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ABSTRACT

Adaptive networks consist of a collection of nodes that interact with

each other on a local level and diffuse information across the network

to solve estimation and inference tasks in a distributed manner. In

this work, we compare the performance of two distributed estimation

strategies: diffusion and consensus. Diffusion strategies allow infor-

mation to diffuse more thoroughly through the network. The analy-

sis in the paper confirms that this property has a favorable effect on

the evolution of the network: diffusion networks reach lower mean-

square deviation than consensus networks, and their mean-square

stability is insensitive to the choice of the combination weights. In

contrast, consensus networks can become unstable even if all the

individual nodes are mean-square stable; this does not occur for dif-

fusion networks: stability of the individual nodes ensures stability of

the diffusion network irrespective of the topology.

Index Terms— Adaptive networks, diffusion strategy, consen-

sus strategy, mean-square performance, combination weights.

1. INTRODUCTION

Adaptive networks consist of a collection of spatially distributed

nodes that are linked together through a connection topology and

that cooperate with each other through local interactions. Adaptive

networks are well-suited to perform decentralized information pro-

cessing and inference tasks [1–4] and to model complex behavior

encountered in biological systems [5, 6].

In this article we compare the performance of two strategies for

distributed estimation over networks: diffusion and consensus; the

latter has been used extensively in the literature (see, e.g., [7–11]),

while the former was introduced more recently in [1–4]. The two

strategies differ in an important way: diffusion strategies allow infor-

mation to diffuse more thoroughly through the network. We will es-

tablish analytically that diffusion networks reach lower mean-square

deviation than consensus networks, and their mean-square stability

is insensitive to the choice of the combination weights. In contrast,

consensus networks can become unstable even if all the individual

nodes are mean-square stable; this does not occur for diffusion net-

works: stability of the individual nodes ensures stability of the dif-

fusion network irrespective of the network topology.

2. DISTRIBUTED STRATEGIES

Consider a connected network with N nodes (see Fig. 1). Two nodes

are neighbors if they can exchange information. The neighborhood

of node k is denoted by Nk. The nodes in the network would like to

estimate an unknown M × 1 vector, w◦. At every time i, each node
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Fig. 1. A connected network showing the neighborhood of node k,

denoted by Nk. The weight al,k scales the data transmitted from

node l to node k over the edge linking them.

k is able to observe realizations {dk(i), uk,i} of a scalar random

process dk(i) and a 1 × M vector random process uk,i with zero

mean and covariance matrix Ru,k = Eu∗
k,iuk,i > 0, where E de-

notes the expectation operator. All vectors are column vectors with

the exception of the regression vector, uk,i. The random processes

{dk(i),uk,i} are related to w◦ via the linear regression model [12]:

dk(i) = uk,iw
◦ + vk(i) (1)

where vk(i) is measurement noise with zero mean and variance

σ2

v,k. The noise process vk(i) is assumed to be temporally white and

spatially independent, i.e., Ev∗
k(i)vl(j) = σ2

v,k · δkl · δij in terms

of the Kronecker delta function; likewise for the regression process

uk,i. The {vk(i),ul,j} are also assumed to be independent of each

other for all {k, l, i, j}. Relations of the form (1) can represent well

a variety of physical models (e.g., [5, 6, 12]).

The objective of the network is to estimate w◦ in a distributed

manner by seeking to minimize the global cost function:

Jglob(w) ,

N
∑

k=1

E|dk(i)− uk,iw|2 (2)

In this article we compare the performance of two fully decentralized

strategies for estimating w◦. One strategy is the consensus strategy,

which has been used in various works on distributed optimization

and estimation (see, e.g., [8–11]). In the context of estimation the-

ory, this rule (see (5) further ahead) is usually motivated by the desire

to exploit the agreement properties of the original elegant consensus

strategy proposed in [13] and studied further in [7,14–16]. The other

strategy we consider is the diffusion strategy, which was proposed

in [1–3] and is now being applied advantageously to the solution of

distributed optimization problems [4,17,18], and to the modeling of

self-organized and complex behavior encountered in nature [5, 6]. It

turns out that consensus and diffusion strategies differ in one fun-

damental way, which ends up influencing the manner by which the

estimation errors evolve over time across the respective networks.

