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Abstract—We employ energy-based arguments
to establish a robustness and a convergence result
for a gradient-descent adaptive law in the presence
of both noisy measurements and uncertainty in the
initial guess.

I. INTRODUCTION

Consider a collection of measurements {y(t) = ¢(¢)8}
that are assumed to be linearly related to an un-
known (column) vector of parameters ¢ via (row)
regression vectors {¢(t)}. The objective is to devise
an estimator for 6. A traditional solution method is
to seek a minimization of the quadratic cost func-
tion J(6) £ ||y(t) — #(¢)8|?. This is often achieved
by employing the gradient descent solution (e.g., [1])

é(t) = I'¢*(t)e(t), 6(0) = initial guess, (1)

where )

(t) £ u(t) — ()0() )
is the estimation error, and I is positive-definite.
The symbol * stands for Hermitian conjugation. It
is well-known that if one introduces the Lyapunov
function

V(0) 2 5 ()r-2e(), G@)=06-4@), @3)

then V < 0 and, under additional boundedness con-
ditions on the data (which we shall invoke in the
last section), the error signal €(t) is guaranteed to
converge to zero.

This analysis, while it establishes the convergence
of the error €(t) to zero, it leaves unanswered the
behaviour of the algorithm in the presence of both
measurement noise and uncertainty in the initial
guess, 0(0). Several studies of the noisy case in the
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literature have focused on modifications of the adap-
tation law (1) in order to guarantee that the conver-
gence properties of the modified algorithms are as
close as possible to the convergence properties of (1).
In some cases, the proposed modified laws are con-
siderably more complex than the gradient-descent
solution (1).

In this note, we persist with (1) and show that
a convergence analysis is possible in the presence of
noisy measurements, where the noise signal is fur-
ther required to satisfy certain conditions. In partic-
ular, we show that the analysis that is usually car-
ried out by employing the Lyapunov function V(6)
is still applicable, and that it will allow us to con-
clude that an estimation error e(t) tends to zero.
This error, while it is different from the ¢(t) above,
is nevertheless the natural error signal to be defined
in the noisy case. In the absence of noise, both error
signals e(t) and €(t) will coincide.

As a result of the analysis provided ahead, we
shall also conclude that the gradient-based estima-
tor (1) is a robust solution, in the sense of Hoo-
theory.

II. A PASSIVITY RELATION

We let the measurements {y(t)} be noisy, say y(t) =
&(t)0 + v(t). The definition of the estimation error
€(t) will now include a noise term, since

e(t) = y(t) — $()B() = $(t)0 + v(t) 2 e(t) + v(2),

where we have introduced e(t) £ ¢(¢)0(t); this error
is due to estimating the uncorrupted term ¢(t)8 by
using ¢(t)4(t). In the absence of noise, both (t) and
e(t) are identical. Here, however, they now differ
and e(t) is the natural object of interest since we
are interested in estimating the uncorrupted part of
y(t). We thus proceed with a closer study of the
differential equation (1).



Since 5(t) = —é(t) we obtain

B(t) = —T¢* (t)e(t) = —T¢*(t) [e(t) + v(8)] . (4)

If we now consider the same function V'(6) as in (3),
and use (4), we conclude that

_av
dt

But, for any e(t) and v(t), the term Ie(t) +v(t)]? is
nonnegative, which implies that

e (t)o(t) +v*(t)e(t) > —[e(t)]* — |v(t)|?.

Substituting into (5) we readily conclude that, for
every t, we have

V(t) < @) - le(). (6)

In the special case v(t) = 0, we obtain V(t) < 0
from which convergence of €(t) to zero follows, as
often argued in the literature. In general, however,
we have the inequality in (6). This inequality high-
lights a uniform passivity property of the gradient
estimator (1) (i.e., a passivity relation that holds
for every time ¢ — see also [3, 5]). It shows that, for
every t, the energy of the estimation error, [e(?)]?,
never exceeds the sum of the noise energy, |v(t)|?,
and the (negative) rate of variation of the energy
due to the parameter error, —V(t){

ITL.

In fact, more can be concluded from (6) concerning
the behaviour of the estimation procedure. For in-
stance, if we integrate (6) over a finite interval [0, T
we obtain the following revealing inequality

= 2le(t)|? + e* (t)v(t) + v* (t)e(t). (5)

A CONTRACTION MAPPING

T
{é*(T)r-lé(T)+ / |e(t)|2dt} <

. . T
{0*(0)["16(0) + /0 |v(t)|2dt} (4}

The second line consists of two terms: the total noise
energy over [0,7] and the (weighted) energy due to
the error in the initial guess for §. Likewise, the first
line congists of two terms: the total estimation error

energy over [0,7] and the (weighted) energy due to

the final error in the estimate for 8. The inequality
then establishes the following robustness result: for
the gradient estimator (1), the resulting estimation
error energy (due to e(t) and §(T")) is guaranteed to
never exceed the disturbance energies (due to v(t)
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and 4(0)). In the language of H,,—filtering (e.g.,
[6]), this means that the gradient estimator (1) is
a robust filter (see also [2, 4]): the map from the
disturbances {I'=1/ 25{0),0(-)} to the resulting esti-
mation errors {I'"1/26(T), e(-)} is a contraction,

[6— 6D T-[6 = B(T)) + J le(t)|dt
[6—6(0)*T-1[0 ~0(0)] + [y lo(t)f2dt

We may remark, however, that in Hy, studies, the
extra term §*(T)L~14(T) in the numerator is miss-
ing. This shows that the above ratio is in fact a
stronger inequality, and the usefulness of the extra
term in the numerator is demonstrated in the con-
vergence analysis given below.

IV. CONVERGENCE OF e(t)

To establish the convergence of e(t) to zero, we shall
assume that v € L3N Lo and {¢, ¢} € Lo That is,
v has finite energy over [0, 00) and {v, ¢, ¢} are all
bounded over the same interval. This also implies
Y€ Loo.

The finite energy assumption on v guarantees -
that the right-hand side of (7) remains bounded as
T — o0. We thus conclude that e € L.

It further follows from (7) that, for all T, the
term 6*(T)I~'4(T) is bounded. Hence, {6,6) €

Loo. Using (4) we further obtain § € Leo. It then
follows from the defining relation e(t) = ¢(2)8(t), as
well as from '

6(2) = $(1)(t) + B(1)6(),

that {e,é} € L. In view of Barbalat’s Lemma [7,
p.186] we conclude that lim,_ e(t) = 0.
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