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Abstract—We study the relation between the solutions
of two minimization problems with indefinite quadratic forms.
‘We show that a complete link between both solutions can be
established by invoking a fundamental set of inertia condi-
tions. While these inertia conditions are automatically sat-
isfied in a standard Hilbert space setting, they nevertheless
turn out to mark the differences between the two optimiza-
tion problems in indefinite metric spaces. They also include,
as special cases, the well-known conditions for the existence
of H%®-filters and controllers.

I. INTRODUCTION

Given two invertible Hermitian matrices {II, W}, a column
vector y, and an arbitrary matrix A of appropriate dimen-
sions, we study the relation between the following two mini-
mization problems:

mjn [z‘rl‘lz +(y~ A2 W (y - Az)] , (1)

where z is a column vector of unknowns, and

min {1 - KATl - TIA*K* + K[ATLA® + WK}, (2)

where K is a matrix. The symbol “+” stands for Hermitian
conjugation. Both cost functions in (1) and (2) are quadratic
in the respective independent variables z and K, and they
can also be rewritten in the following revealing forms:

[+ ] [ -1 4 A*W-14 —,:;,v_vl—l ] [ ; ]

~-W-ig

n Iia* I
[1 -k] [ ATl AlIA* + W ] [ -K* ] @)
where the central matrices are in fact the inverses of each
other.

Moreover, and contrary to standard quadratic minimiza-
tion problems, the weighting matrices IT and W are allowed
to be indefinite. For this reason, solutions to (1) and (2) are
not always guaranteed to exist. However, when they exist, we
shall show that the expressions for the solutions, and the con-
ditions for their existence, can be related via a fundamental
set of inertia conditions. Here, by the inertia of an invertible
Hermitian matrix X, we mean a pair of integers, denoted by
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I4(X) and I_(X), that are equal to the number of strictly
positive and strictly negative eigenvalues of X.

The significance of the relations to be established between
problems (1) and (2) is the following. It often happens in
applications that one is interested in solving quadratic prob-
lems of the form (1), with indefinite weighting matrices. A
particular example that has received increasing attention in
the last decade is the class of H ®°-filtering and control prob-
lems - see, e.g., the recent book [GL95] for more details and
extensive references on the topic. In this context, the I ma-
trix in (1) is further restricted to be positive-definite and
the W matrix is indefinite but of the special diagonal form
W = diag.{~~21, I}, for a given positive constant 4. Here
we shall treat the general class of optimization problems sug-
gested by (1) where both {II, W} are allowed to be arbitrary
indefinite matrices.

On the other hand, problems of the form (2) are character-
istic of state-space estimation formulations, where a so-called
Kalman filter procedure is available as an efficient computa-
tional scheme for determining the solution in the presence
of state-space structure, as pointed out in [HSK93]. By re-
lating the solutions of (1) and (2) we shall then be able to
apply Kalman-type algorithms to the solution of (1), as well
as obtain a complete set of inertia conditions that will auto-
matically test for the existence of solutions to (1), without
discarding the available information from the solution of (2).

II. AN INERTIA RESULT FOR LINEAR
TRANSFORMATIONS

We first establish a useful inertia result that tells us how the
inertia of the matrices Il and W is affected by transformations
of the form (ATIA* + W) and (I1-1 + A* W —14), for arbitrary
matrices A of appropriate dimensions. The reason for choos-
ing these transformations is because the positivity of these
matrices will be shown later to be equivalent to necessary
and sufficient conditions for the solvability of the problems
(1) and (2). Hence, by studying how their inertia depends
on {II, W}, we shall be able to conclude how the choice of
{1, W} affects the solvability of problems (1) and (2). The
following three results follow by invoking the Schur decom-
position of the central matrix in (3) (viz., the matrix C in
(4) below), Sylvester’s law of inertia [GV83], and the matrix
inversion formula.

Lemma 1 Given {II, W} Hermitian and invertible. Then,
for any matriz A of appropriate dimensions, the block matriz

fa* ] . )

cal m
=lan  anac+w



has the same positive and negative inertia as the block diag-
onal matriz (I1@ W).

Lemma 2 Given {II, W} Hermitian and invertible. Then,
for any matriz A of appropriate dimensions, (AIIA* + W)
is invertible if, and only if, (1171 + A*W 1 A) is invertible.

