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Abstract—We pose and solve oblique estimation prob-
lems with and without state-space structure. In particular,
we derive an oblique Kalman filter and indicate connections
with instrumental-variable (IV) methods and higher-order
spectra (HOS) analysis.

I. INTRODUCTION

Oblique projection problems have apparently received little
attention in the literature, despite their implicit connections
with useful tools in identification and signal processing. In
identification problems, for instance, instrumental variable
(IV) methods are often employed to guarantee consistent es-
timators[1, 2, 3]. The connection of these methods to oblique
projections is well-known and has been pointed out in [4].
Likewise, in signal processing problems, oblique projections
can be used in array processing and communication appli-
cations, as well as in higher-order spectra (HOS) analysis
[5, 6, 7]. In these applications, the major objective can be in-
terpreted as that of removing undesired interference or noise
signals by using oblique operators.

In this paper, we pose two basic oblique estimation prob-
lems and establish a relation between their solutions. We
then incorporate state-space structure into the statement of
the problems and derive an oblique extension of the classical
Kalman filter. Connections with the IV and HOS methods
are then re-interpreted in terms of the state-space connec-
tions, along the same lines of [8]. In particular, a new array
algorithm that avoids backsubstitution is suggested.

II. THE WEIGHTED OBLIQUE
ProiecTiON (WOP) PROBLEM

Let z; and 22 represent two column vectors of n unknown
parameters each, and let y3 and y; be two observation vectors
that are linearly related to (2, z2):

Az +vy =
Azzz fv2 =

dl +v, (l)
d? + v, (2)

where A; and Ay are given matrices, and v; and v; are noise
components. The terms d; and dz denote the uncorrupted
parts A1z and Azz2, respectively.

We may regard the measurements {y;,y2} as the result
of two experiments: the data with subscript ; arises from
Experiment I while the data with subscript 2 arises from Ex-
periment II.

n =
V2 =
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The goal is to estimate the unknown vectors (21, 22) and,
consequently, the uncorrupted parts (d;,d), from the noisy
measurements {y1,¥2}. The estimates of (21, 22) will be de-
noted by (%1,%2). Accordingly, the estimates of (d1,d2) will
be computed via dy = A1% and (ig = Az%2. The correspond-
ing estimation errors will then be given by 91 = y; — 4%
and U7 = yp — Az %2,

The criterion we shall use for the determination of (21, 22)
will admit an interpretation in terms of oblique projections.
For this reason, we shall use the shorthand notation WOP
to refer to the resulting so-called weighted-obliqgue-projection
problem.

We first state a simplified version of the WOP problem.
The estimates (21,%;) are to be chosen as the stationary so-
lution of the two-variable cost function

Jiz1, 2] = [ ~ A1z} W1 [z — Ap2a], (3
where W is a given invertible weighting matrix (possibly non-
Hermitian). The reason for choosing this criterion is that
it leads to a solution that exhibits a decoupling property as
explained in the sequel.

Indeed, £, (27) is obtained by annihilating the gradient
of J [z, 22] with respect to 23 (2}). This leads to the linear
systems of equations (also known as oblique orthogonality
conditions)

AIW=* [y - A151] =0, A;W"l [y2 — A222] = 0.

Let A; and A2 denote the column spaces of the matrices As
and A3, respectively. It thus follows from the above condi-
tions that ©; is W—"—orthogonal to A2 and 4o is W—1—
orthogonal to \A;.} Assume, for convenience of explanation,
that W is the identity matrix. The above facts can then be
interpreted as follows: (i) The estimate d; is chosen from the
space A; (where d lies) in such a way that the resulting error
vector, 71, is orthogonal to the space A2. (ii) Likewise, the
estimate d; is chosen from the space Az (where d; lies) in
such a way that the resulting error vector, #2, is orthogonal
to the space A;.

More generally, we may consider the two-variable cost-
function
Jlz,22) = 2107 25 + [y ~ A1z " Wl [y ~ A222),  (4)
where I1 is a given invertible weighting matrix (possibly non-
Hermitian). In this case, and assuming the invertibility of the
matrix [H"l + A}W-? A2] , the unique stationary solution is
given by the expressions

fo= [0 4 A3wW—r 4] T AWy, ®)
= I+ AAW1 4,7 AT Wy, (®

1Two column vectors p and g are said to be R-orthogonal
if p*Rg=0.



