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A FAST ITERATIVE SOLUTION FOR WORST-CASE PARAMETER 
ESTIMATION WITH BOUNDED MODEL UNCERTAINTIES * 

ALI H. SAYED, ANDREA GARULLI, AND s. CHANDRASEKARAN 

Abstract 
This paper deals with the problem of worst-case pa- 

rameter estimation in the presence of bounded uncertain- 
ties in a linear regression model. The problem has been 
formulated and solved in [1,2]. It distinguishes itself from 
other estimation schemes, such as total-least-squares and 
H, methods, in that it explicitly incorporates an a-priori 
bound on the size of the Uncertainties. The closed-form 
solution in [1,2], however, requires the computation of the 
SVD of the data matrix and the determination of the 
unique positive root of a nonlinear equation. This pa- 
per establishes the existence of a fundamental contraction 
mapping and uses this observation to propose an approxi- 
mate recursive algorithm that avoids the need for explicit 
SVDs and for the solution of the nonlinear equation. Sim- 
ulation results are included to demonstrate the good per- 
formance of the recursive scheme. 

1. INTRODUCTION 
The central problem in estimation is to recover, to 

good accuracy, a set of unobservable parameters from cor- 
rupted data. Several optimization criteria have been used 
for estimation purposes, but the most important, at  least 
in the sense of having had the most applications, are crite- 
ria that are based on quadratic cost functions. The most 
striking among these is the linear least-squares criterion, 
which enjoys widespread popularity in many diverse areas 
as a result of its attractive computational and statisti- 
cal properties. But many alternative optimizationcriteria 
have been proposed over the years in order to improve 
the performance of standard least-squares estimators in 
the presence of data uncertainties (e.g., [2-81). Among 
these criteria we mention regularized least-squares, ridge 
regression, total least-squares, and robust (or HW) estima- 
tion. They all allow, in one way or another, to incorporate 
some a priori information about the unknown parameter 
into the problem statement. Nevertheless, they still may 
unnecessarily over-emphasize the effect of noise and of the 
uncertainties and can, therefore, lead to very conservative 
results. 

In [1,2], a new formulation for worst-case parameter 
estimation in the presence of bounded data uncertainties 
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has been posed and solved. The new method is especially 
useful when the measured data and the used model are 
uncertain and when a priori bounds on the uncertainties 
are available. In this way, the method guarantees a robust 
performance with respect to uncertainties that lie within 
the known bounds. This is in contrast to earlier robust de- 
signs that usually try to enforce a robust performance for 
any possible uncertainty and can therefore lead to overly 
conservative solutions. 

The solution in [1,2] requires the computation of the 
SVD of a data matrix and the determination of the unique 
positive root of a nonlinear equation. In this paper, we 
show that some fundamental equations in [1,2] induce a 
contractive mapping. By invoking the Contraction Map- 
ping Theorem [9], we further show that the unique fixed 
point of the mapping can be approximated to good accu- 
racy via an iterative scheme. In so doing, we derive an 
approximate recursive scheme, similar in nature to RLS 
(recursive least-squares), that allows us to update the so- 
lution of the new estimation problem without the need 
for explicit SVDs and for the solution of the nonlinear 
equation. 

2. PROBLEM FORMULATION 
In [1,2], the following new estimation problem has 

been formulated and solved; it allows a priori bounds on 
the uncertain data to be explicitly incorporated into the 
problem formulation. 

Let A E R”’” be a given full rank matrix with m 2 n 
and let b E R” be a given vector. The quantities (A,  b )  are 
assumed to be linearly related via an unknown vector of 
parameters x E R”, b = A x + U ,  where U E Rm explains 
the mismatch between A . x and b. We assume that the 
“true” coefficient matrix is A+bA, and that we only know 
an upper bound on the perturbation bA, say llbAll2 5 7.  
Likewise, we assume that the “true” observation vector is 
b + bb, and that we know an upper bound 76 on the per- 
turbation bb, say (Ibbllz < q b .  The notation 1 1  . 112 denotes 
either the 2-induced norm of its matrix argument or the 
Euclidean norm of its vector argument. 

