We assume that the “true” coefficient matrix is A+SA, 
and that we only know an upper bound on the perturba- 
tion 6A, say 11SA112 5 7. Likewise, we assume that the 
“true” observation vector is b + Sb, and that we know an 
upper bound q b  on the perturbation Sb, say llSb112 5 776. 

The notation 1 1  . 112 denotes either the 2-induced norm of 
its matrix argument or the Euclidean norm of its vector 
argument. 

We pose the problem of finding an estimate P that per- 
forms “well” for any possible perturbation (SA, 6b). That 
is, we would like to  determine, if possible, an P that solves 

Any value that we pick for P would lead to many resid- 
uals norms, 1 1  ( A  + SA).P-(b+bb)112, one for each possible 
choice of A in the disc ( A  f 6A)  and b in the disc ( b  + Sb).  
We want to  determine the particular value(s) for P whose 
maximum residual is the least possible. The situation is 
depicted in Figs. 1 and 2. It turns out that this problem 
always has a unique solution except in a special degenerate 
case in which the solution is nonunique. 

We note that if 77 = 0 = 176, then problem (1) reduces 
to a standard least squares problem. Therefore, we shall 
assume throughout that 7 > 0. [It will turn out that 
the solution to  the above constrained min-max problem is 
independent of q b ] .  

Figure 1: Bounded data uncertainties. 
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Figure 2: Two illustrative residual-norm curves. 

2.1. Geometric Interpretation 
The problem also admits an interesting geometric for- 

mulation. For this purpose, and for the sake of illustration, 
assume we have a unit-norm vector b,  llbll2 = 1, with no 
uncertainties in it (76 = 0; it turns out that the solution 
does not depend on 7 b ) .  Assume further that A is simply 
a column vector, say a ,  with 77 # 0, and consider (1) in 
this setting: 

The situation is depicted in Fig. 3. The vectors a and b 
are indicated in thick black lines. The vector a is shown in 
the horizontal direction and a circle of radius 17 around its 
vertex indicates the set of all possible vertices for a + 6a. 

For any i that we pick, the set { ( a  + S a ) i }  describes 
a disc of center U P  and radius 772. This is indicated in the 
figure by the largest rightmost circle, which corresponds 
to  a choice of a positive P that is larger than one. The 
vector in { (a+Su)P} that is furthest away from b is the one 
obtained by drawing a line from b through the center of 
the rightmost circle. The intersection of this line with the 
circle defines a residual vector 7-3 whose norm is the largest 
among all possible residual vectors in the set {(a + da)?}. 

Likewise, if we draw a line from b that passes through 
the vertex of a ,  it will intersect the circle at a point that 
defines a residual vector 7-2. This residual will have the 
largest norm among all residuals that correspond to the 
particular choice P = 1. 

More generally, any P that we pick will determine a 
circle, and the corresponding largest residual is obtained 
by finding the furthest point on the circle from b. This 
is the point where the line that passes through b and the 
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Figure 3: Geometric construction in a simplified scenario. 

center of the circle intersects the circle on the other side 
of b. 

We need to pick an 2 that minimizes the largest resid- 
ual. For example, it is clear from the figure that the norm 
of 7-3 is larger than the norm of 7-2. The claim is that in 
order to minimize the largest residual we need to proceed 
as follows: we drop a perpendicular from b to the lower 
tangent line denoted by 81. This perpendicular intersects 
the horizontal line in a point where we draw a new circle 
(the leftmost circle) that is tangent to both 81 and 82. 
This circle corresponds to a choice of 2 such that the fur- 
thest point on it from b is the foot of the perpendicular 
from b to 61. The residual indicated by T I  corresponds 
to the desired solution (it has the minimum norm among 
the largest residuals). The radius of this circle will be 
vi, where i is the optimal solution. Also, the foot of the 
perpendicular on will be the optimal &. 

The projection 6 (and consequently the solution 2 )  will 
be nonzero as long as b is not orthogonal to the direction 
O1. This imposes a condition on q. Indeed, the direction 
O1 will be orthogonal to b only when q is large enough. 
This requires that the circle centered around a has radius 
aTb ,  which is the length of the projection of a onto the 
unit norm vector b. This is depicted in Fig. 4. Hence, the 
largest value that can be allowed for q in order to have a 
nonzero solution i must be smaller than q < laTbl. 

