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ABSTRACT
Discrete-time mobile adaptive networks have been success-
fully used to model self-organization in biological networks.
We recently introduced a continuous-time adaptive diffusion
strategy with the goal of better modeling physical phenomena
governed by continuous-time dynamics. In the present paper
we extend our previous work, proposing a new continuous-
time diffusion estimation strategy that allows asymmetricmix-
ing matrices. We prove that the new algorithm is stable and
has better convergence properties than stand-alone learning
for the case of doubly-stochastic mixing matrices.

1. INTRODUCTION

Distributed processing over networks enables the solution of
control, estimation and inference tasks in a decentralizedman-
ner by relying on in-network localized processing (see, e.g.,
[1–6]. In [3, 5], diffusion adaptation strategies were proposed
and studied for the solution of distributed optimization prob-
lems; these strategies permit real-time adaptation and learn-
ing over static or mobile networks. For example, in [7, 8],
discrete-time adaptive diffusion methods were used to model
the behavior of complex patterns that arise in biological net-
works (such as fish schooling and bird formations).

We recently introduced a continuous-time adaptive diffu-
sion strategy [9], with the goal of better modeling physical
phenomena governed by continuous-time dynamics. Con-
tinuous-time diffusion strategies help provide more accurate
models for complex systems with large variations in their time
constants, and for networks in which the exchange of infor-
mation between nodes may happen at any instant.

There has been extensive work in the literature on con-
tinuous-time consensus strategies for distributed processing;
a useful survey article on such techniques is [10]. However,
instead of using the error between a desired input and the cur-
rent local estimate, as in (4a) and (12) below, the consensus
methods described in [10] have either no input, or a biasing
input that does not depend on the current weight estimates.
The adaptive strategy proposed in this paper has similarities to
the distributed Kalman filter proposed in [11]. However, there
are three main differences: first, the strategy proposed further
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ahead is adaptive in nature in that the regression data are gen-
erally stochastic while the filter of [11] is attached to a deter-
ministic state-space model and requires the solution of a Ric-
cati differential equation. Second, the stability proof in [11]
depends on properties of the Kalman Riccati equation, which
do not apply in our case. Third, the filter proposed in [11]
requires equal weights for all nodes in a neighborhood, while
our approach allows for different and asymmetric weights.

We proved stability of our continuous-time diffusion strat-
egy in [9], under the condition that the mixing matrix (the
matrix formed by the weights describing the information shar-
ing between nodes) is symmetric and positive-definite. This
imposes an important restriction, since in many natural net-
works the mixing matrix is asymmetric (for example, in the
bird flight model of [7], each bird may only use information
from the bird in front of it). In this paper, we show that the
positive-definiteness condition imposed in our previous paper
is indeed necessary for the stability of our original strategy.
We then show how to modify the original strategy to allow
asymmetric and not necessarily positive-definite mixing ma-
trices. We also establish the stability of the new method.

2. CONTINUOUS-TIME DIFFUSION LMS

In diffusion learning, a network of N nodes senses the en-
vironment and collaboratively estimates a vector of unknown
parameters. We assume that each node has access to a scalar
measurement dk(t) and a regressor vector uk(t) ∈ RM , re-
lated through the linear model

dk(t) = uT
k (t)wo + vk(t), (1)

wherewo is a parameter vector and vk(t) is noise.
The continuous-time diffusion LMS proposed in [9] al-

lows the network to collaboratively estimate wo as follows.
Each node k computes two estimates forwo, a local estimate
wk(t) and a local mixture ψk(t). The latter is the average of
the local estimates of the neighborhoodNk of node k, i.e.,

ψk(t) =
∑

!∈Nk

a!kw!(t), (2)

where {a!k}, 1 ≤ !, k ≤ N is a set of non-negative weights
such that a!k = 0 if ! /∈ Nk, and

N
∑

!=1

a!k = 1. (3)
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That is, expression (2) represents a convex combination of
the estimates w!(t) from the neighbors of node k. This re-
quirement guarantees that the estimates remain unbiased [9].
Figure 1 shows an example of a 6-node network. Although
not shown in the figure, connections akk from a node to itself
are also allowed.
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Fig. 1. 6-node network. Self-connections are not drawn.

The local estimates are obtained from a differential equa-
tion linking the input data, the local estimate wk(t), and the
local mixture ψk(t), as follows [9]:

ek(t) = dk(t)− uT
k (t)ψk(t), (4a)

ẇk(t) = −γ0 (wk(t)−ψk(t)) + γkek(t)uk(t), (4b)

where γ0 and γk are positive constants.
The stability of this system of connected differential equa-

tions is more easily studied if we consider a global model.
Define the global weight vector:

w(t) = col{w1(t),w2(t), . . . ,wN(t)},

the mixing matrixA =
[

aij
]

, i, j = 1 . . .N , the input vector
d(t) =

[

d1(t) . . . dN (t)
]T (similarly for the noise vector

v(t)), and the regressor matrix

U(t) = diag{u1(t),u2(t), . . . ,uN (t)}, (5)

where 0M is an M × 1 null vector. Let denote an N -
dimensional vector of ones, that is, =