We pose the problem of finding an estimate 2 that per- 
forms “well” for any possible perturbation (6A, &). That 
is, we would like to determine, if possible, an li. that solves 

Any value that we pick for P would lead to many residual 
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norms, 1 1  ( A  + 6A) . P - ( b  + 6b)112, one for each possible 
choice of A in the disc ( A  + SA) and b in the disc ( b  + 
6b) .  We want to  determine the particular value(s) for P 
whose maximum residual is the least possible. It turns out 
that this problem always has a unique solution except in a 
special degenerate case in which the solution is nonunique. 

The problem also admits an interesting geometric for- 
mulation that is fully described in [1,2]. Here, we only 
highlight the main points. So assume, for simplicity of 
presentation, that we have a unit-norm vector b, llbll2 = 1, 
with no uncertainties in it ( q b  = 0; it turns out that the 
solution does not depend on q b ) .  Assume further that A 
is simply a column vector, say a, with q # 0, and consider 
(1) in this setting: 

The situation is depicted in Fig. 1. The vectors a and b 
are indicated in thick black lines. The vector a is shown in 
the horizontal direction and a circle of radius 77 around its 
vertex indicates the set of all possible vertices for a + 6a. 
It can be verified that the solution can be obtained by 
drawing a perpendicular from b to the lower tangential 
line 81. The segment r1 denotes the optimum residual. 
More details can be found in [l,2]. 

Figure 1: 
nario. 

Geometric construction f o r  a simplified sce- 

3. AN ALGEBRAIC SOLUTION 
It can be verified that problem (1) reduces to the 

equivalent minimization problem: 

~ 
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where the cost function G(2)  = IIA. P - bllz + 7 7 .  I l f l l 2  + q b  
is convex in P. Note that it involves the Euclidean norms 
of certain vectors rather than their squared Euclidean 
norms (as in regularized least-squares problems). The 
following theorem summarizes the main result in [1,2]. 

Theorem 1. Let  A E Etmxn,  with m 2 n, be full rank, 
and b E R". A s s u m e  that  b does n o t  belong t o  the column 
span of A. T h e n  the solution of the m i n - m a x  est imation 
problem can be constructed as follows. Introduce the SVD 
of A: A = U . [ ET 0 1' . V T ,  part i t ion the vector U T b  
in to  UT  ab = [ cT dT I T ,  where c E R" and d E R"-", 
and introduce the secular equation 

Q = f(a) (3) 

where 

Define r = e. T h e n  

1. If 77 2 r ,  the unique solution of (1) is  2 = 0 .  

2. If q < r ,  the secular equation (3) has a unique posi- 
tive solution ii and the unique solution of (1) is  given 
by  

P = (ATA + &I)-' ATb . ( 5 )  
It also follows that  S is  equal t o  

Remark. If b belongs to the column space of A, the 
solution of problem (1) is only slightly more involved (see 
[l] for details). The basic task, however, is still to find the 
unique positive solution of the secular equation (3). 

According to  Theorem 1, the solution of the min-max 
estimation problem (1) requires the determination of the 
unique positive solution & of the secular equation (3) .  This 
task can be performed within any desired precision by us- 
ing, for example, a bisection search method. This proce- 
dure may, however, require a large number of evaluations 
of the function f (.) since an a priori upper bound on & is 
not available. 

We now show that a good approximation for S can 
be obtained by alternatively iterating the map defined by 
f (.). This will lead us to propose a recursive scheme for 
updating the parameter estimates as well. 



4. CONTRACTION MAPPING 
Define the recursive equation 

= f ( c ~ ( ~ ) )  , do) = initial condition. (7) 
The following central result can be established by invok- 
ing the Contraction Mapping Theorem [9]. 

Theorem 2. A s s u m e  q < r .  For any  positive initial 
value do), it holds that limi-,m a(i) = 8, where 8 is the 
unique positive solution of the secular equation (3). 