The purpose of this article is to highlight these differences analyti-

cally and to explain the reason behind the superior performance of

diffusion strategies over consensus strategies.
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2.1. Consensus Strategy

The consensus strategy appears in the literature in at least two com-

mon forms (see, e.g., eqs (7.10) in [8], (1.20) in [9], and (9) in [11]):

wk,i = wk,i−1 − νk
∑

l∈Nk\{k}

bl,k(wk,i−1 −wl,i−1)

+ µku
∗
k,i[dk(i)− uk,iwk,i−1]

(3)

with positive step-sizes {νk, µk} for node k and nonnegative

weights {bl,k}. By introducing the coefficients:

al,k =

{

νkbl,k, if l ∈ Nk \ {k}

1−
∑

j∈Nk\{k}
νkbj,k, if l = k

(4)

recursion (3) can be rewritten equivalently as:

wk,i =
∑

l∈Nk

al,kwl,i−1 + µku
∗
k,i[dk(i)− uk,iwk,i−1] (5)

The entry al,k denotes the weight on the link connecting node l to

node k (see Fig. 1). The weights {al,k} form an N × N matrix A
and satisfy

al,k ≥ 0,
∑

l∈Nk

al,k = 1 for all k, and al,k = 0 if l /∈ Nk (6)

That is, the matrix A is left-stochastic and its (l, k)th entry is zero

when there is no link between nodes l and k.

2.2. Diffusion Strategy

There are several variations of the diffusion strategy. We focus on the

ATC strategy [2–4], which has been shown to generally outperform

other variants. The ATC diffusion strategy consists of two steps. The

first step in (7) involves local adaptation, where node k uses its own

data {dk(i),uk,i} to update its weight estimate from wk,i−1 to an

intermediate valueψk,i. The second step in (7) is a consultation step

where the intermediate estimates {ψl,i} from the neighborhood of

node k are combined through the weights {al,k} that satisfy (6) to

obtain the updated estimatewk,i:

ψk,i = wk,i−1 + µku
∗
k,i[dk(i)− uk,iwk,i−1]

wk,i =
∑

l∈Nk

al,kψl,i
(7)

We note that algorithms (5) and (7) can be derived and motivated

from first principles by following the argument proposed in [3,4] for

the distributed optimization of global cost functions of the form (2).

2.3. Comparing Consensus and Diffusion Strategies

In order to highlight the difference in the dynamics of the algorithms

(5) and (7), we combine the adaptation step into the consultation step

and rewrite (7) equivalently as (compare with (5)):

wk,i =
∑

l∈Nk

al,kwl,i−1+
∑

l∈Nk

µlal,ku
∗
l,i[dl(i)−ul,iwl,i−1] (8)

Note that the first terms on the right hand side of (5) and (8) are the

same. For the second terms, only the variables wk,i−1, dk(i), and

uk,i appear in the consensus strategy (5), while the diffusion strat-

egy (8) incorporates the influence of the estimates {wl,i−1} and the

Table 1. Variables for diffusion and consensus implementations.

Diffusion (7) Consensus (5)

Bi AT (INM −MRi) AT −MRi

B , EBi AT (INM −MR) AT −MR

yi ATMsi Msi

Y , Eyiy
∗
i ATMSMA MSM

data {dl(i),ul,i} from the neighborhood of node k into the update

ofwk,i. This fact has important implications on the evolution of the

weight-error vectors across the network in the diffusion case. Note

that the diffusion strategy is able to incorporate additional informa-

tion into its processing steps without being more complex than the

consensus strategy. These two strategies have exactly the same com-

putational complexity and require sharing the same amount of data,

as can be ascertained by comparing the actual implementations (5)

and (7). Note that the diffusion strategy (7) first generates an inter-

mediate state ψk,i, which is subsequently used in the final update.

This important ordering of the calculations has a critical influence

on the performance of the algorithms, as we now reveal.