It also follows that the value of (4) at its stationary solution
is equal to y} [W + AoT143] ™" 5.

A point in favor of the modified criterion (4) is that unique-
ness of a solution now requires the invertibility of the matrix
[H‘l + A;W‘lAz] . This is in contrast to (3), which re-
quires the invertibility of AJW—1A4,.

III. - AN EQUIVALENT ESTIMATION
PROBLEM

We now introduce another estimation problem whose (unique)
stationary solution will turn out to have the same expression
as (5) and (6). We shall refer to it as the equivalent esti-
mation (EE) problem. This problem may be formulated in a
stochastic setting, where the variables of interest are assumed
random. For generality, however, we shall allow the variables
to lie in an abstract linear vector space, say M.

The space M is required to satisfy two simple require-
ments: (i) M is linear over C, the set of complex num-
bers, and (ii) M possesses a bilinear form, < .,. >, such
that for any a,b,c € M, and for any o, € C, we have
<oaa+pbec>y=a<a,c >y +8 < b,c >p and
< b,a >,=< a, >% - The space of random variables
with the bilinear form < P,q > = EPQ* is a prominent
example. [Note that we are using boldface letters to denote
the variables of an EE problem].

The EE problem can be formulated as follows. Consider
column vectors {y1,¥2,V1,V2,2%1,Z2} that are linearly re-
lated via the expressions y; = A12; + V; and Y2 = A22; +
V2, for some matrices (A4;,A42), and where the individual
entries of the column vectors {y1,y2,V1,Vz, 21, Z2} are all
elements of M.

The variables {V1,V2} and {Z;,Z2} can be regarded as
having cross-Gramian matrices {W,II}, W =< v;,v; > Mo
IT =< 23,21 > p, along with the conditions < %3, Vs > =
0 and < Z3,V; > = 0. In a stochastic setting, this means
that the noise variables of one experiment are uncorrelated
with the parameters of the other experiment. Under these
conditions, it follows from the linear models that the cross-
Gramian matrix of (¥2,¥1) is < ¥2,¥1 >m= AlIAY + W,

Let J(K) denote the two-variable cost function J| [K1,K2) =
< 23 - K1Y1,22 — K2Y3 >m. The equivalent problem is
one that estimates z; from {y1, A1} and 2, from {y2, A2}
via linear relations of the form

zl =Kj‘_,y1y i? =Kgy21

where (K?, K3) are chosen as a stationary solution of J[K}, K>)].

It is immediate to verify, under the assumption of an in-
vertible cross-Gramian matrix (AzI14} + W), that the unique
estimates Z; and Z, are given by the expressions

% [+ asw—a ] Wy, (@)
B2 = [+ atw=14] 7 a3w-ly,.  (9)

IV. RELATIONS BETWEEN THE WOP
AND THE EE PROBLEMS
Comparing expressions (7) and (8) with (5) and (6), we see
that if we make the identifications: Z; — 1, 22 & 2, ¥; «
¥1, Y2 < ¥2, then the expressions coincide. This means that
the WOP problem and the equivalent problem have the same
expressions for the solutions, (%1, 22) and (2,, %2).

The significance of this fact is the following. It often hap-
pens in applications that one is interested in solving estima-~
tion problems of either forms (3) or (4). Particular examples
arise in instrumental-variable methods and in higher-order
spectra analysis [2, 6] (though not in such an explicit form
- see, e.g., Sec. VIIL. ahead). On the other hand, problems
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of the EE type will be shown here to lead, in the presence of
state-space structure, to what we shall call an obligue Kalman
filter. By relating the solutions of the WOP and EE prob-
lems, we shall then be able to apply Kalman-type algorithms
to the solution of the WOP problem. This is particularly use-
ful since it not only allows us to interpret results in other areas
as special instances of the oblique Kalman filter, but it also
allows us to exploit the wealth of results that are available in
the standard Kalman filtering literature. An example to this
effect was given in (8] for the special case of positive-definite
quadratic cost functions, where a close link was established
between known results in Kalman filtering theory and more
recent results in adaptive filtering theory. In particular, it
was shown in [8] that once such an equivalence relation is
established, the varied forms of adaptive filtering algorithms
can be obtained by writing down different variants of the
Kalman-filter. One may therefore expect a similar situation
in the oblique case in view of the relation between the WOP
and EE problems.