Proof: In view of Thm. 1, the condition 77 < T guaran- 
tees the existence of a unique 8 > 0 satisfying 8 = f(&). 
Moreover, it can be verified that f(0) > 0, f ( a )  is con- 
tinuous in a ,  and f ' ( a )  > 0 for any a 2 0 (the proof of 
this last property involves some tedious calculations that 
we omit here). 

It then follows that f ( a )  2 a for every a 5 6. Indeed, 
if for some a! < 6 we have f ( a ! )  < a!, and since f(0) > 0, 
we conclude by the continuity off that there must exist an 
0 < 6 < 6 < 8 such that f(6) - a: = 0. This contradicts 
the fact that 8 is the only positive root of f ( a )  - a = 0. 

Consequently, for any initial condition a(') < h we 
obtain that the resulting a(2) is a nondecreasing sequence. 
Let I be an index such that a(') 5 8. The fact that 
f(a) is a nondecreasing function shows that a('+') = 
f (a( ' ) )  5 f (h )  = h and, hence, a(I+l) 5 8. This es- 
tablishes that a(i)  5 8 for all i, which means that the 
sequence {a ( i ) }  is bounded from above and therefore con- 
verges to some point a(oo) < 8. By continuity of f ,  we 
must have a(oo) = f(a(")) and, by uniqueness of the pos- 
itive root 8 we conclude that 

Similar arguments can be used to establish the conver- 
gence of the sequence {a( i )}  to  8 for any initial condition 

W 

= 8. 

a@) > &. 

We should note that the secular equation (3) is ob- 
tained by substituting (5) into (6). The iterative scheme 
(7) then corresponds to a successive approximation proce- 
dure with repeated applications of the function f .  Alter- 
native iterative schemes can be developed by combining 
expressions (5) and ( 6 )  differently. 

For example, if (6) is substituted into (5), the follow- 
ing recursion can be obtained: 

%(i+l) = fZ(&)) 

Likewise, if both ( 5 )  and (6) are iterated we obtain 

~ 

1501 

Following the same lines of arguments that we employed 
in the proof of Thm. 2, it can be shown that the above 
iterative maps converge respectively to d and [8 iIT, that 
were given in Thm. 1. 

In any case, Theorem 2 suggests that recursion (7) 
can be used to approximate the exact solution of the 
min-max estimation problem. Starting from any a(') > 0 
and computing p iterations of the map (7), we can 
approximate 2 in (5) with z(P) = (ATA + a(P)I)- lATb.  
Several simulations on randomly generated data (see 
further ahead) have shown that in general good approxi- 
mations can be obtained with very few iterations. This is 
particularly useful in recursive estimation contexts, as we 
explain in the next section. 

5. ITERATIVE SOLUTION 
Consider the linear regression model 

yt = (ut + bat)Tx + w t  , t = 1 , 2 , .  . . (8) 

where yt E R is the output, (at +6at) E R" the regression 
vector, z E IR" the unknown parameter vector, and wt E IR 
a measurement noise affecting the output. Assume that 
the regression vector is not known exactly, while at and 
yt are observed and a bound on the perturbation bat is 
available. In particular, a time-variant upper bound on 
the 2-induced norm of the matrix 

(9) 

is known, i.e.[] SAt 1125 qt, where {qt}  is a sequence of 
positive real numbers. Also, bt = col(y1,. . . ,gt}. The 
recursive min-max estimation problem that we are inter- 
ested in is to recursively time-update the solutions & of: 

Define Tt = w. Let {it}& denote the successive 
solutions for t = t o , .  . . , N of problem ( lo) ,  where we 
are assuming that each bt does not belong to the column 
space of the corresponding At. Define also ht+l = 
(Ar+lAt+l +&tI)- l  Ar+lbt+l. Comparing with the 
expression for &+I = (AT++lAt+l + ht+l l ) - l  AT+lbt+~, 
we see that ht+l approximates 2t+l by using bt instead 
of & + I .  

Theorem 3. At any  particular t ime  instant  t ,  given ?t ,  
we can update at to  &+I as follows: &+I = 0 if vt+l > 
rt+l. Otherwase, 



&+l = [I - (&+l - &)Pt+l] ht+l 7 

Pg; = Prl + at+IaT+1 + (&+, - &)I, (11) 

where {&,&+l} are the unzque positive solutions of 
at = f t (a t )  and %+l = ft+l(Q't+l). 