Theorem 1 Given {II, W} Hermitian and invertible. Then,
for any mairiz A of appropriate dimensions, the following
inertia equalities hold,

LMeW) = L[+ A*W-14)@ (AIA* + W),
I_(le W) I-[(II! + A*W1 4) @ (ATIA® + W),
if, and only if, (ATIA* + W) is invertible.

II1.

THE INDEFINITE-WEIGHTED
LEAST-SQUARES PROBLEM

We now focus on problem (1), which we shall refer to as the
indefinite-weighted least-squares problem (IWLS, for short).
The indefiniteness arises from the presence of the indefinite
weighting matrices {II, W}. Consequently, a bilinear form
a*W=1p is not guaranteed to satisfy the positivity condition
a*W—1g > 0 for all nonzero column vectors a. We thus say
that C™, coupled with a bilinear form a*W—1b with W indef-
inite, is an indefinite metric space. More generally, an indef-
inite metric space {K, < .,. >} is defined as a vector space
that satisfies two simple requirements (see, e.g., [GLR83] for
more details): K is linear over the field of complex numbersC,
and K possesses a bilinear form, < .,. >x, such that for any
a,b,c € K, and for any o, 8 € C, we have < aa + f8b,¢c >x=
a<ac>x +PB<bc>k,and < ba >x=<a,b>).

Let J(z) denote the quadratic cost function that appears
in (1). Every 2 at which the gradient of J(z) with respect to
z vanishes is called a stationary point of J(z). A stationary
point £ may or may not be a minimum of J(z).

Theorem 2 The stationary points Z of J(z), if they ezist,
are solutions of the linear system of equations

M~ 4+ A*W™i4): = AWy, (5)

There exists a unigue stationary point if, and only if, [[I-* +
A*W 1 4] is invertible. In this case, it is given by

p= [0 4 AWt T ATw Yy, )
and the corresponding value of the cost function is
J(3) = y* [W + ALTA*] 1y, (7

Moreover, this unigue point s & minimun if, and only if, the
coefficient matriz is positive-definite,

(I~ 4+ A*W-14) > 0. (8)

IV. THE EQUIVALENT ESTIMATION
PROBLEM

We next focus on problem (2), which we shall refer to as the
equivalent estimation problem (or EE, for short). It arises in
the following context. Consider column vectors {y,V,2} that
are linearly related via the expression Y = AZ + v, for some
A, and where the individual entries {¥;, v;,%;} of {y,v,2}
are all elements of an indefinite metric space, say K’ (note
that we are using boldface letters to denote the variables of
the EE problem). The variables {Vv,Z} can be regarded as
having Gramian matrices {W,II} and cross Gramian zero,
W =< Vv,V >xi, 1 =< 2,2 >x1, and < %,V >x/= C.
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Under these conditions, it follows from the linear model that
the Gramian matrixof Y is equalto < ¥,¥ >xi= AIllA*+W.
Let J(K) denote the quadratic cost function that appears in
(2). It is then immediate to see that J(K') can be interpreted
as the Gramian matrix of the vector difference (z - KYy),
viz.,, J(K) = < Z2 - Ky,zZ — Ky >x:. Every K° at which
the gradient of a*J(K)a with respect to a*K vanishes for all
a is also called a stationary solution of J(K). A stationary
point K° may or may not be a minimum.

Hence, solving for the stationary solutions K° can also
be interpreted as solving the problem of linearly estimating
Z from y, denoted by Z = K°Yy. This estimate is uniquely
defined if K° is unique. It is said to be the optimal linear
estimate if K° is the unigue minimizing solution.

Theorem 3 The stationary points K°, if they exist, are so-
lutions of the linear system of equations

TIA* = K°[AllA® + W]. (9)
There ezisis @ unique stationary point K° if, and only if,
(ATIA® + W) is invertible. In this case, it is given by

K° = [m-t 4+ a*w-1a] 7 arw, (10)
and the corresponding value of the cost function is
J(K°) = [0~ + A*w~14] 7. (11)
The unique linear estimate of the corresponding Z is
i= [0+ A w-ia] T AWy, (12)

Moreover, this unigue posnt K° is ¢« minimum (end, cor-
respondingly, % is optimal) if, and only if, the coefficient
matriz is positive-definite, (AIIA* + W) > 0.

V. RELATIONS BETWEEN THE IWLS
AND EE PROBLEMS

Comparing expressions (6) and (12) we see that if we make
the identifications: Z « z and Yy & y, then both expressions
coincide. This means that the IWLS problem and the equiv-
alent estimation problem have the same expressions for the
stationary points, # and Z. But while a minimum for the
IWLS problem (1) exists as long as (II™! + A*W=14) > 0,
the equivalent problem (2), on the other hand, has a mini-
mum at K¢ if, and only if, (W + AIIA*) > 0.

