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ABSTRACT

We consider solving multi-objective optimization problems in a dis-
tributed manner over a network of nodes. The problem is equivalent
to optimizing a global cost that is the sum of individual components.
Diffusion adaptation enables the nodes to cooperate locally through
in-network processing in order to approach Pareto-optimality. We
analyze the mean-square-error performance of the diffusion strategy
and show that, at steady-state, all nodes can be made to approach a
Pareto-optimal solution.

Index Terms— Distributed optimization, diffusion adaptation,
Pareto optimality, mean-square performance, convergence, stability.

1. INTRODUCTION

We consider solving a multi-objective optimization problem in a dis-
tributed manner over a network of N nodes. An individual cost
Jk(w) is associated with each node k = 1, 2, . . . , N , where w is
M × 1. These individual costs may not be minimized at the same
location wo. As such, we seek a solution wo that is “optimal” in
some sense for all nodes. In these cases, a more general concept of
optimality—Pareto optimality—is useful to characterize how good
a solution is. A point wo is said to be Pareto optimal if there does
not exist another point w that is able to improve (reduce) any par-
ticular cost, say, Jk(w), without hurting (increasing) all other costs
{Jl(w)}l 6=k. To illustrate the idea of Pareto optimality, let

O , {(J1(w), . . . , JN (w)) : w ∈W} ⊆ RN (1)

denote the set of achievable cost values, where W denotes the fea-
sible set. Each point P ∈ O represents attained values of the cost
functions {Jl(w)} at a certainw ∈W. Let us consider the two-node
case (N = 2) in Fig. 1, where the shaded areas are the sets of achiev-
able cost valuesO. In Fig. 1(a), both J1(w) and J2(w) achieve their
minima at the same point P = (J1(wo), J2(wo)), where wo is the
corresponding minimizer. However, in Fig. 1(b), J1(w) attains its
minimum at point P1, while J2(w) attains its minimum at point P2,
so that they do not have a common minimizer. Instead, all the points
on the heavy red curve between points P1 and P2 are Pareto op-
timal points. For example, if we want to further reduce the value
of J1(w) from point A without increasing the value of J2(w), then
we will need to move out of the achievable set O towards point C.
The alternative choice that would keep us on the curve is to move
to another Pareto optimal point B, which would increase the value
of J2(w). In other words, we need to trade the value of J2(w) for
J1(w). For this reason, the curve from P1 to P2 is called the optimal
tradeoff curve (or optimal tradeoff surface if N > 2) [1, p.183].

Email: {jshchen, sayed}@ee.ucla.edu. This work was supported in part by
NSF grants CCF-1011918 and CCF-0942936.

J2(w)J2(w)

J1(w)J1(w)

OO

PP

(a) Optimal point P .

J2(w)J2(w)

J1(w)J1(w)

OO
P1P1

P2P2

AA

BB

CC

(b) Pareto optimal points.

Fig. 1. Optimal and Pareto optimal points for N = 2.

To solve for the Pareto optimal points, a scalarization technique
is usually used to form a cost function that is the weighted sum of
the component costs:

Jglob(w) =

N∑
l=1

πlJl(w) (2)

where πl is the positive weight attached to the l-th cost. It was shown
in [1, pp.178–180] that the optimal solution to (2) is Pareto optimal
for the original multi-objective optimization problem for any posi-
tive scalars {πl}. By varying the values of {πl}, we are able to get
different Pareto optimal points on the tradeoff curve. Observing that
we can always redefine Jl(w) ← πlJl(w) to absorb the weight πl,
we only need to consider global costs of the form:

Jglob(w) =

N∑
l=1

Jl(w) (3)

Furthermore, we can always use a barrier function to convert a con-
strained optimization problem to an unconstrained problem [1, 2].
For example, suppose there is a constraint pTkw < bk at node k,
where pk is M × 1 and bk is a scalar. Then, we can modify the cost
Jk(w) to be Jk(w)← Jk(w) + φ(pTkw− bk), where φ(x) is a bar-
rier function that penalizes the values ofw that violate the constraint.
Therefore, without loss of generality, we assume W = RM and
only consider unconstrained optimizations. Moreover, we assume
the {Jl(w)} are differentiable and strictly convex so that Jglob(w)
in (3) is also strictly convex and the minimizer wo is unique [3].