V. INCORPORATING STATE-SPACE
STRUCTURE

Now that we have established a relation betwee the two basic
estimation problems, WOP and EE, we shall proceed to study
an important special case of the equivalent problem.

More specifically, we shall pose an equivalent estimation
problem that will be of the same form as the one studied in
Sec. IIL., except that the associated matrices A; and A, will
have considerable structure in them. In particular, they will
be block-lower triangular and their individual entries will be
further parameterized in terms of matrices

{Fi1,Gi1, Hip, Fi, Gig, Hi 2}
that arise from an underlying state-space assumption.
Consider vectors {¥:,1,Xi,1, Wi 1, Vi1, ¥i2, Xi 2, W2, Viz },
all with entries in M, and assume that they satisfy the state-
space equations

Xit11 = FiaXi1 +Giiw;,,

Yian = HiaXi1+Vi1, i>0, (9)
Xit12 = FiaXi2 + G2,

Yi2 = Hi2Xi2+Vi2, 120, (10)

where {F;3,H;,1,Gi;1} are knownn x n, pxn, andn x m
matrices, respectively. Likewise for {Fi2,H;i32,Gi2}. ltis
further assumed that

;2 Uj1 Q,‘é",‘ 0 0
< Viz .| Vi Sm= 0 Ris; o0 |,
Xo,2 Xo,1 0 0 Ilp

where §;; is the Kronecker delta function that is equal to
unity when { = j and zero otherwise.
The state-space structure (9) leads to a linear relation be-

tween the vectors {yi1} and the vectors {Xo,1, 1,1}

Indeed, if we collect the {y;,1}{L, and the {v;, L, into
two column vectors, y; = col{'yo,l, .o ¥N1} and V; =
col{Vo1,...,Vn,1}, and define

ZN,1 = col{Xo,1,U0,1,...,UN=1,1} = col{Xp,1,1},

it then follows from the state-space equations (9) that y; =
A1ZN, + V1, where Ay is the block-lower triangular matrix

Ho
Hl,l-F;{o'o] Hi,1Go,1
Ha, FIVO Hy F G,

HN,lFl(N-l'o] HN,1F1[N-1'1]G0,1 oo HyaGn_1,



Here, the notation o ST > j,standsfor F; 1 Fi_31...Fj1.
A similar remark hoids for the second state-space equations
(10), thus leading to ¥z = A2Zx 2 + V2.

Moreover, the cross-Gramian matrices of the variables
{ZN,1,V1,Y1} and {Zn,2,V2,¥2}, 50 defined, are easily seen
to be < Zn2,%N3 DM = (o ®Qo... » Qn—y) and
< V2, Vi > = (Ro® R1®...® Rn). More compactly,
we shall write < ZN2,%n,3 D= Tand < v2,V1 >y=W,
where the {II, W} are the above block diagonal matrices.

We can now pose the problem of estimating zZy,; from
the variables {¥0,1,¥1,1:---,¥N,1}, a8 explained at the end
of Sec. III. The solution is denoted by Zy,;|x and may be
globally expressed, in the unique case, as (¢f. (5))

iN,lIN = [1’1"" -}-A;‘V—"Al]ml A;W"yl. (11)
Likewise,
Enon = [+ AW, 7 AtW-ly,. (12)

We are, however, interested in a recursive construction of
the estimates Zy,;y and Zy ;)y, namely one that allows
us to update 2N,1|,'_.1 to iN,lh’v and iN,QIi—l to iN.Zliv for
t=0,1,...,N. Here, the ﬁN,m denotes the linear
estimate of Zy,; that is based on the data up to time i,
{¥o,15:-,¥ia}

