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Abstract 
In this paper, we suggest a design procedure for C,- 

stable estimation schemes (in a sense to  be fully defined in 
the paper), and use the insights gained from this design 
to highlight new convergence and robustness properties 
of well-known estimation schemes, such as leakage-based 
(switching sigma) and parameter projection algorithms. 
In particular, we show that new robustness and conver- 
gence statements can be obtained if we further restrict 
the noise to  lie in C, n C,, 1 < p < CO. We also indicate 
connections with results in robust statistics. 

1. Introduction 
Many estimation problems can be written as 

Y ( t )  = 4 ( t P  + 4% (1) 

where 0 is the parameter vector to be estimated, column 
regression vector, and T denotes transposition. In the 
absence of the noise vector w(t), several algorithms exist 
that give a converging estimate e(t)  when #(t)  satisfies 
a persistence of excitation (PE) condition. One of these 
algorithms is the gradient algorithm [5, 13 

e( t )  = ry(t)€(t) ,  8(0) = 8, = initial guess; (2) 

where ~ ( t )  = y(t) - @(t)e( t )  = 4T(t)8(t) + w ( t ) ,  is the 
measured estimation error, 6( t )  = $-e(t)  is the parameter 
estimation error, and r is a positive-definite matrix. We 
can also write (2) in terms of the parameter estimation 
error only, as follows 

A 

A 

where we have defined the estimation error e. Note that 
e is the error we are interested in taking to zero as t -i 
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CO, as opposed to  the measured estimation error E that is 
corrupted by noise. 

With PE  regressors $(t) and zero noise w ( t ) ,  the ori- 
gin 6 = 0 in (3) can be shown to be exponentially stable 
and, therefore, the mapping from w to 8 is C, - stable 
for 1 5 p 5 CO [ l l ,  5, 61. However, it has been long 
known that in the presence of bounded noise, (2) may 
give unbounded estimates 6 when the regressor 4 is not 
PE  [4], [5, pp.545-5521, [l, pp. 255-2581. Several modifica- 
tions have been proposed to  (2) in order to  maintain the 
boundedness of 0 in the presence of bounded noise and 
plant uncertainties and without the P E  property (leakage 
[5], parameter projection [7], dead-zone [5]). These modi- 
fications assume some knowledge of the magnitudes of the 
noise (dead-zone) or of the parameter vector itself (pa- 
rameter projection and switching-o, a form of leakage). 
schemes establish that the estimates 8 will converge only 
to a region containing the true parameter 8. 

In this paper we reconsider this problem and show that 
the above estimation schemes, as well as some new ones 
we propose here, can still converge to the t r u e  solution 
0 if the noise is further restricted to  lie in L, n L,  for 
1 < p < CO; and give bounds for the C, gain from w(.) to 
e(.). We extended the results of [12] to  a general p > 1, 
class of algorithms. For two of the algorithms in this class 
we give bounds for the &-gain from the disturbances w ( t )  
to the estimation error e( t ) .  

The contributions of this work are a design procedure 
for C,-stable estimation schemes, bounds for the C, gain 
for two newly proposed algorithms [13]; as well as new 
convergence and robustness properties of well-known esti- 
mation schemes. We also indicate connections with results 
in robust statistics [3,  101. 

1.1. Notation and Definitions 
Throughout this paper we denote the usual 2- 

norm of a vector by 11x112, and by 11z112,p the norm 

lIz112,p = (SF (l(x(t)((2)pdt)1’p for finite p ,  and llzlI2,, = 
sup,>o llz(t)112 (see [14]). We also employ the following 
three definitions. 
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Definition 1 (Lp-Stability) A (causal) system 

x = f ( t ,  x )  + g ( t ) u  

is said to be Lp-stable if there exist nonnegative scalars 
k and kl such that IIxll2,, 5 IC1 + kllu112,, for  any input 
U E L,. 

Definition 2 (Persistence of Excitation) A wector- 
valued function +(t) is said to be persistently exciting 
(PE) i f  there exist positive scalars 70, 71, and T such 
that f o r  all t ,  701 5 J,"" + ( T ) + ~ ( T ) ~ T  5 711. 