[

1 . . . 1
]T . Then

the convexity constraint (3) corresponds to requiring that

AT = , (6)

i.e., is an eigenvector ofAT relative to the eigenvalue 1.
In terms of the global weight vectorw(t), the continuous-

time diffusion LMS algorithm(2) and (4a)-(4b) is described
by the following differential equations:

ẇ = −γ0
(

IMN −AT ⊗ IM

)

w(t) +U(t)Γe(t), (7a)

e(t) = d(t)−UT (t)
(

AT ⊗ IM

)

w(t), (7b)

where Γ = diag{γk}, IM represents the M × M identity
matrix, and ⊗ denotes the Kronecker product. With these
definitions, the linear model (1) can be rewritten as

d(t) = UT (t) ( ⊗wo) + v(t)

= UT (t)
(

AT ⊗ IM

)

( ⊗wo) + v(t), (8)

where we used (6) and the fact that, for any matrices of appro-
priate dimensions, (A⊗B)(C⊗D) = (AC)⊗ (BD) [12].
Define the weight error vector w̃(n)

∆
= ⊗wo −w(t). We

can write the error vector e(t) in terms of w̃(t) as below:

e(t) = UT (t)
(

IMN −AT ⊗ IM

)

w̃(t) + v(t). (9)

From (6), it follows that (IMN − AT ⊗ IM )( ⊗ wo) =
0MN . Noting also that ˙̃w(t) = −ẇ(t), expression (7a) can
be rewritten in terms of w̃(t):

˙̃w(t) = B(t)w̃(t)−U(t)Γv(t), (10)

with B(t)
∆
= −γ0

(

IMN −AT ⊗ IM

)

−U(t)ΓUT (t)
(

AT ⊗ IM

)

.
(11)

In [9], we showed that w̃ = 0MN is a stable equilibrium
point of (10) if the noise is identically zero and the mixing
matrix A is symmetric and positive-definite, for any γn > 0
(stability under non-zero noise requires a persistence of exci-
tation condition on U(t)— see Section 3).

The positive-definiteness restriction onA is necessary: if
A is not positive-definite, a large U(t) might make w̃(t) di-
verge. For example, consider a network with N = 2,M = 1,
u1(t) = u2(t) ≡ 2, and

A =

[

0.2 0.8
0.8 0.2

]

, for which B(t) ≡ B =

[

−1.6 −2.4
−2.4 −1.6

]

,

with eigenvalues−4 and +0.8. SinceB is constant, the pos-
itive eigenvalue means (10) will be unstable. In the next sec-
tion, we show how the update law (7) can bemodified to avoid
the restrictions of symmetry and positive-definiteness onA.

3. LMS DIFFUSION WITH ASYMMETRIC MIXING

A close examination of the previous example suggests that
removing the factor AT ⊗ IM multiplying the input term
U(t)ΓUT (t) in (11) should avoid instability. This amounts
to modifying the error definition (4a) to

ek(t) = dk(t)− uT
k (t)wk(t), (12)

using wk(t) instead of ψk(t) to compute the local approx-
imation to dk(t). It can be checked that this modification
guarantees stability for any constant inputs in the previous
example. In the remainder of this section, we study general
conditions onA so that the modified diffusion algorithm will
remain stable for any inputs uk(t) and any value ofM . With
the modified error (12), the error equation is now given by

˙̃w(t) = −
[

γ0
(

IMN −AT ⊗ IM

)

+U(t)ΓUT (t)
]

w̃(t)

−U(t)Γv(t). (13)
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Equation (13) describes a linear time-varying system of dif-
ferential equations, with system matrix:

D(t) = − γ0
(

IMN −AT ⊗ IM

)

︸ ︷︷ ︸

∆
=D1

−U(t)ΓUT (t)
︸ ︷︷ ︸

∆
=D2(t)

.

Requiring the eigenvalues ofD(t) to have real parts less than
a negative constant does not imply stability [13]. Thus we
search for a Lyapunov function to study the stability of (13).

Since A is a left-stochastic matrix (i.e., all its terms are
nonnegative andAT = ), it has an eigenvalue at 1, and all
other eigenvalues λi of A satisfy |λi| ≤ 1 [14]. This means
that D1 is singular, and its eigenvalues have absolute values
bounded by 2γ0. On the other hand, D2(t) is positive semi-
definite.

We shall use the following candidate Lyapunov function

V (t) = w̃T (t)w̃(t). (14)

Its derivative (assuming v(t) ≡ 0MN for now) is

V̇ (t) = w̃T (t)
[

DT (t) +D(t)
]

w̃(t)

= −w̃T (t)
[

γ0
(

2IMN −A⊗ IM −AT ⊗ IM

)

+2U(t)ΓUT (t)
]

w̃(t)
∆
= −w̃T (t)P (t)w̃(t), (15)

where we used the fact that (A⊗B)T = AT ⊗BT , for any
matricesA andB [12].