Let R, denote the cross-Gramian matrix < ¥2,¥1 >um=
W + A,IIA}. It can be shown that a recursive algorithm is
possible as 10:15 as Ry is a (block) strongly regular matrix.
In this case, the resulting (smoothing) algorithm is the fol-
lowing.

e

Theorem 1 Assume Ry is (block) strongly regular and siart
with iN,l,'-l = iN,ﬂI—l =0. Then, fori=0,...,N,

= Znai-1 + Kein HRC €ia,

% . d -1 .
Zngli-1 + KeioH R, €i2,

ZNa)i

ZNai =

m i
where K3 0,1 = o | = K:o0,2 and

o
Keip10=Ksin [F2 ~ Ki2R7IH )" + [ ‘I) ] QiGia,

0

Keit12 = Kaia [Fia ~KiaR7$Hia)" + [ I ] QG4
0

The identity matrices in the recursion for either K; iy1,1 or
K i41,2 occur at the positions that correspond to the en-
tries W3 and W; 2. Moreover, the {€;1,€;2} are computed
via the following so-called obligue Kalman filter: start with
X0,11~1 = Xg 2~y = 0, Po = Ilo, and repeat for i > 0:

€, = Yiy—-Hiaki), €2=Yi2~HiXi2,
Xipy1n = Fiakipi+KiaRjjei,
Xip12 = Fiakip +KiaR7jeia,
Rei = Ri+HisPH},,
Kin = FaP{HS,, Ki2=FiaPH{,,
Piys = FipPiFy +GiaQiGly - KiaRJIK},.

Two remarks are due here. First, the successive Zy,)
havetheform Z y,5); = col{Xo 11> Wo,14ir- - ) Wiz1,11050,- 1O}
where Xg 1|; denotes the linear estimate of Xo,1 that is based
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on {Yo,1,..,Yia}. Likewise, 0 ,); denotes the linear esti-
mateof 11,1 that is based on the same vectors {Yo,1,...,¥i,1}.
We shall therefore write Zy i = col{%; 1,0, ...,0}, where
Ziy1 = col{XQ,g,ut)'], ey Wiy } A similar remark holds
for iN.le' and we write Zy 5; = col{i,"zl,',o, ...,0}.

Secondly, the oblique Kﬁmm filter can be regarded as
an instrument that “uncorrelates” the input data: it trans-
forms the given “correlated” data {y;1,¥:,2} into two sets
of “uncorrelated” data {€;,1,€;2}. Moreover, it consists of
two blocks: one block processes {y;,1} and provides {€;,}
and the other processes {y; 2} and provides {€;2}. The two
blocks do not share the observations vectors {¥i,1,¥:,2} but
rather the underlying state-space structures.

VI. A RECURSIVE WOP PROBLEM IN
STATE-SPACE FORM

Now, in view of the discussion in Sec. IV., the solutions
Znanv and Zy gy have the same expression as the solu-
tions iN,llN and 2N,2|N of a related WOP problem. In-
deed, it is rather immediate to write down the WOP prob-
lem whose stationary solution (£x,11n £y,2n ) matches the
above (Zy,3yns .2y ); its cost function takes the form

*
JNEJ[ZN,,,zN,,]=[ 0. ] -1 [ 02 ] +

(a2 ]) v (m-a2])

subject to the state-space constrains zi411 = Fi1%iy +
Giaui,1 and Tig1,2 = F 272 + Gi2ui,2. Here

0,1

Zo,1 9,2
Uo,1 up,2
ZNa = . y N2 = . ,
UN-1,1 UN-1,2

and 1 = Mo ® Qo...®QN-1), W = (Ro® ... ® Rn).
Equivalently, using the state-equations, we can rewrite Jy as

N-1
JIN =123, 1'[0'14:0,2 + E u;_lQ;‘u,',z-i-
=0

N
Y (i = Hinzin) Ry (v - Hyawia),
3=0
subject to the same state-space constraints. Likewise, the
cost function of the WOP problem whose stationary solution
{#i,11i» %i,2)i } matches the {Z; 1};, %2 } is given by
i1
Ji =335 %02 + ) ula Q7w
i=0

L]

3 Wi - Hjazia) Ry (wia - Hiazia),

J=0
subject to the same state-space constraints.