2. &-Stability of the Gradient 
Algorithm 

We start with the gradient algorithm (2). It is known 
that when +(t) is P E  and v ( t )  = 0, the origin e" = 0 in 
(2) is exponentially stable, and therefore the update law 
(2) leads to an L,-stable system for all p E [ ~ , c o ]  [5, p. 
2361, [6, p. 2691). This result is valid for P E  regressors 
only. However, it has been recently noted in [12] that when 
the noise is nonzero but has finite energy (w E L,), then 
even if + is not PE, algorithm (2) still guarantees that the 
error signal e = e"T+ is in Lz and that 6 remains bounded. 
Moreover, the following contraction relation always holds 
for any r > 0: 

P(r)r-le"(T) + Ji e2( t )d t  
e"T(0)r-le"(O) + w2(t)dt 5 1. (4) 

Expression (4) shows that the mapping from the 
disturbances {1'-1/26(0), w(.)} to the estimation errors 
{I'-'/,e"(T), e(.)} is a contraction, and therefore, in the 
language of Ha-filtering, the gradient algorithm (2) is a 
robust filter [2, 121. 

For noise in other L, spaces (i.e., for p # 2), the de- 
nominator in (4) can be unbounded, and algorithm (2) 
can lead to unbounded 0 (even with w ( t )  + 0 as t + CO), 

examples are given in [4]. 

3. Design of C,-Robust Estimators 
In this section we show how to modify the gradient 

algorithm (2) in order to guarantee a bound similar to (4) 
for w E C,, p > 1. More specifically, we derive a class 
of adaptive laws that guarantee bounds of the following 
general form 

eT(.r)I'-'6(T) + al'lelpdt 
5 1  ( 5 )  

e"T(0)I'-16(O) + p 

for some positive numbers a and ,B. Note that it is the 
noise-free error e (and not E )  that we employ in (5) and 
(4). 

The resulting family of adaptive laws that satisfy (5) 
will turn out to include, as special cases, several algo- 
rithms that have been discussed in the literature. in [13], 
and some algorithms studied in [lo] in the context of ro- 
bust statistics. These algorithms correspond to  nonlinear 
estimation schemes of the form 

e = r$(t)f (49) 9 (6) 

where I' is as before and f ( . )  is a Lipschitz-continuous 
function that we choose. Next we consider which Using 
the Lyapunov function V ( 6 )  = +eT(t)r-le"(t), we obtain 
V = - f ( E ) ( E  - w) = -cf(E) + f ( E ) w .  Invoking Young's 
inequality [8] on the product I f  (€)VI and integrating the 
result, we obtain, for any K > 0, 

(7) 
Now assume we choose f and K such that the term in 
parentheses is nonnegative for all 6, that is, 

In this case we see that when w is in L,, the error 
vector e" will be uniformly bounded. Note that the choice 
f ( E )  = E ,  which corresponds to the stochastic gradient 
algorithm (2), does not satisfy the condition above for 
any p # 2. Before continuing our discussion, we state the 
following preliminary result. 

Lemma 1 (Choice o f f )  Given a particular p > 1, if 
f is chosen such that (8) holds, then the nonlinear es- 
timation scheme (6) guarantees that ('7) holds, with the 
expression inside the parenthesis in the LHS always non- 
negative. Moreover, if w E L,, e" will be in L,. 

We now consider some particular choices for f .  

3.1. A Polynomial Choice 
A straightforward choice for f ( a )  that fits our frame- 

work has been recently considered in [13], and is given 
by 

ti(€) = sign(E)lclP-l. (9) 

This algorithm was developed in 1131 in the context of 
model reference adaptive control design, with the intent 
of guaranteeing E E La, for some finite a,  in the presence 
of L, disturbance w. Recall that E is in fact an error signal 
that is corrupted by noise. Using (9) and choosing K = 1 
we can rewrite (7) as 

Since W , E  E L,, e is also in L,. If we further assume 
that 4, 4, w E Loo, then (2) implies 6 E L,, and thus 
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e E C,; therefore, by Barbglat’s Lemma [6] ,  we get e -+ 0 
a s t + m .  

To better understand the relation between the estima- 
tion error e and the it is useful to establish the existence 
of a contraction relation between e and v as in (4), rather 
than E and U. The following statement summarizes the 
desired result, along with the earlier conclusions. 

Theorem 1 (Cp-Robustness of (9)) Consider the up- 
date law (6) with the choice (9) and some finite p 2 2 .  
The following facts hold: 

(a) If v E C,, then e E C, and E ,  e E C,. 

(ii) If in addition to U E C,, we also have U, q5, 4 E C,, 

then e ,  e E C, n C, and e -+ 0 as t -+ CO. 