The origin in (13) is stable if V̇ (t) is nonpositive, or equiv-
alently, if P (t) is positive semi-definite. We show next that
this happens when A is doubly stochastic, that is, if in addi-
tion to (6), it also holds thatA = .

WhenA is doubly stochastic, the matrix Ā ∆
= AT⊗IM+

A⊗IM satisfies Ā( ⊗ ) = 2( ⊗ ). Since all entries of Ā
are nonnegative, for any positive ε,Q(ε)

∆
= (2+ ε)IMN − Ā

is symmetric, has positive entries on the diagonal, and neg-
ative entries outside. Since Q(ε)( ⊗ ) = ε( ⊗ ), we
conclude thatQ(ε) is strictly diagonally dominant with posi-
tive diagonal entries, that is, its entries qij(ε) satisfy

qii(ε) >
MN
∑

j=1,j "=i

|qij(ε)| , for all 1 ≤ i ≤ MN.

It follows that Q(ε) is positive-definite for all ε > 0 [14].
Since the eigenvalues of a matrix are continuous functions
of its entries, this implies that Q(0) = 2IMN − Ā is posi-
tive semi-definite. Noting that 2U(t)ΓUT (t) is also positive
semi-definite, we conclude thatP (t) is positive semi-definite,
and thus the origin in (13) is a stable equilibrium point in the
absence of noise, irrespective of the inputs uk(t).

If, in addition, there exist constants 0 < α1 ≤ α2 < ∞
such that

α1IMN ≤
∫ t0+T

t0

P (t)dt ≤ α2IMN (16)

for all t0, it can be shown that w̃ = 0MN in (13) is exponen-
tially stable (this proof follows the same steps as in the analy-
sis of the stand-alone continuous-time LMS algorithm [15]).
Using the total stability theorem [16, Lemma 5.2], it then fol-
lows that w̃(t) will remain bounded in the presence of suffi-
ciently small bounded noise.

An interesting property of the new continuous-time dif-
fusion strategy(12)+(4b) proposed here is that it always im-
proves stability, compared to a collection of stand-alone fil-
ters. Indeed, for stand-alone filters (no diffusion) we have
A = IN and condition (16) reduces to

α1IM ≤
∫ t0+T

t0

γkuk(t)u
T
k (t)dt ≤ α2IM , (17)

for all k between 1 andN . This is equivalent to requiring that
all nodes have persistently exciting inputs uk(t) as defined
in [15]. However, for any doubly stochasticA it holds that

2U(t)ΓUT (t) ≤ γ0
(

2IMN −A⊗ IM −AT ⊗ IM

)

+ 2U(t)ΓUT (t),

and (16) may hold even if (17) does not. In the example of
Section 2, if u1(t) ≡ 0.1 and u2(t) ≡ 0, we have

P (t) =

[

1.61 −1.60
−1.60 1.60

]

> 0.

In this case, (16) holds even though the persistence of excita-
tion condition (17) does not hold for node 2. In the absence
of noise, the diffusion algorithm guarantees that both nodes
will converge to wo, while in the stand-alone case, node 2
would never leave its initial condition. In the next section we
provide a similar example involving a 10-node network.

4. SIMULATIONS

In this section we provide an example of the advantages of
the new diffusion learning strategy, using the 10-node net-
work depicted in Figure 2 (weights akk are not drawn; their
values are such that (3) is satisfied). We simulated our new
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Fig. 2. 10-node network. Self-connections not drawn.

strategy (12)+(4b) with the mixing coefficients as in Figure 2
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and in the stand-alone case (A = IN ). The regressors uk(t)
were either sinusoids or filtered white noise, chosen so that
the persistence of excitation condition (17) is not satisfied for
any node, although (16) is satisfied for the network (note that,
since the vectors ui(t) do not span all directions in R2, the
stand-alone filters do not converge to a neighborhood of the
true weights). For example, for nodes 1 and 6 we have

u1(t) =
[

sin(20πt) 0
]T

, u6(t) = s6(t)
[

1 1
]T

,

where s6(t) is the output of a linear filter with transfer func-
tion H(s) = (s + 1)/(s2 + s + 2), with Simulink’s band-
limited white noise with power 0.2 and sampling time 0.001
as input. The optimumweight vector iswo =

[

0.5 −0.1
]T .

Figure 3 shows the weight estimates obtained in Simulink
with the new diffusion strategy and, for comparison, with
stand-alone filters. It can be seen that the stand-alone filters
do not converge to the optimum coefficients, while the diffu-
sion strategy is able to correctly identify both weights. The
plots for the other nodes are similar.
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Fig. 3. Parameter estimates w6(t) for node 6, for the new
diffusion strategy and for stand-alone filters.

5. CONCLUSION

We proposed a new continuous-time diffusion LMS algorithm
that allows for asymmetric doubly-stochastic mixing matri-
ces. We proved stability and improved performance of the
new strategy, compared to stand-alone learning.
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