1t is also clear from Sec. IV. that the recursions of Theo-

rem 1, with the properidentifications 2y 11; « £§,11i, Ex,2)i ~
ENppi Vi < ¥its Yi2 < %2, Wi & uig, Wig & ui2,
can be used to compute the stationary solutions {3; 1), %; 2/ }
of J;. In particular, we also have that the stationary solu-
tions {5,‘,1“,5"'2"} are related to the {EN,!liviNﬂll'} as fol-
lows: 2y, = col{z“‘-_m,o} and 2y, = col{3 5,0}



ARRAY ALGORITHMS FOR
OBLIQUE ESTIMATION

Many computational variants to the oblique Kalman filter of
Theorem 1 can be developed, by borrowing on the wealth
of material that is available in the literature on the classical
Kalman filtering problem. In particular, an attractive vari-
ant is the class of array algorithms. In this case, one forms a
prearray of numbers and proceeds to triangularize it using el-
ementary rotations; the rotations may be unitary, hyperbolic,
or coupled. The relevant details will be pursued elsewhere.
Here, we shall only provide an illustrative example that as-
sumes G;; = Gi2 = 0 in the state-space models (9) and
10).
( ')I‘o begin with, we first note that the oblique Kalman re-
cursions of Theorem 1 require that a Riccati variable P; be
explicitly propagated via a Riccati recursion. An alternative
algorithm that avoids this step, and which is more amenable
to parallelizable implementations, is to develop an array vari-
ant. One such variant is what we shall call the ertended
obligue information filter. It can be derived as follows: in-
troduce lower-upper triangular factorizations of the matrices
Pl'v Qiy Ri’» and Re.i’ Viz'v
Py =LpiUpi, Qi=LgilU,;,
Ri =Ly iUr;i, Re,i = LeiUey,

and form the two prearrays that appear on the left-hand side
of the equations shown below. Then choose rotation matrices
©; and ['; that satisfy two constraints: (i) they are coupled,
i.e., they satisfy ©;I'f = I and (ii) they annihilate the (1,2)
block entries of the prearrays. Examples to this effect can be
found in [9].

The claim is that once the prearray entries are processed
by these rotation matrices, the quantities that appear in the
postarrays on the right-hand side are the ones indicated be-
low:

VII.

FR'Ly; FUH!LTY
Xi2Lyd  ¥RLUS I =
0 L} ¢

FiaUz, 0
Lo 0
Xir12lg i1 i 2 ;:l
R7HGFIUs.,  UZE |
,:,.‘4.1 “Hpil

FiiUpd FrHLUS

e '
x:,l Up,i yl'.,l Lr,: ;=
0 Ul
E,?Lp,i 0
-1
Upit . 0
- - —
X1 Upin el L;;
— — Ll
R7HinFiy Lpiyy L}
Lp,i41 —Rpi2

Moreover, the matrices (Ky,i,1,Ky,i2) are normalized gain

matrices that allow us to update the state-estimates as follows

Kiy1g = FaRii+KRpial;iein,

Xip12 = FiaXip + RpiaUsleis.
In other words, the array equations allow us to update the
gain matrices without explicitly requiring the Riccati variable
P;. Alternatively, the state-estimates can also be evaluated
from other entries in the postarrays such as

- P ~1 -
Xiva = Upap [X51a050]7,

- - L
Lpi41 [x.’+1,2Lp,:+1]

Rig1,2
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AN APPLICATION TO
INSTRUMENTAL VARIABLE
METHODS

Consider a collection of observations that are linearly related
to an unknown vector z1, say ¥ = A;z; + v1. The least-
squares estimate of 2; is known to be (assuming A, is full

rank)

VIII.

5 = [AlAd'Alm,
z1 + [A;All_l A;'ul.

The ‘above solution does not provide a consistent estimate
since, in general, i.e., imy_ o 2; # 2;. Consistency would
often require a condition of the form (e.g., {1, pp.23-24] and
[3, Ch. 7]) limy_.c A A}v1 = O, which can also mean that
the noise sequence must be white.