(iii) The following contraction relation holds for any r > 

gT(7)r-’e(7) + a l r l e l P d t  
0: 

L 1 > (10) 
@(o)r-le(o) + p lvlpdt ir 

1 where Q: = 2p--2 (1 - h), and /3 = 
P 

Proof: The proof of parts (i) and (ii) follows directly 
from the discussion above. The proof of part (iii) is more 
involved. Due to the limited space, we only sketch a few 
steps . Using (9), we obtain 

-V = 
= 

sign(E)lElP-l(E - U) = sign(e + v)le + .uJP--le 
le + vlP-’(e + v ) e  = (e2 + ev)le + VIP-’. 

Writing v = y e  and minimizing the above expression over 
y, we obtain a bound for V .  Integrating both sides of this 
bound, the desired contraction (10) is obtained. 

A similar result holds for p E (1,2), with different expres- 
sions for Q and p. 

3.2. A Modified Gradient Algorithm 
For p 2 2, the choice (9) for f( .)  has the drawback 

of having large gains away from E = 0, which can pro- 
duce poor transients. Note, however, that the linear choice 
f ( E )  = E ,  satisfies (8) for large E .  Therefore, a new choice 
for f( .)  that does not suffer from the high gain problem is 

Note further that this adaptive law reduces to a form 
of discontinuous dead-zone if we let p + CO, and to the 
usual gradient algorithm (2) as p -+ 2 (this last property 
is shared by f1). 

Theorem 2 (Cp-Robustness of (11)) Consider the 
update law (6) with the choice (11) (with p 2 2), and 
introduce the function 

The following facts hold: 

(i)  If v E C,, with p 2 2, then e E C, and g ( E ( . ) )  E C1. 

(ii) If in addition to (a) we also have U, q5, 4 E C,, then 
8, E ,  e E C, n C, and e -+ 0 as t -+ CO. 

(iii) Under conditions (a) and (ai), then 

eT(T)r-1e(7) + yj’)Pdt 

eT(o)r-le(o) + + q d t  
5 1  (12) 

0 

where 77 = w, and 
P 

Proof: Similar to that of the previous theorem. 
The figure below shows this scheme applied to  the estima- 
tion of the poles of a second order linear plant, with PE 
regressors and noise in CS. 

os - eo  
0 5  -- e1 

1 5  

-1 I 

2 

0 s 1- 1 s  2- 2 s  m a s  1- 450 sm .. b 

t ( s )  
Figure 1: parameter estimation errors for  law (11) 

3.3. Connections with Robust Statistics 
The notion of robustness has also been discussed in 

statistics (e.g., [3, lo]), where the primary concern is the 
design of optimal estimators that are robust to  uncertain- 
ties in the noise probability distribution. Here we only 
show that one such estimator (proposed in [3, 101) fits 
our framework; in a future work we will show from a de- 
terministic point of view why this modification improves 
robustness. Although [lo] deals with discrete-time and 
RLS-type algorithms, we consider here a continuous-time 
LMS version. 

Suppose we have an estimation problem of the form 
( l ) ,  where now the noise is a white noise process, but 
where the probability distribution p ( v )  of v( t )  is not ex- 
actly normal. As an example, take where 6 E [0,1], 
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po E N ( 0 , a 2 ) ,  and p1 is an arbitrary density function. 
References [lo, 91 show that an adaptive version of the 
"best" estimator for the above class of distributions is of 
the form e ( t )  = r$(t) f 3 ( ~ ( t ) ) ,  where 

and A is infinity for S = 0 and 0 for 6 = 1. 
We readily see that f 3  satisfies (8) for p E (1,2], so 

(13) will give bounded estimates for C,-noise, 1 < p 5 2. 
We also know from the previous sections that if v E C2 
then e E C, with bound v,. If we further assume that v 
is bounded, we may bound le + v )  by v, + llvl12,m. Thus, 
if > A, V = -sign(e + v ) e  5 -*(e2 + ew). 

For E 5 A we have the gradient algorithm again, so 
using (4) we obtain the contraction 

where c1 = min{ 4, 2 ( v , + , u  z,m) 9 and v = Ill 1 
max { h 2(v.+llvllz ,m) l }  . 

4. A Leakage-Based Adaptive Algorithm 
In fact, there exist bounds for llell that depend on 

11~112,,,  the norm of the true parameter vector 11811, and 
on some design constants (see [5, Ch. 81). Most of the con- 
vergence results for this that the estimates e will converge 
to a domain containing the true parameter 8. 