Proof: Define P;' = A r A t  + &I.  Then, since 
AF+lAt+l = AFAt + at+laF+l, we obtain (11). Moreover, 
by Thm. 1, i t + l  = Pt+lAr+lbt+l. But since AF+,bt+l = 
ATbt + at+l yt+l,  we obtain by applying the matrix inver- 
sion formula to (11) the desired time-update expression 
for ;i.t+l. 

The recursive algorithm of Thm. 3 still requires the 
computation of the unique positive solution & of the sec- 
ular equation equation (3) at each time instant t .  This 
task can be avoided if we replace the exact solution & by 
an approximate solution, say ?it, that we obtain via an 
iterative scheme. 

Suppose that at  time t an approximation Zt of & is 
available. Then, one can consider computing a fixed num- 
ber, say p ,  of iterations of the map 

a ( 2 + 1 )  = ft+l(&)) (1'4 
with initial condition do) = &, and then choose Zt+1 = 
a$!l as an approximation for the exact value &+I. In 
particular, if we choose p = 1 then we obtain a recursive 
relation for updating the approximations in time: 

(13) 
- 
at+1 = ft+l(W. 

This expression can be further reworked as follows. Let 
zt = (A,TAt + ht I ) - lATbt  be the approximation of P t  

at time t .  Define &+I = (AF+lAt+l +EtI)-lAT+lbt+l. 
Then, since f in Thm. 1 is obtained by substituting (5) 
into (6), the map (13) can be written as 

- 

where the dependence on Et is implicit in &+I. Defining 
Pt = (ATAt + &I)-' and following the proof of Thm. 3, 
we get 

- 

A fully recursive expression of (13) can be obtained by 
substituting (15) into (14), and taking into account that 
xt = FtATbt. - 

Iterative Algorithm. Set Tto = &, and Et, = Lit,. 
and let  ptO = (AcAt, + &,I)-', zt", = llbt,II;. For t = 
to,. . . , N, do  

6. A FAST ITERATIVE ALGORITHM 
The recursions can be interpreted as follows. The al- 

gorithm computes an &+, first. Its expression is very sim- 
ilar to the update expression of a recursive least-squares 
(RLS) algorithm that updates an estimate Et to a new 
estimate Zt+l according to the rule: 

1 
The corresponding 7; in RLS would be obtained via a 
rank-one update of the form: 

1 -~ 1 -_ 
Pi+, = Pt + at+la:+] 

The iterative min-max algorithm, on the other hand, up- 
dates Et into &+I first and then uses ht+l to compute 
the new estimate ?&+I. This new estimate is obtained 
from &+I through a multiplicative correction term that 
depends on the difference (Zt+l - S t ) .  The value of &+I 

is further used to update h t  to ht+l. Moreover, the new 
matrix P,+, is obtained from the older matrix not just 
through a rank-one update but also through an additional 
scalar multiple of the identity matrix. 

Since the iterative scheme requires the inversion of the 
(nxn)-matrix pL at every step, we see that the computa- 
tional complexity of a single iteration is O(n3)  as it stands. 
This is an order of magnitude higher that the traditional 
recursive least-squares (RLS) algorithm. The lower cost in 
RLS is obtained by propagating Pt rather than its inverse 
through a (simplified) Riccati recursion. This is possible 
in RLS since FL+I is obtained only through a rank-one 
update of P;'. 

For the iterative min-max algorithm, however, the fact 
that the computation of PL+l also involves a multiple of 
the identity matrix does not allow for an immediate fast 
recursion for the explicit update of Pt+1. 

A way out of this difficulty is to employ the numeri- 
cally stable O(n2)  algorithm developed in [lo] for updating 
the SVD of rank-one matrix updates. This would allow 
us to reduce the computational cost to O(n2) .  It can be 
achieved as follows. 

--1 . 

1 

1 .  