A classical procedure that provides consistent estimators
is to employ instrumental variable methods. In this context,
the estimate for z; is computed by an expression of the form
(compare with (13))

2 [A3 A1) A3u,
21 + [A3A1]7 ASwr

where the new matrix A3 is chosen so as to result in an in-
vertible matrix A3 A; and such that limy ., %A;ul = 0.
Expressions similar to (14) also arise in HOS analysis, where
the choice of A3 is suggested by the problem formulation {6,
Chs. 7, 9].

Comparing (14) with our earlier expression (5) we see that
the instrumental variable estimate can be interpreted as an
oblique estimate with a weighting matrix W = I and I1 ~—
ool. This interpretation is not new. It has been noted earlier
in the literature, though from a very different point of view
(e-g-, [4]). Here we shall pursue this connection from a state-
space perspective (along the same lines of [8]). In particular,
we shall derive a new coupled array implementation for the
IV method that avoids the need for backsubstitution steps,

We can also incorporate apriori information, as well as
weighting, into the statement of the problem in much the
same as we did earlier in Sec. II. We would then require the
invertibility of a matrix of the form [I'I"‘ + A;W"‘All in-
stead of 43 A4;.

(13)

]

(14)

The IV (and the related HOS) problem is therefore related
to the computation of one of the entries of the stationary so-
lution of a two-variable cost function. It can also be stated,
with general apriori information, in state-space form as fol-
lows: given the state-space constraints

Titi1 T Ty ¥ = AiaTig +vi, o1 = 21,

Tit1,2 = Ti2, Y2 = Ai2%i2 +vi2, T2 = 22,
with known {A;1,4i2,¥i,1,Io}, determine the estimate of

21 that corresponds to an entry of the saddle solution of the
cost function J [21,23] =

N
25,1115 20,2 + E lvia = 451254]" lvj2 ~ 4j2752]. (15)
1=0
Here, the {y; 2,2} are simply auxiliary quantities. But
in other contexts, such as in higher-order spectral analysis
methods, the instruments are often known.2

Specializing Theorem 1 to the above state-space constraints
leads to the standard recursive IV procedure for estimating

2More general cost functions, say with exponential forget-
ting factors, can also be handled as in [8].



ci(2)

;i (3)

h;(3)

yi (1)

Figure 1: A coupled array for instrumental-variable and HOS parameter estimation.

21, where we now have 2; = &y41,: start with &, =
0, Py = Ilp, and repeat: e;1 = vig — Ai1&i, g1 =
#ig + PPAY R jein, Pigr = P - P.'A:JR:,'I-A"’QF,‘, and
Rei=I+AipPiA};.

Once a connection with the state-space framework is made
explicit, many algorithmic variants can now be applied to the
IV and HOS contexts, in much the same way as was developed
in the standard RLS problem in [8].

Indeed, translating the (information) array equations of
Sec. VIL to the IV problem leads to the following alternative
scheme: form the prearrays shown below and then triangu-
larize them by choosing coupled rotations ©; and I'; (i.e.,
T =1):

—
pi+1
L

Ly A e _[L
[ % e[
Ala

P+l
-1 -1
[ L ,;'j‘—! * ] 9" = [ 2 Up’i.-;ll * OI/—. ]
TiaYps ¥ Tit11pis1 il
The quantities obtained in the postarray can be used to form

the prearrays for the next time instant, as well as for the
update of the IV estimate,

0
-Kp,i,l

Bi411 = Big+KRpialiieis. (16)

This solution avoids the need for a backsubstitution step,
which is usually needed to solve a linear system of equations
of the form (A3A1)%1 = A3y, asin (14). An alternative pre-
sentation of this result in the context of (structured) matrix
factorization can be found in [9].

For the sake of illustration, assume the A;; and A;; are
row vectors, say 1 x 3, Ai1 = [ hi(1) Ri(2) hi(3) ] and
Aiz = [ ci(l) «ci(2) <i(3) ] . Assume, accordingly, that
vi,1 and L:j ei,1 are scalar quantities, denoted by y; () and
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&1(3), respectively. Then the above array equations admit a
coupled implementation as depicted in Figure 1 for the special
case n = 3. The figure consists of three triangular arrays and
one linear array (see also [9]).
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