For a non-unity b, the upper bound on q would take 
the form q < e. We shall see that in the general case 
a similar bound holds, for nonzero solutions, and is given 
by q < e. We now proceed to an algebraic solution 
of the constrained min-max problem. 

3. ALGEBRAIC SOLUTION 
We start by showing how to reduce the constrained 

min-max problem (1) to a standard minimization prob- 

~ 
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Figure. 4: Geometric condition for a nonzero solution. 

lem. To begin with, we note the upper bound: 

which is in fact achievable for the choices: 

(A2 - b )  iT (-42 - b )  
6A" = 11, bb" = - q 6  . 

IIAi - bllz llA* - bllz 11412 

In this case, the quantities { ( A 2  - b ) , b A " i , b b " }  will be 
collinear vectors that point in the same direction and it 
will follow that 

This argument establishes that 

- b112 + q11i112 -l- q b  7 

which in turn reduces the constrained min-max prob- 
lem (1) to an unconstrained minimization problem of the 
form: 

mjn - b112 + rlllj.112 + q6) . (2)  

We should note that this problem formulation is signif- 
icantly distinct from a regularized least-squares formula- 
tion, where the squaredEuclideannorms { ~ ~ A i - b ~ ~ ~ ,  Ilii.ll;} 
are used rather than the norms themselves. 

3.1. Solving the Minimization Problem 
The cost function L(2)  = l l A f  - b(12 + q1121(2 + 7)6 is 

convex and continuous in 2 .  Hence any local minimum of 
C( i )  is also a global minimum. But at any local minimum 
of C ( 2 ) ,  it either holds that C ( 2 )  is not differentiable or 
its gradient v L ( i )  is 0. In particular, note that L ( i )  is 
not differentiable only at 3i. = 0 and at any 2 that satisfies 
A2 - b = 0. 



We first consider the case in which C ( 2 )  is differen- 
tiable and, hence, the gradient of C(?) exists and is given 
by 

1 
VC(2) = ( (ATA + 01) d - ATb)  , 

llA5 - 6112 

where we have introduced the positive real number 

7llA2 - 4 1 2  

11412 
a =  ( 3 )  

By setting vC(2) = 0 we obtain that any stationary so- 
lution i of C ( i )  is given by 

2 = (ATA + al)-' A T b  . (4) 

Expressions (3)-(4) define a system of equations with two 
unknowns {?,a} .  If we replace (4) into ( 3 )  we obtain a 
nonlinear equation in a,  which will further lead to what 
we shall refer to as the secular equation. We shall show 
later that the secular equation has only one positive root. 
Hence, determining its positive root uniquely determines 
a,  which in turn uniquely determines d. 

Since we are also interested in the numerical reliabil- 
ity of the resulting computational procedure, we find it 
useful to perform these substitutions and calculations by 
invoking the SVD of A,  say 

A = U [  i ] V T ,  ( 5 )  

where U E Rmxm and V E RnXn are orthogonal, and 
C = diag(a1,. . . ,a,) is diagonal, with 01 2 . . . 2 gn 2 
0, being the singular values of A. We further partition 

the vector U T b  into [ :: ] = U T b ,  where bl E Rn and 

b2 E R"-". In this case, the expression (3) can be seen 
to collapse to 

Then equation (6) reduces to 

the same form as (6). From now on, we assume that '-1 is 
full rank and, hence, C is invertible. 

3.2. The Secular Equation 
Define the nonlinear function in a.  

It is clear that a is a positive solution to (6) if, and only 
if, it is a positive root of G(cy).  Following [l][p. 5641, we 
refer to the equation G(a) = 0 as a secular equation 

The function G(a) has several useful properties that 
will allow us to provide conditions for the existence of a 
unique positive root a (proofs are omitted for brevity - see 
[9]). First note that a necessary and sufficient condition 
for b to belong to the column span of A is h2 = 0. 

Lemma. The funct ion G(a) satisfies the following. 