This indicates that both problems are not generally guar-
anteed to have simultaneous minima. In the special case of
positive-definite matrices {Il, W}, both conditions

(™ 4+ A*W-14) >0 and (W + AlIA*) > 0,

are simultaneously met. But this situation does not hold for
general indefinite matrices IT and W. A question of interest
then is the following: given that one problem has a unique
stationary solution, say the EE problem, and given that this
solution has been computed, is it possible to verify whether
the other problem, say the IWLS problem (1), admits a min-
imizing solution without explicitly checking for its positivity
condition (IT~! + A*W=14) > 0?7 The answer is positive and
the next two conclusions clarify this issue.

Lemma 3 The IWLS problem (1) has a unigue stationary
point 3 if, and only if, the equivalent estimation problem (2)
has a unigue stationary point K°.

Theorem 4 Given invertible and Hermitian matrices Il and
W, and an arbitrary matriz A of appropriate dimensions, the
IWLS problem (1) has a unigue minimizing solution 2 if, and
only if,
I- W + AllA*]
Iy (W + AllA®]

where n X n is the size of I1.

I_[mew],
Ly [MeW]-n,



The importance of the above theorem is that it allows us
to check whether a minimizing solution exists to the IWLS
problem (1) by comparing the inertia of the Gramian matrix
of the equivalent problem, viz., (W + AIlIA*), with the in-
ertia of (I @ W). This is relevant because, as we shall see
in the next section, when state-space structure is further im-
posed, we can derive an efficient procedure that allows us to
keep track of the inertia of (W + AIIA*). In particular, the
procedure will produce a sequence of matrices {R. i} such
that

Inertia (W + AIIA*) = Inertia (Re0 ® Re,1 ® Rep2...).

The theorem then shows that “all” we need to do is compare
the inertia of the given matrices I1 and W with that of the
matrices {R, ;} that are made available via the recursive pro-
cedure. Equally important is that this procedure will further
allow us to compute the quantity Z. But since we argued
above that Z has the same expression as #, the stationary
solution of (1), then the procedure will also provide 2.

VI. INCORPORATING STATE-SPACE
STRUCTURE

Now that we have established the exact relationship between
the two basic optimization problems (1) and (2), we shall
proceed to study an important special case of the equivalent
estimation problem (2).

More specifically, we shall pose an optimization problem
that will be of the same form as (2) except that the asso-
ciated A matrix will have considerable structure in it. In
particular, the A matrix will be block-lower triangular and
its individual entries will be further parameterized in terms
of matrices {F;, G;, H;} that arise from an underlying state-
space assumption.

We consider vectors {y;,X;,W;, V;}, all with entriesin K’,
and assume that they are related via the state-space equa-
tions

Xiy1 = FiXi+ G,
yi HiXi+Vi, 120, (13)

where F;,H;, and G; are knownn xn, pXn, and nx m
matrices, respectively. It is further assumed that
u;
i}

u Qibiy (1] 0
< Vi , v; St =
Xo Xo

0 Rii; O

0 0 Ip
where 6;; is the Kronecker delta function that is equal to
unity when i = j and zero otherwise. The matrices {Q;, R;,Ilp }
are possibly indefinite.

The state-space structure (13) leads to a linear relation be-
tween the vectors {y;} and the vectors {Xo, ui}ﬁ__zl . Indeed,
if we collect the {y;}¥, and the {V;}}¥ into two column
vectors, ¥ = col{Yo,...,¥Y~N} and V = co{Vy,...,Vy}, and
define Zy = col{Xo,Wo,...,WN_1} = col{Xg,u}, it then
follows from the state-space equations that y = AzZy + V,
where A is the block-lower triangular matrix

It

Hy
H, Flo.9} H;G,
Al H,Fl1.0] H,FlG, .

.
. . .

3 HNF[N'I'O] HNF[N—I’IIGQ HNnGNnoy

Here, the notation F1iJl, ¢ > j, stands for F;F,_; ... Fj.
Moreover, the Gramian matrices of the variables {Zy, vV} so
defined are easily seen to be

<ZN,ZN Ok = (10 @ Qo...0QN-1), (19)
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<V, Vo> = (Ro@R;[@...@R)\r). (15)
More compactly, we shall write < Zy,Zy >xr= II and
< V,V >xi= W where the {II, W} are the block diagonal
matrices in (14) and (15).