In this section, we establish that the scheme can still 
converge to the true solution 8 (and not to a domain 
around it) if the noise is further restricted to lie in C,nC, 
for any finite p .  

In the switching-a scheme, the update law (2) is mod- 
ified as follows [5, p. 5871: 

e ( t )  = r 4 ( t ) € ( t )  - r a , ( t ) 8 ( t )  , (15) 

where the switching function a , ( t )  is defined according to 
the following rules: Let (TO and MO be positive constants 
selected by the designer. Then 

if 11~112(t) 5 MO I" 

In other words, as long as the estimate 6 remains inside a 
disc of size MO, the switching modification is not activated. 
The choice of MO requires the designer to have some a 
priori knowledge of the size of the unknown parameter 8. 

The resulting error equation becomes 

That this scheme guarantees boundedness of the estimates 
for any bounded noise is a well-known result [5, p. 5871. 

We now prove that the switching-a modification does 
not destroy the exponential stability property of the gra- 
dient algorithm with PE regressors. This observation is 
the basis for our proof of the convergence of the parame- 
ter estimates when the noise is in C, n C,, for any finite 
p > 0. In the following statement, &(I?) denotes the con- 
dition number of the matrix I?. 

Theorem 3 (Convergence of Switching Sigma) 
Consider the switching-a scheme (15) and assume that the 
regressor 4 is PE and MO is chosen as MO > K(I')ll8lls . 
The following facts hold: 

(i) The origin in the error equation (16), e" = 0 ,  is expo- 
nentially stable when the noise v is identically zero. 

(ii) If v E L,, the parameter estimation errors converge 
exponentially fast to the residual set 

0 s  = {e"  : 11~112 I Allvl12,m} (17) 

for some positive constant A. 

(iii) If v E C, n C, for any finite p > 1 ,  then there exist 
positive constants a,  y and yv such that 

Here, unlike for the algorithms in the previous section, C Y ,  

y and yu will depend not only on p ,  but also on 4. 
Proof The argument is based on a Converse Lyapunov 
Theorem (e.g., [15, p. 2441). Assuming the regressor 4 
is PE, the error equation for the gradient algorithm (2) 
is exponentially stable. This implies that there exists a 
Lyapunov function V ( t , e ) ,  and al ,  a2, a,  y > 0, such 
that for any p > 1 and for any e" the following relations are 
satisfied: allle"ll2 5 V ( t , 8 )  5 ~ ~ 2 l l e " l l g ,  11%112 5 all~ll;-l, 

Now introduce the non-negative function 

W(t ,8 )  = pv(t,e) + :llell; 
P 

for some p > 0. Differentiating W in the direction of the 
flow of (15) we establish that, in the absence of noise U, 
W can be taken as a Lyapunov function for the switching- 
a error system (16). This enables us to show that the 
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switching modification, under proper conditions on MO, 
does not destroy the exponential stability of the original 
gradient error system (3). 

Note that the above result does not imply a contrac- 
tion relation as (5) - if the regressor vector q5 is not PE, it 
is possible to have noise in a space IC, ( p  > 2) and e L,. 
As an example, take a scalar system with q5(t) = 1 for 
t E [ek, 1 + ek], k 2: 0, and (1 + t ) - i  otherwise. Let the 
noise be v( t )  = &. Choosing MO large enough, one can 
show that e( t )  $! C, for any p > 0, even though v E L2+6 
for any 6 > 0. 

5 .  Conclusion 
We have given a general (sufficient) condition for an 

algorithm in the form (6) to be &-stable (for some given 
p > 1) - a condition that does not require persistantly 
exciting regressors. We discussed some of tlie estimation 
algorithms that satisfy this condition, and in some con- 
traction relations between w ( t )  and e(t)  thus generalizing 
the results of [12] for the C2 norm. value of p is explicitly 
used in the equations, i.e., we must know a priori that the 
noise v( t )  has finite pnorm, for some p .  This means that 
an algorithm designed for p = 4 will not be robust with 
respect to  noise in Cg. 

The switching-c algorithm, on the other hand, guar- 
antees boundedness of the estimates for noise in &. We 
showed that even though, in general, this algorithm does 
not satisfy a contraction relation as in (5), under some 
conditions (one of which is PE), the origin of its error 
equation will be exponentially stable and therefore the 
algorithm will give converging parameter estimates even 
with C, noise. 
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