1. I t  can have at most one positive root. I n  addition, if 
li > 0 is  a root of G(a),  then 6 is a simple root. 

2. Assume b2 # 0 ,  i.e., b does not  belong to the column 
span of A. Then G(a) has a unique positive root if, 
and only af, 

(6 )  
~Jl lbal I i  + a211 (2' + a0-l bill; 

a =  
IIC (E2 + 4 - l  bl112 

Note that only the norm of bz, and not b2 itself, is needed 
in the above expression. 
Remark. We have assumed in the derivation so far that 
A is full rank. If this were not the case, i.e., if A (and 
hence E) were singular, then equation (6) can be reduced 
to an equation of the same form but with a non-singular 
C of smaller dimension. Indeed, if we partition 

Tl m 0 1  
"'10 o p  

where 2 E Rkxk is non-singular, and let E Rk be the 
first k components of b1; & E Rn-k be the last n - k 
components of b l ;  and let 

3. Assume b2 = 0, i.e., b belongs to  the column span of 
A (this case arises, for  example, when A is square 
and invertible). Define 

Then  G(a) has a unique positive root if, and only, i f  
r1 < 77 < 7 2 .  

4.  Whenever G(a) has a positive root 6, the correspond- 
ing vector 2 in (4)  mus t  be the global minimizer of 
C(%) (its Hessian matrix is positive-definite). 

We still need to  consider the points at  which C ( 2 )  is 
not differentiable. These include P = 0 and any solution 

11~211: = llb21E + llm ' of A2 = b. We omit the details and state the final result. 
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3.3. Statement of Solution 

ceeds as follows. 

Theorem. Given A E Rmxn,  with m 2 n and  A full 
rank, b E R", and nonnegative real numbers (q,qb) .  The 
optimization problem (1) always has a solution 2. The 
solution(s) can be constructed as follows. 

e Introduce the SVD of  A as in (5). 

e Partition the vector CTTb into col(b1, bz} ,  where bl E 

e Introduce the secular function G(Q) as in (8). 

e Define {rl ,r2} as in (9). 

The solution of the constrained min-max problem pro- 

R" and b2 E Rm-". 

First case: b does not belong to the column span of A. 

1. If 

2. If q < 7 2  then the unique solution is i = (ATA + 
hI)- ' ,4Tb, where 6 is the unique positive root of the 
secular equation G(Q) = 0.  

2 r2 then the unique solution is f = 0.  

Second case: b belongs to the column span of A.  

I f  q 2 r2 then the unique solution is 2 = 0 .  

If r~ < q < r2 then the unique solution is i = (ATA+ 
61)-'ATb, where 6 is the unique positive root of the 
secular equation G(Q) = 0 .  

If q 5 r1 then the unique solution is i = VC-'bl = 
, I tb .  

If q = r1 = 72 then there are infinitely many solutions 
that are given b y  i = PVC-lbl = PAtb, for any 
0 5 p  51. 

3.4. Automatic Regularization 

the form 
f = (ATA + 6!I)-'ATb. 

This can be regarded as the exact solution of a regularized 
least-squares problem of the form: 

Note that the expression for the unique solution i has 

with squared Euclidean distances. In this sense, the solu- 
tion to the original problem (2) (with norms only rather 
than squared norms) can be seen to  lead to  automatic 
regularization. That is, the solution first determines a 
regularization parameter 6 and then uses it to  solve a 
regularized least-squares problem of the above form. 

The scalar 6 can be determined by employing a 
bisection-type algorithm to solve the secular equation, 
thus requiring 0 (nlog t), where E is the desired preci- 
sion. 

4. RESTRICTED PERTURBATIONS 
We have so far considered the case in which all the 

columns of the A matrix are subject to perturbations. 
It may happen in practice, however, that only selected 
columns are uncertain, while the remaining columns are 
known precisely. This situation can be handled by the ap- 
proach of this paper. The details can be found in [9]. We 
only state the problem here. 

Given A E Rmxn,  we partition it into block columns, 
A = [ A1 A2 1 ,  and assume, without loss of generality, 
that only the columns of A 2  are subject to perturbations 
while the columns of AI are known exactly. We can then 
pose the following problem. Determine i such that 

Its solution can be found in [9]. 

5 .  FURTHER REMARKS 
The solution proposed herein requires the computa- 

tion of the SVD of the data matrix and the determina- 
tion of the unique positive root of the nonlinear secular 
equation. In the companion paper [lo], we establish the 
existence of a fundamental contraction mapping and use 
this observation to  propose an approximate recursive al- 
gorithm that avoids the need for explicit SVDs and for the 
solution of the nonlinear equation. 

Moreover, in the second companion paper [8] we con- 
sider an alternative formulation of the estimation problem 
that has some interesting ties with TLS and H, methods. 
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