We can now pose the problem of estimating Z from the
variables {¥0,¥1,...,YN}, as explained prior to the state-
ment of Theorem 3. This is equivalent to a problem of the
form (2). The solution is denoted by 2 x|y and may be glob-

ally expressed, in the unique case, as (¢f. (12))
Ey = [T+ 4*W-14] 7 aw-ly. (16)

We are, however, interested in a recursive construction
of the estimate Z NN namely one that allows us to update
ZNji—1 to Zy);, for i = 0,1,...,N. Here, the notation 2 yy;
denotes the linear estimate of Zy that is based on the data
up to time ¢, {Yo,...,¥i}.

Let Ry denote the Gramian matrix of the vectory, Ry =<
Y.y >xi= W + AllA*. We have shown in [HSK93] that
a recursive algorithm is possible as long as Ry is a (block)
strongly regular matrix. In this case, the resulting (smooth-

'ing) algorithm is the following.

Theorem 5 Assume Ry is (block) strongly regular and start
with Zyj_y =0. Then, fori=0,1,...,N,

iNli = iNl‘—l + K,,;H,-‘R:'}ei,

where Kz g = [ Io

0 ]and

0
Kz,c'+l = K:,t’ [R - Kp,c'Ho']‘ + 1 QiG{.’
0
The identity matriz in the recursion for K, ;41 occurs at
the position that corresponds to the entry W;. Moreover, the
{€ei} are computed via the following Kalman-type procedure:
start with fto'_, =0, P, =1Ilp, and repeat forsi > 0:
e =Y~ Hik;i_1, Xiyaj = Fikjjig + Kp,i€i,
Ky = FRH!R]}, Rei=Ri+H;P.H},

Piy1 = FBF! + GiQiG! - KpiReiKp ;.  (17)

Two remarks are due here. First, the successive Zy|; have the
form ﬁN’; = Cd{*oli»ﬁoh'v .. vﬁi—llil 0,...,0}, where *0[.’
denotes the linear estimate of Xp that is based on {¥o,...,¥:i}.
Likewise, 01); denotes the linear estimate of U; that is based
on the same vectors {Yo,...,Y:i}. We shall therefore write
2Ng = col{Z},,0,...,0}, where z; = col{Xo,Ug,...,Wi-1}.

econdly, an important fall out of the above algorithm
is that the inertia of the Gramian matrix < y,y >/ is
completely determined by the {R. i}:

Inertia of (W + AIlA*) =

Inertia of (Reo ® Rey @ ... Re,n)-

In summary, by establishing an explicit relation between
both problems (1) and (2), we are capable of solving either
problem via the solution of the other. In the special case of
positive-definite quadratic cost functions, this point of view
was exploited in [SK94, Say92] in order to establish a close
link between known results in Kalman filtering theory and
more recent results in adaptive filtering theory. In partic-
ular, it was shown in [SK94] that once such an equivalence
relation is established, the varied forms of adaptive filtering
algorithms can be obtained by writing down different variants
of the Kalman-filter.

The discussion in this paper, while it provides a similar
connection for indefinite quadratic cost functions, it shows
that a satisfactory link can be established via an additional
set of inertia conditions.



VII. A RECURSIVE IWLS PROBLEM IN

STATE-SPACE FORM
Now, in view of the discussion in Sec. V, the solution Zy|§
has the same expression as the solution Zyjy of a related
minimization problem of the form (1). Indeed, it is rather

immediate to write down the IWLS problem whose stationary
point matches the above Z vy :

Lay Pl
(y_A[ Y ]).W—l (!I-A[ o ])}

Equivalently, using the state-equations, this can be written
as

min
{zo,u0,.-,uN-1}
N N-1
o5 20+ Y (v = Hye;) Ry (v — Hizj) + Y u3Q7u;
=0 =0

subject to x;41 = Fjz;+ Gju;. Likewise, the IWLS problem
whose stationary solution #;j; matches the Z;); is

{s0,ugne ic1}
[ -1
a3llg o + Y (v = Hyz;) Ry (v; ~ Hyzs) + ) uiQ5y;
=0 j=0

subject to x;41 = Fjz; + Gju;. It is now immediate to ver-
ify that, in fact, the strong regularity assumption that we
imposed earlier on the Gramian matrix Ry is not a restric-
tion; it is a necessary requirement if we want to guaran-
tee the existence of all the stationary solutions {;;}. We
shall denote the above cost function that determines %;); by
Ji (20, %0, - -y Uim1).