3. PERFORMANCE ANALYSIS

3.1. Recursions for the Error Vectors

Let w̃k,i , w◦ − wk,i denote the error vector for node k. We

collect all error vectors and step-sizes across the network for k =
1, 2, . . . , N into the block vector w̃i = col{w̃k,i} and the diagonal

matrix M = diag{µkIM}. We also introduce the extended com-

bination matrix: A = A ⊗ IM , where ⊗ denotes the Kronecker

product. From (5) or (7) along with model (1), some algebra simi-

lar to [3] can show that the recursions for w̃i for the consensus and

diffusion strategies are special cases of a general recursion of the

form:

w̃i = Biw̃i−1 − yi (9)

where Bi and yi are shown in Table 1 with Ri , diag{u∗
k,iuk,i}

and si , col{u∗
k,ivk,i}.

3.2. Mean Stability

Since the regressors {uk,i} are temporally white and spatially inde-

pendent, then Bi in Table 1 is independent of w̃i−1. Taking expec-

tation of both sides of (9), we find that the mean of w̃i evolves in

time according to the recursion:

Ew̃i = B · Ew̃i−1 (10)

where B = EBi is also shown in Table 1 with R , ERi =
diag{Ru,k}. The condition to ensure mean stability of the network

is therefore to select step-sizes that ensure

ρ(B) < 1 (11)

where ρ(·) denotes the spectral radius of its matrix argument. We

observe from the B in Table 1 that the mean stability of the consensus

strategy is sensitive to the choice of the combination matrix A. This

is not the case for the diffusion strategy because it can be verified

that, for any left-stochastic matrix A, the matrix B = AT (INM −
MR) is stable whenever (INM − MR) is stable. Therefore, we
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can select the step-sizes to satisfy µk < 2/ρ(Ru,k) for the diffusion

strategy and ensure its mean stability regardless of the matrix A.

Note further that if each node were to run an LMS filter individ-

ually to estimate w◦, then the filter would take the form

wk,i = wk,i−1 + µku
∗
k,i[dk(i)− uk,iwk,i−1] (12)

Each of these individual filters is mean stable if its step-size satisfies

the same condition µk < 2/ρ(Ru,k) [12]. Therefore, we conclude

that if the individual nodes are mean stable, then the diffusion net-

work will also be mean stable. The same conclusion is not necessar-

ily true for consensus networks: all nodes can be stable in the mean

and yet the consensus network can become unstable. Figure 2 illus-

trates this situation for two cases. In one case, both nodes are mean

stable, and yet the consensus network becomes unstable. In the sec-

ond case, one of the nodes is unstable in which case the consensus

strategy is always unstable while diffusion can stabilize the network.

3.3. Mean-Square Stability

Let Σ ≥ 0 denote an arbitrary Hermitian matrix. Some algebra will

establish the following variance relation for small step-sizes [3]:

E‖w̃i‖
2

Σ ≈ E‖w̃i−1‖
2

B∗ΣB + Tr(ΣY) (13)

where Y = Eyiy
∗
i appears in Table 1 and S , Esis

∗
i =

diag{σ2

v,kRu,k}. Then, the mean-square stability of the network

is guaranteed for step-sizes that are sufficiently small and satisfy

(11). Again, we find that the mean-square stability of the consensus

network is sensitive to the choice of A.

3.4. Mean-Square Performance

The network mean-square deviation (MSD) is a measure that as-

sesses how well the network estimates the weight vector, w◦:

MSD , lim
i→∞

1

N

N
∑

k=1

E‖w̃k,i‖
2

(14)

where ‖ · ‖ denotes the Euclidean norm for vectors. Iterating (13),

we can obtain a series expression for the network MSD [3]:

MSD =
1

N

∞
∑

j=0

Tr[BjY(B∗)j ] (15)

We use this expression next to show that diffusion networks achieve

lower MSDs than consensus networks.

4. COMPARING DIFFUSION AND CONSENSUS

We assume in this section that all nodes use the same step-size, µk =
µ, and observe data arising from the same statistical distribution,

Ru,k = Ru.