There are already a few useful techniques for the solution of
such optimization problems [4–9]. One notable technique is the in-
cremental approach [4, 5]. In this approach, a cyclic path is defined
over the nodes and data are processed in a cyclic manner through
the network until optimization is achieved. However, determining a
cyclic path that covers all nodes is an NP-hard problem [10] and, in
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addition, cyclic trajectories are vulnerable to link and node failures.
Another useful distributed optimization approach relies on the use
of consensus strategies [6–9]. In this approach, vanishing step-sizes
are used to ensure that agents reach consensus and converge to the
optimizer in steady-state. However, in time-varying environments,
diminishing step-sizes prevent the network from continuous learn-
ing; when the step-sizes die out, the network stops learning. In [11],
we generalized our earlier work on diffusion adaptation and learn-
ing over networks [12, 13] to optimize the same form of global cost
functions in a decentralized manner. In the diffusion approach, in-
formation is processed locally at the nodes and then diffused through
a real-time sharing mechanism. In the work [14], it is shown that dif-
fusion networks outperform consensus networks in terms of mean-
square-error stability and performance. In this paper, we show that
the diffusion approach of [11] can also be used to solve such multi-
objective optimization problems, which are common in the context
of multi-agent decision making (see, for example, [2, 15]). With
local cooperation and under constant step-sizes, each agent can ap-
proach global Pareto-optimal decisions within a small mean-square-
error (MSE) bound.

2. DIFFUSION ADAPTATION STRATEGIES

In our previous work [11], we derived diffusion adaptation strate-
gies to minimize (3) when each component function, Jl(w), has a
minimizer at the same wo. Here, we consider the more general case
when the individual minimizers of {Jl(w)} may be different. These
two scenarios arise in different contexts. The scenario of [11] occurs
when the data processed at the nodes are generated by the same un-
derlying model. On the other hand, the situation discussed here ap-
pears in problems where multiple agents have “conflicts of interest”
but wish to coordinate with each other to reach “socially-optimal”
(Pareto-optimal) solutions. This optimization problem can be solved
in a distributed manner using the same class of adaptive diffusion
algorithms derived in [11]. Specifically, for each node k, we imple-
ment: 

φk,i−1 =

N∑
l=1

a1,lkwl,i−1 (4a)

ψk,i = φk,i−1 − µk
N∑
l=1

clk∇wJl(φk,i−1) (4b)

wk,i =

N∑
l=1

a2,lkψl,i (4c)

where wk,i is the local estimate for wo at node k and time i, µk is
the positive step-size parameter used by node k, and ∇wJl(w) is
the (column) gradient vector of Jl(·) relative to w. Moreover, the
nonnegative coefficients {a1,lk}, {clk}, and {a2,lk} are the (l, k)-th
entries of matrices A1, C, and A2, respectively, and are required to
satisfy:

AT1 1 = 1, AT2 1 = 1, C1 = 1

a1,lk = 0, a2,lk = 0 , clk = 0 if l /∈ Nk
(5)

where 1 denotes a vector with all entries equal to one, and Nk de-
notes the neighborhood of node k. According to (4a)–(4c), each
node k in the network aggregates intermediate estimates from its
neighbors via steps (4a) and (4c). Each node k also adapts its in-
termediate estimate via (4b) by incorporating gradient information
from its neighbors. Algorithm (4a)–(4c) is general and different

choices for {A1, A2, C} lead to different cooperation strategies [11,
13]. For example, choosingA1 = I ,A2 = A, andC = I , we obtain
the following adapt-then-combine (ATC) special case of (4a)–(4c):

ψk,i = wk,i−1 − µk∇wJk(wk,i−1) (6)

wk,i =
∑
l∈Nk

alkψl,i (7)

In this implementation, there is only one aggregation step and it fol-
lows the adaptation step. Moreover, the adaptation step relies only
on the local gradient information at node k. For generality, we con-
tinue with form (4a)–(4c).