The following results follow as a consequence of the inertia
statements of Sec. II.

Lemma 4 Let m X m denote the size of eack Q;. Likewise,
let n x n denote the size of Ily. Define

N2 (M ®Qo...0Qn-1), WE(Re®R1®...0 Ry).
Assume (W + AILA*) is (block) strongly regular (i.c., the
Ji are guaranteed to have unique stationary points Z;); for
all0 < i < N). Then Jy has ¢ minimum with respect to
{zo,u0,...,un_1} (i-e., the last stationary point Zy|N is a
minimum) if, and only if,

IL.MeW] = I—{Re,0$-~@Re,N}r

I [H@VV] I+{Re,o®..-®Re,N}+n+mN,
where the matrices {R. i} are recursively computed as fol-
lows: Re; = H;P;H} + Ri, Kpi = F,P;H}R]}

!
Piy1 = FiPF} + GiQiG} — Kp iR iKp;, Po=1lp.

and

An immediate conclusion is the following special case where
the IT matrix is itself positive-definite.

Corollary 1 Consider the same setting of Lemma 4. As-
sume further that TIp > O and the {Q.’}{'_’__Bl are positive-
definite. Then Jy has a minimum with respect to zy if, and
only if,

I-{Ro®...® Ry}
L4{Ro®...® Ry}

I—{Re,O ®...0 Re,N}r
Iy {Re,o ®...0 Re,N}'
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The above results were concerned with the existence of a
minimum for the last cost function Jy. More generally, we
are interested in checking whether each 2;); is a minimum
of the corresponding J;. This is addressed in the following
statement.

Theorem 6 FEack J;, for 0 < i £ N, has a minimum if,
and only if,

I-Mo®Ro] = I-{R.o}, (18)
I Mo®Ro] = I4{Reo} + n, (19)

and, fori=1,2,...,N,
I{Qic1® R} = I-{R}, (20)

Li{Qi-1® R} = Ii{Re} + m. (21)

Moreover, when the stationary solutions (or minima) of the
Ji are uniguely defined, the value of each J; at its unique
stationary solution (or minimum) 3; is given by Ji(%;;) =

Z;=o e.’R:}e;, where i = (yi — Hi&iji—1).

It is also clear from the discussions in Sec. V. that the re-
cursions of Theorem 5, with the proper identifications Z y|; «
ENpi Yi © Yiy Xijioy ¢« Bijim1, Wi > ui, can be used to com-
pute the stationary solutions {z‘.-|,~} of the {J;}. In particular,
we also have that the stationary solutions 7;j; are related to
the Zyy;, given below in the statement of the theorem, as fol-
lows: Zy1; = col{%);,0,...,0}. That is, the leading entries
of Zyiji denote the stationary solution of J; with respect to
{‘"‘0: UPy- ey ui—l}'

Theorem 7 The stationary solutions {2;);} of the {J;} can
be recursively computed as follows: start with Zy|_; =0 and
repeat fori =0,1,...,N:

Ny = 2njio1 + Ko i HIRT) (vi — Higigioa),
where

0

K =K. [F-KRJIH]" +| I |Gy,
0

and &i41); = Fidgjim1 + Kp,i(yi — Hidiji1), $oj—1 = 0.

Remark. It may happen that the last term in the definition
of the quadratic cost function J; also includes the extra tem
u! Qi ui, say

L] 1]
{5 zo + Z(yj - H,-a:j)‘R;l(yj - Hjz;)+ Eu;Q;‘lu, .
=0 =0

In this case, the unknown variable u; only appears in the
quadratic term 4} Q7" 14, and it thus follows that minimiza-
tion with respect to the u; requires the positivity of Q;.
Hence, successive minimization of the J; would additionally
require that the {Q;} be positive-definite, which is a special
case that often arises in the context of H-problems, with
the additional constraint [Ip > 0. It is thus rather imme-
diate to handle this case. All we need to do is to simply
impose a positivity condition on the {Q;}. This motivates us
to consider the following two corollaries.

Corollary 2 Assume further that the {Q;}ﬁ;l are positive-
definite and thatIlg > 0. Then each J; has ¢ minimum with
respect to {xo,up,...,ui—1} if, and only if, for alli,

Inertia{ R;} = Inertia{R.}.
In this case, it follows that P; > 0 for0<i < N.