4.1. Stability and Convergence Rate

Since stability and convergence rate depend only on the spectral ra-

dius of B, we examine more closely the eigen-structure of B. Let

rk and sk (k = 1, . . . , N ) denote the right and left eigenvectors of

AT corresponding to the eigenvalue λk(A). Note that ρ(A) = 1
for left-stochastic matrices. Let zm (m = 1, . . . ,M ) denote the

Fig. 2. Transient network MSD over time with N = 2: (a) µ1σ
2

u,1 =
0.4, µ2σ

2

u,2 = 0.6, and a = b = 0.85. As seen in the right plot, the

consensus strategy is unstable even though the individual nodes are

stable; (b) µ1σ
2

u,1 = 0.4, µ2σ
2

u,2 = 2.4, and a = 1 − b = 0.2. As

seen in the right plot, the diffusion strategy is stable even when the

non-cooperative and consensus strategies are unstable.

orthonormal eigenvectors (z∗nzm = δmn) of the covariance matrix

Ru associated with the eigenvalues λm(Ru) > 0. The following

result characterizes the eigen-structure of the matrix B in terms of

the eigen-structures of {AT , Ru}.

Lemma 1. The matrices B from Table 1 for the diffusion and con-

sensus strategies have the same eigenvector pairs {rbk,m, sbk,m}:

rbk,m = rk ⊗ zm, sbk,m = sk ⊗ zm (16)

The corresponding eigenvalues, λk,m(B), are given by:

λk,m(B) =

{

λk(A)(1− µλm(Ru)) (diffusion)

λk(A)− µλm(Ru) (consensus)
(17)

Proof. The results follow by noting that we can write Bdiff = AT ⊗
(IM − µRu) and Bcons = AT ⊗ IM − IN ⊗ µRu.

Theorem 1. The diffusion strategy is more stable and converges

faster than the consensus strategy, i.e.,

ρ(Bdiff) ≤ ρ(Bcons) (18)

Proof. The result follows from (17).

4.2. Network MSD

The network MSD in (15) depends on B in a nontrivial manner. Nev-

ertheless, under certain conditions, we can simplify the MSD expres-

sion by using the eigen-structure of B.

Lemma 2. If the matrix A is diagonalizable and the right eigenvec-

tors {rk} of A satisfy

r∗l rk ≪ ‖rk‖
2

(19)

for all k and l, then the MSD from (15) can be approximated by:

MSD ≈
N
∑

k=1

M
∑

m=1

‖rk‖ · s
b∗
k,mYsbk,m

N · (1− |λk,m(B)|2)
(20)
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Table 2. Combination rules with al,k = 0 if l /∈ Nk.

Name Rule

Relative-variance [19] al,k = σ−2

v,l /
∑

j∈Nk
σ−2

v,j

Uniform al,k = 1/nk

Metropolis [16] al,k =

{

1−
∑

j 6=k ak,j , l = k

1/max{nk , nl}, l ∈ Nk \ {k}

Proof. The result follows by substituting eigen-decomposition of B
from Lemma 1 into the MSD expression in (15).

Note that any symmetric A is diagonalizable and satisfies condition

(19) since r∗l rk = δkl. We then obtain the following conclusion.

Theorem 2. Under the conditions of Lemma 2, the diffusion strategy

achieves lower network MSD than the consensus strategy, i.e.,

MSDdiff ≤ MSDcons (21)

Proof. The argument uses the expression for Y from Table 1, the

results of Lemma 1, and (20) to establish (21).

5. SIMULATION RESULTS

We consider a network with 20 nodes and random topology. The re-

gression covariance matrix Ru is diagonal of size M = 10 with en-

tries randomly generated from [2, 4], and the noise variances {σ2

v,k}
are randomly generated over [−30,−10] dB. The step-size µ is set

to µ = 0.05. The transient network MSD over time is shown on

the left hand side of Fig. 3 with three possible combination rules:

relative-variance [19], uniform, and Metropolis [16] (see Table 2).

We observe that the diffusion strategy outperforms the consensus

strategy in all three cases. We further show the steady-state MSD

at each node on the right hand side of Fig. 3. We observe that the

diffusion strategy has lower MSD at each node compared to the con-

sensus strategy. These observations are in agreement with the results

predicted by the theoretical analysis.