3. PERFORMANCE ANALYSIS

In many situations in practice, the true gradient vectors needed in
(4b) may not be available. Instead, perturbed versions are available,
which we model as

∇̂wJl(w) = ∇wJl(w) + vl,i(w) (8)

where the noise term, vl,i(w), may depend on w (and also on time
i); it will be required to satisfy certain conditions given by (19)–(20).
We refer to the perturbation in (8) as gradient noise; such noise is
used to model the statistical fluctuations caused by using stochastic
gradients or instantaneous approximations in the context of stochas-
tic approximation and adaptive filter theory [3, 11, 16]. Note that we
are denotingw in bold in Eq. (8) in order to highlight the fact that the
estimates {φk,i−1, ψk,i, wk,i} that are generated via (4a)–(4c) be-
come random quantities {φk,i−1,ψk,i,wk,i} once gradient noise is
present. We reserve the boldface notation for random variables. We
now examine the effect of gradient noise on the mean-square per-
formance of the diffusion strategy and establish convergence of all
nodes towards a Pareto-optimal solution.

3.1. Error Recursions

Introduce the error vectors:

φ̃k,i , w
o−φk,i, ψ̃k,i , wo−ψk,i, w̃k,i , wo−wk,i (9)

Then, we can establish that [11]:

w̃i=AT2 [IMN−MRi−1]AT1 w̃i−1+AT2MCTgo+AT2Mgi (10)

where

w̃i , col{w̃1,i, . . . , w̃N,i} (11)

A1 , A1 ⊗ IM , A2 , A2 ⊗ IM , C , C ⊗ IM (12)

M , diag{µ1, . . . , µN} ⊗ IM (13)

Hlk,i−1 ,
∫ 1

0

∇2
wJl
(
wo − t

N∑
l=1

a1,lkw̃l,i−1

)
dt (14)

Ri−1 ,
N∑
l=1

diag
{
cl1Hl1,i−1, · · · , clNHlN,i−1

}
(15)

gi ,
N∑
l=1

col
{
cl1vl,i(φ1,i−1), · · · , clNvl,i(φN,i−1)

}
(16)

go , col
{
∇wJ1(wo), · · · , ∇wJN (wo)

}
(17)
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and the symbol ⊗ denotes Kronecker products [17]. Compared
to [11], there is an extra term (the second term) on the right-hand
side of (10), which arises when go 6= 0; this happens because the
{Jl(w)} do not necessarily have their minimizers at the same wo

— ∇wJl(wo) 6= 0 for some l = 1, . . . , N . This term biases the
solution and its effect needs to be examined closely. To proceed with
the analysis, we introduce similar assumptions on the cost functions
and gradient noise as in [11].

Assumption 1 (Bounded Hessian). There exist nonnegative real
numbers λl,min and λl,max such that, for each l = 1, . . . , N :

λl,minIM ≤ ∇2
wJl(w) ≤ λl,maxIM ,

N∑
l=1

clkλl,min > 0 (18)

Assumption 2 (Gradient noise). There exist α ≥ 0 and σ2
v ≥ 0

such that, for allw ∈ Fi−1 and for all i, l:

E {vl,i(w) | Fi−1} = 0 (19)

E
{
‖vl,i(w)‖2

}
≤ αE‖∇wJl(w)‖2 + σ2

v (20)

where Fi−1 denotes the past history (σ−field) of estimators {wk,j}
for j ≤ i− 1 and all k.

3.2. Transient and Bias Analysis

Our strategy to analyze the mean-square performance of the diffu-
sion strategy (4a)–(4c) is to show that, in the presence of gradient
noise, the recursion will converge to the unique fixed point w∞ of
the recursion (4a)–(4c) within a small MSE bound. Afterwards, we
show that the fixed point w∞ can be made arbitrarily close to the
Pareto-optimal solution wo for sufficiently small step-sizes. To be-
gin with, we show the existence and uniqueness of the fixed point,
and examine how close the estimators {wk,i} get to w∞.