1 
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First note that pL1 is a symmetric matrix and, 
hence, its SVD coincides with its eigendecomposition. Let 
UtAtUT denote the eigendecomposition of pL . Let also 
&rt V,' denote the eigendecomposition of the rank-one 
update F', + at+1aGl. The algorithm developed in [lo] 
allows us to update U t  to vt and A t  to rt in O(n2):  

Ut -+ vt , A t  --+ rt in O(n2)  operations 

1 

1 

Now recognizing that 

we see that we can make the identifications: 

This allows us to update {Ut ,At}  to  {Ut+l,At+,} in 
O(n2). The {Ut ,  At} completely specify {Pi ,  P,  } and 
the algorithm can be completed in this way. 

1 - -_ 

7. SIMULATIONS 
Consider the recursive min-max estimation problem in 

the simple case when the {a t ,  bat}, t = 1 , 2 , .  . ., are scalars 
(n = 1) and the aim is to estimate the real parameter 
x = 1. The data a t ,  the perturbation bat, and the noise 
ut are generated randomly. 

In Fig. 2(a), the exact solution & provided by The- 
orem 3 is compared to the approximation Tt computed 
according to the above algorithm, which has been initial- 
ized at time t o  = 1 with a random positive value 8 1 .  It 
can be seen that in few steps Ct gets very close to the ex- 
act solution and then tracks it almost perfectly. Fig. 2(b) 
shows that the same happens to Et with respect to tit .  
As one might expect, simulations show that the approxi- 
mation error can be further reduced by iterating the map 
(12) more than once every time instant, i.e. by choosing 
p >  1. 

Several simulations have shown that the convergence 
rate of the map (12) becomes slower when q is close to  7. 

Therefore, the same experiment described above has been 
repeated with the choice qt = 0.9rt, and the results are 
reported in Fig. 3. Once again, the approximate solution 
is able to track the exact one very well. 

References 
[l] S.  Chandrasekaran, G. Golub, M. Gu, and A. H. Sayed, Param- 

eter estimation in  the presence of bounded data uncertainties, 
SIAM J. Matrix Anal. Appl., t o  appear. 

[2] S .  CHANDRASEKARAN, G. H. GOLUB, M. Gu, AND A. H. SAYED, 
Worst-case parameter estimation with bounded model uncer- 
tainties, in Proceedings of this Conference (ACC'97). 
G. H.  Golub and C. F. Van Loan, Matrix Computations, The 
Johns Hopkins University Press, Baltimore, third ed., 1997. 

[4] S. V. Huffel and J. Vandewalle, The Total Least Squares Prob- 
lem: Computational Aspects and Analysis, SIAM, Philadel- 
phia, 1991. 

[3] 

Figure 2: (a) Exact solution 9t (dashed line) and its ap- 
proximation Tt (continuous line) for the recursive min- 
max estimation problem. (b) Bt (dashed line) and Tiit 
(continuous line). 

Figure 3: (a) & (dashed line) and Zt (continuous line) for 
the recursive min-max estimation problem with qt = 0.9q. 
(b) iut (dashed line) and St (continuous line). 

[SI B. Hassibi, A. H. Sayed, and T. Kailath, Linear estimation in  
Krein spaces - Part I: Theory, IEEE Trans. Automatic Control, 

[6] P. Khargonekar and K. M. Nagpal, Filtering and smoothing in  
an H a -  setting, IEEE Trans. on Automatic Control, AC-36 

[7] U. Shaked and Y .  Theodor, H'-optimal estimation: A tuto- 
rial, in Proc. IEEE Conference on Decision and Control, 'Ihc- 
son, AZ, Dec. 1992, pp. 2278-2286. 

[8] M. Green and D. J. N. Limebeer, Linear Robust Control, Pren- 
tice Hall, NJ, 1995. 

[9] D. G. Luenberger. Optimization by Vector Space Methods, Wi- 
ley, NY, 1969. 

[lo] M. Gu Studies in Numerical Linear Algebra, Ph.D. Disserta- 
tion, Computer Science Dept., Yale University, 1993. 

41 (1996), pp. 18-33. 

(1991), pp. 151-166. 

1503 