6. REFERENCES

[1] C. G. Lopes and A. H. Sayed, “Distributed processing over adaptive
networks,” Proc. Adaptive Sensor Array Processing Workshop, pp. 1–
5, MIT Lincoln Laboratory, MA, Jun. 2006.

[2] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over
adaptive networks: Formulation and performance analysis,” IEEE

Trans. on Signal Processing, vol. 56, no. 7, pp. 3122–3136, Jul. 2008.

[3] F. S. Cattivelli and A. H. Sayed, “Diffusion LMS strategies for dis-
tributed estimation,” IEEE Trans. on Signal Processing, vol. 58, no. 3,
pp. 1035–1048, Mar. 2010.

[4] J. Chen and A. H. Sayed, “Diffusion adaptation strategies for dis-
tributed optimization and learning over networks,” to apear in IEEE

Trans. on Signal Processing, 2012. Also available on arXiv:1111.0034,
Oct. 2011.

[5] S. Y. Tu and A. H. Sayed, “Mobile adaptive networks,” IEEE J. Se-

lected Topics on Signal Processing, vol. 5, no. 4, pp. 649–664, Aug.
2011.

[6] F. Cattivelli and A. H. Sayed, “Modeling bird flight formations using
diffusion adaptation,” IEEE Trans. on Signal Processing, vol. 59, no.
5, pp. 2038–2051, May 2011.

[7] J. N. Tsitsiklis, J. N. Bertsekas, and M. Athans, “Distributed
asynchronous deterministic and stochastic gradient optimzation algo-
rithms,” IEEE Trans. on Autom. Control, vol. 31, no. 9, pp. 803–812,
Sep. 1986.

Fig. 3. Transient network MSD over time (left) and steady-state

MSD at nodes (right) for (a)-(b) the relative-variance, (c)-(d) uni-

form, and (e)-(f) Metropolis rules. The dashed lines in in the plots

on the left indicate the theoretical value (15).

[8] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Compu-

tation: Numerical Methods, Athena Scientific, Singapore, 1997.

[9] A. Nedic and A. Ozdaglar, “Cooperative distributed multi-agent opti-
mization,” in the book Convex Optimization in Signal Processing and

Communications, Y. Eldar and D. Palomar (Eds.), Cambridge Univer-
sity Press, pp. 340–386, 2009.

[10] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and A. Scaglione,
“Gossip algorithms for distributed signal processing,” Proc. IEEE, vol.
98, no. 11, pp. 1847–1864, Nov. 2010.

[11] S. Kar and J. M. F. Moura, “Convergence rate analysis of distributed
gossip (linear parameter) estimation: Fundamental limits and trade-
offs,” IEEE J. Selected Topics in Signal Processing, vol. 5, no. 5, pp.
674–690, Aug. 2011.

[12] A. H. Sayed, Adaptive Filters, NJ. Wiley, 2008.

[13] M. H. DeGroot, “Reaching a consensus,” Journal of the American

Statistical Association, vol. 69, pp. 118–121, 1974.

[14] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of
mobile autonomous agents using nearest neighbor rules,” IEEE Trans.

on Automatic Control, vol. 48, no. 6, pp. 988–1001, Jun. 2003.

[15] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks
of agents with switching topology and time-delays,” IEEE Trans. on

Automatic Control, vol. 49, pp. 1520–1533, Sep. 2004.

[16] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sen-
sor fusion based on average consensus,” Proc. Int. Symp. Information

Processing Sensor Networks, pp. 63–70, Los Angeles, CA, Apr. 2005.

[17] S.S. Ram, A. Nedic, and V. V. Veeravalli, “Distributed stochastic sub-
gradient projection algorithms for convex optimization,” Journal of

Optim. Theory and Applic., vol. 147, no. 3, pp. 516–545, 2010.

[18] K. Srivastava and A. Nedic, “Distributed asynchronous constrained
stochastic optimization,” IEEE J. Selected Topics on Signal Process-

ing, vol. 5, no. 4, pp. 772–790, Aug. 2011.

[19] S. Y. Tu and A. H. Sayed, “Optimal combination rules for adaptation
and learning over networks,” Proc. IEEE CAMSAP, pp. 317–320, San
Juan, Puerto Rico, Dec. 2011.

316