Lemma 1 (Existence and Uniqueness of Fixed Point). Suppose the
step-size parameters {µk} satisfy the following conditions

0 < µk <
2

σk,max
, k = 1, . . . , N (21)

where σk,max ,
∑N
l=1 clkλl,max Then, there exists a unique fixed

point w∞ , col{w1,∞, . . . , wN,∞} for the deterministic iterations
(4a)–(4c) (with true gradients), i.e.,

φk,∞ =

N∑
l=1

a1,lkwl,∞ (22a)

ψk,∞ = φk,∞ − µk
N∑
l=1

clk∇wJl(φk,∞) (22b)

wk,∞ =

N∑
l=1

a2,lkψl,∞ (22c)

Proof. The idea is to show that iterations (4a)–(4c) lead to a con-
traction mapping when the step-sizes satisfy (21). �

Theorem 1 (Mean-Square Stability and Bounds). Suppose the step-
size parameters satisfy the following condition:

0 < µk <min
{ σk,max

σ2
k,max+4αλ2

max‖C‖21
,

σk,min

σ2
k,min+4αλ2

max‖C‖21

}
(23)

for k = 1, . . . , N , where σk,max was defined earlier in Lemma 1,
σk,min,

∑N
l=1 clkλl,min, and λmax , maxl λl,max. Then,

lim sup
i→∞

‖MSPi‖∞≤
‖C‖21 · ‖bv‖∞ · µmax

2βσmin−µmax(σ2
max+4αλmax‖C‖21)

(24)

where σmin and σmax are the minimum of σk,min and the maximum
of σk,max, respectively, and

MSPi , col
{
E‖w1,i−w1,∞‖2, . . . ,E‖wN,i−wN,∞‖2

}
(25)

µmax , max
1≤k≤N

µk, µmin , min
1≤k≤N

µk, β ,
µmin

µmax
(26)

bv , 4αλ2
maxA

T
1 col

{
‖w1,∞ − wo‖2, . . . , ‖wN,∞ − wo‖2

}
+ max

1≤k≤N
{2α‖∇wJk(wo)‖2 + σ2

v} (27)

Proof. Omitted for brevity. �

MSPi represents theN ×1 mean-square-perturbation (MSP) vector
at time i. The k-th entry of MSPi characterizes how far the esti-
mate wk,i at node k and time i is from wk,∞ in the mean-square
sense. The right-hand side of (24) can be made arbitrarily small
for sufficiently small µmax. It follows that the steady-state MSP
can be made arbitrarily small for small step-sizes, and the estimators
wi = col{w1,i, . . . ,wN,i} will be close to the fixed point w∞ (in
the mean-square sense) even under gradient perturbations. Next, we
examine how close the fixed point w∞ is to wo.

Theorem 2 (Bias at Small Step-sizes). Suppose that AT2 A
T
1 is a

primitive right-stochastic matrix, so that its eigenvalue of largest
magnitude is one with multiplicity one, and all other eigenvalues
are strictly smaller than one. Let θT denote the left eigenvector of
AT2 A

T
1 of eigenvalue one. Furthermore, assume the following con-

dition holds:

θTAT2 ΩCT = c01
T (28)

where Ω , diag{µ1, . . . , µN}, and c0 is some constant. Then,

‖1N ⊗ wo − w∞‖2 ∼ O(µ2
max) (29)

Proof. Omitted for brevity. �

Therefore, as long as the network is connected (not necessarily fully
connected) and condition (28) holds, the bias would become arbi-
trarily small. For condition (28) to hold, one choice is to require the
matricesAT1 andAT2 to be doubly stochastic, and all nodes to use the
same step-size µ, namely, Ω = µIN . In that case, the matrix AT1 AT2
is doubly-stochastic so that the left eigenvector of eigenvalue one is
θT = 1T and (28) holds with c0 = µ. Combining Theorems 1 and
2, we conclude that the steady-state mean-square-error will be small
when the step-size is sufficiently small because by (24) and (29):

E‖w̃k,i‖2 = E‖wk,i−wk,∞ + wk,∞ − wo‖2

≤ 2E‖wk,i−wk,∞‖2 + 2‖wk,∞ − wo‖2

∼ O(µmax) +O(µ2
max) (30)

as i → ∞. Therefore, diffusive adaptation enables each node to
approach the same global Pareto-optimal solution via local interac-
tions.
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3.3. Mean-Square Performance