(22)



The next statement further assumes that the {F;} are
invertible.

Corollary 3 Consider the same setting as in Corollary 2
and assume further that the {F;} are invertible. Then the
following two statements provide equivelent necessary and
sufficient conditions for each J; to have a minimum with
respect to {zo,up,...,%i~1}

(i) All{J;} have minima iff, for 0 i< N,

P~Y 4+ HYRTH; > 0. (23)
(i) Al {J;} have minima iff, for0<i< N,
Pit1 - GiQiG} > 0. (29)

It follows in the minimum case that, for alli, Fiy1 > 0.

Conditions of the form (23) are the ones most cited in
H —applications (see, e.g., [YS91] and the next section).
Here we see that they are related to the inertia conditions
(22) and, more generally, to the conditions of Theorem 6.
The inertia conditions (22) also arise in the H —context
(see, e.g., [GL95][p. 495] and the next section), where R;
has the additional structure R; = (-v2I @ I). Here, we
have derived these conditions as special cases of the general
statement of Theorem 6, which holds for arbitrary indefinite
matrices {ITp, Qi, R;}, while the H% —results hold only for
positive-definite matrices {IIp, Q;} and for matrices R; of the
above form. Note also that testing for (23) not only requires
that we compute the P; (via a Riccatirecursion (17)), but also
that we invert P; and R; a.t each step and then check for the
positivity of P_l +H; ‘R"’ H;. The inertiatests given by (22),
on the other hand employ the quantities R, ; and R;, which
are p X p matrices (as opposed to P; which is n x n). These
tests can be used as the basis for alternative computational
variants that are based on square-root ideas, as pursued in
[HSK94] for the case of H* ~filters.

VIII. AN APPLICATION TO
H*-FILTERING

We now illustrate the applicability of the earlier results to
a particular problem in H*-filtering. For this purpose, we
consider a state-space model of the form
ziy1 = Fizi + Giui , i = Hizi +v;, (25)

where {0, ui, v} are unknown deterministic signals and {; }_
are known (or measured) signals. Let s; = L;x; be a linear
transformation of the state-vector z;, where L; is a known
matrix.

Let 3;; denote a function of the {y;} up to and including
time j. l!‘ r every time instant 1, we define the quadratic cost

function Ji(zo,uo, .- .,u;) = =3Iy Lo+

‘ i i
w0 Y vivi=v? Y Gyt~ Lywi)* Gty —Lyws),
=0 J=0 i=0

where {IIp, Q;} are given positive-definite matrices, and v is
a given positive real number. We would like to determine
the existence or not of functions {40, 31)1,-.-,3n|n} that
would guarantee J; > 0 for0 < i < N.

The expression for J; can be rewritten in the equivalent
form

i
Ji = zaﬂo'jz:o + Eu}‘Q;’u,+

=0

(% -5 (% - (1)

where R; = (- —~~2I @ I). This is a quadratic cost function
in the unknowns {zo,uo0,...,%;}. Therefore, each J; will
be positive if, and only if, it has a minimum with respect to
{z0,u0y+0., u,-} and, moreover, the value of J; at its minimum
is positive.

We then conclude from Corollary 2, and according to the
remark after Theorem 7, that each J; will admit a mini-
mizing solution if, and only if, the corresponding R.; and
R; have the same inertia. In the present context, we have

Ri=(—*1a&1I)and

N nrIr

where P; satisfies the Riccati d:fference equation
Piy1 = F P74+ H!Hi-y*LL] 7 F} + GiQiG
Equivalently, we require
I+HPH: > 0,
(=214 L;PL})~ LiP;H}(I + H;P;,H})" H;P;,L! < O.
If the F; are further assumed invertible, then we also con-
clude from Corollary 3 that the following alternative condi-

tions can be used to guarantee the existence of minima for
the J;:

Pl 4 HYH;-+"2L!Li >0, for 0<i<N.  (26)

We may proceed and show how to determine estimates

il once the existence of minima for the J; are guaranteed.

T(hese estimates have to be chosen so as to guarantee that the

values of the successive J; at their minima are positive. We
shall omit the details here and only state the final recursjons:

§iji = Li [5.1-'-1 +PH}(I + H;P:H!) (i - Hi-i'ili—l)] '
where £;);_; is constructed recursively via #9|_; = 0,

Zig1i = Ky [5»‘.1.‘-1 +PH!I+ HP;H!)  (vi - Hiia|;-1)] .
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