Next, we determine an expression (rather than a bound) for the MSE.
To do this, we first establish some useful approximations at small
step-sizes. Expression (30) implies that, for small step-sizes and
after long enough time, the random variable w̃k,i is highly concen-
trated around wo. Using this fact in (14)–(16), we can approximate
Hlk,i−1, Ri−1 and gi in (14)–(16) by

Hlk,i−1 ≈
∫ 1

0

∇2
wJl(w

o)dt = ∇2
wJl(w

o) (31)

Ri−1 ≈
N∑
l=1

diag
{
cl1∇2

wJl(w
o), . . . , clN∇2

wJl(w
o)
}
, R∞

(32)

gi ≈
N∑
l=1

col
{
cl1vl,i(w

o), · · · , clNvl,i(wo)
}

(33)

so that the matrices Hlk,i−1 and Ri−1 become deterministic at
small step-sizes, and we use regular font to represent them from now
on. As a result, the error recursion (10) can be approximated by

w̃i=AT2 [IMN−MR∞]AT1 w̃i−1+AT2MCTgo+AT2Mgi (34)

Taking expectation of both sides of (34), we obtain

Ew̃i = AT2 [IMN−MR∞]AT1 Ew̃i−1+AT2MCT go (35)

This recursion converges when the matrixAT2 [IMN−MR∞]AT1 is
stable, which is guaranteed by (23) (see Appendix C of [11]). Denote
Ew̃∞ , lim

i→∞
Ew̃i and let i→∞ on both sides of (35) so that

Ew̃∞ =
[
IMN−AT2 (IMN−MR∞)AT1

]−1AT2MCT go (36)

Let Σ denote an arbitrary positive semi-definite matrix that we
are free to choose. Let σ = vec(Σ) denote the vectorization
operation that stacks the columns of Σ on top of each other.
We shall use the notation ‖x‖2σ and ‖x‖2Σ interchangeably. Let
also Rv denote the covariance matrix of gi evaluated at wo,
Rv , E{gigTi }|{φk,i−1=wo}. Then, equating the squared weighted
Euclidean norm of both sides of (34) and applying the expecta-
tion operator with assumption (19), we can establish the following
variance relation:

E‖w̃i‖2σ = E‖w̃i−1‖2Fσ + rTσ + σTQ Ew̃i−1 (37)

where

r , vec
(
AT2MRvMA2

)
+AT2MCT go ⊗AT2MCT go

Q , 2
(
AT2
(
IMN−MR∞

)
AT1
)
⊗
(
AT2MCT go

)
F ,

(
A1[IMN−MR∞]A2

)
⊗
(
A1[IMN−MR∞]A2

)
(38)

It was shown in [16, pp.344-346] that recursions such as (37) con-
verge to a steady-state value if the matrix F is stable, i.e., ρ(F) <
1. This condition is guaranteed when the step-sizes are sufficiently
small (or chosen according to (37)) — see the proof in Appendix C
of [11]. Letting i→∞ on both sides of expression (37), we obtain:

E‖w̃∞‖2(I−F)σ ≈
(
r +Q Ew̃∞

)T
σ (39)

We can now resort to (39) and use it to evaluate various performance
metrics by choosing proper weighting matrices Σ (or σ), as it was
done in [11]. For example, the MSE of any node k can be obtained
by computing E‖w̃∞‖2T with a block weighting matrix T that has
an identity matrix at block (k, k) and zeros elsewhere:

E‖w̃k,∞‖2 = E‖w̃∞‖2T (40)

Denote the vectorized version of this matrix by tk , vec(diag(ek)⊗
IM ), where ek is a vector whose kth entry is one and zeros else-
where. Then, if we select σ in (39) as σ = (I − F)−1tk, the term
on the left-hand side becomes the desired E‖w̃k,∞‖2 and the MSE
for node k is therefore given by:

MSEk , lim
i→∞

E‖w̃k,i‖2 ≈
(
r+Q Ew̃∞

)T
(I−F)−1tk (41)

If we are interested in the average network MSE, then it is given by
MSE , 1

N

∑N
k=1 MSEk.
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