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ABSTRACT

We propose a fully-distributed stochastic-gradient strategy based on

diffusion adaptation techniques. We show that, for strongly convex

risk functions, the excess-risk at every node decays at the rate of

O(1/Ni), where N is the number of learners and i is the iteration

index. In this way, the distributed diffusion strategy, which relies

only on local interactions, is able to achieve the same convergence

rate as centralized strategies that have access to all data from the

nodes at every iteration. We also show that every learner is able to

improve its excess-risk in comparison to the non-cooperative mode

of operation where each learner would operate independently of the

other learners.

Index Terms— diffusion adaptation, distributed optimization,

risk function, convergence rate, mean-square-error.

1. INTRODUCTION

We study the distributed online prediction problem over a network

of N learners. We assume the network is connected, meaning that

any two arbitrary agents are either connected directly or by means

of a path passing through other agents — see Fig. 1. Each learner

k receives a sequence of data samples xk,i (i = 1, 2, . . .) that arise

from the same fixed distribution X . In non-cooperative processing,

the goal of each agent would be to learn the vector wo that opti-

mizes some loss function Qk(w,xk,i) on average. For example,

in order to learn the hyper-plane that best separates data from two

classes yk,i ∈ {+1,−1}, a support-vector-machine (SVM) would

optimize the expected value of the following loss function (with

the expectation computed over the distribution of the data xk,i �

{hk,i,yk,i} ∼ X [1]:

QSVM
k (w,hk,i,yk,i)�

ρ

2
‖w‖2+max(0,1−yk,ih

T

k,iw) [SVM loss]

(1)

where ρ is a positive regularization constant. The expectation of the

loss function over the distributionX is referred to as the risk function

at node k [2, p.20]:

Jk(w) � EX {Qk(w,xk,i)} [risk function] (2)

The risk measure is often interpreted as the generalization error

achieved by the classifier. In cooperative processing, agents in a

network work together to optimize the average global risk over all

nodes in a distributed manner, where

Jglob(w) �
1

N

N∑
k=1

Jk(w) [network risk function] (3)
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Fig. 1. A connected network in which any two nodes are connected

either directly or via a path passing through other nodes.

We refer to the optimizer of (3) as wo:

wo
� argmin

w

Jglob(w) = argmin
w

N∑
k=1

Jk(w) (4)

In many machine learning scenarios, the same loss function is used

across all nodes in the network so that [3, 4]

Jk(w) = J(w) ∀k ∈ {1, 2, . . . , N} (5)

In order to measure the performance of each node, we define the

excess-risk (ER) at node k as:

ERk(i) � Ew{J(wk,i)− J(wo)} (6)

where wk,i is the estimator for wo that is available at node k at time

i. This estimator is a random quantity in view of the gradient noise

that seeps into the algorithms described below and that are based on

stochastic gradient approximation iterations.

One way to optimize (4) under (5) is for each node k to imple-

ment a stochastic gradient descent algorithm of the following form

and independent of all other nodes:

wk,i=wk,i−1−μi∇wQ(wk,i−1,xk,i) [no cooperation] (7)

where∇wQ(·) denotes the gradient vector of the loss function. The

gradient vector employed in (7) is an instantaneous approximation

for the actual gradient vector, ∇Jw(·). It was shown in [5] that for

strongly convex risk functions J(w), the non-cooperative scheme

(7) achieves a convergence rate of the order of O(1/i) under some

conditions on the gradient noise and the step-size sequence μi. In
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this way, in order to achieve an excess-risk accuracy of O(ε), the

non-cooperative algorithm (7) would require O(1/ε) samples. It was

further shown in [6] that no algorithm can improve upon this rate

under the same conditions. This implies that if no cooperation is to

take place between the nodes, then the best rate each learner would

hope to achieve is on the order of O(1/i).
On the other hand, assume the nodes transmit their samples to

a central processor, which executes the following centralized algo-

rithm:

wi = wi−1 − μi

N

N∑
k=1

∇wQ(wi−1,xk,i) [centralized] (8)

It can be shown that this implementation will have a convergence

rate of the order of O(1/Ni) for step-size sequences of the form

μi = μ/i and for some conditions on μ [7]. In other words, the

centralized implementation (8) provides an N−fold increase in con-

vergence rate relative to the non-cooperative solution (7). The main

question we wish to answer in this work is whether it is possible to

derive a a fully distributed algorithm that allows every node in the

network to converge at the same rate as the centralized solution, i.e.,

O(1/Ni), with only communication between neighboring nodes and

for general ad-hoc networks. We extend the diffusion techniques

of [8–11] and show that this objective is attainable.

To our knowledge, this is the first result regarding the use of

fully distributed algorithms to achieve O(1/Ni) convergence rate

over ad-hoc networks. Previous works have generally required some

special structure in the network, such as in [3] where the network

obeys a master/worker architecture, and in [4] where communica-

tion must take place over a bounded-degree acyclic graph. The algo-

rithms of [3,4] do not assume the risk function to be strongly convex

and they achieve excess-risk convergence at the rate of O(1/
√
iN).

2. DISTRIBUTED FORMULATION AND ALGORITHM

Thus, consider a network of N learners. Each learner k receives a

sample xk,i at time i. The learners are not aware of the common un-

derlying distributionX that generates the samples xk,i for all nodes.

Each learner wishes to optimize the risk function:

J(w) � EX{Q(w,xk,i)} (9)

Since the nodes are unaware of X , and are therefore unable to eval-

uate the expectation in (9), each node k must optimize the risk based

on its actual observations {xk,i} in an online manner. Two use-

ful techniques for distributed optimization are consensus strategies

[12,13] and diffusion strategies [8–11]. It was argued in [14] that dif-

fusion strategies outperform consensus strategies in terms of mean-

square-error performance and convergence rate. In addition, diffu-

sion networks are guaranteed to be stable if the individual nodes

are individually stable; the same is not true for consensus networks,

which can become unstable even when all nodes are stable. For this

reason, we focus in this work on diffusion strategies and, in partic-

ular, extend results from [10, 11] to the context of online stochastic-

gradient learners. Following the approach of [10], it is possible to

derive the diffusion strategy listed in Alg. 1 for the distributed min-

imization of (9). The difference between Alg. 1 and the algorithm

proposed in [10] is that we are now employing a diminishing step-

size sequence μi as opposed to a constant step-size.

In order to analyze the performance guarantees of the algorithm,

we assume in this article that the risk function J(w) is strongly con-

vex.

Algorithm 1 (Diffusion Adaptation)

Each node k begins with an estimate wk,0 and step-size sequence

μi. Each node k employs non-negative coefficients {a�k} such

that

N∑
�=1

a�k=1, akk > 0, a�k=0 if nodes � and k are not connected

The coefficients {a�k} correspond to the entries of a left-

stochastic combination matrix A; these coefficients are used to

scale information arriving at node k from its neighbors. The

neighborhood Nk for node k is defined as the set of nodes for

which a�k �= 0. For each time instant i ≥ 1, each node performs

the following steps:⎧⎪⎪⎨
⎪⎪⎩

ψk,i = wk,i−1 − μi∇̂wJ(wk,i−1) [adaptation] (10)

wk,i =

N∑
�=1

a�kψ�,i [aggregation] (11)

where ∇̂wJ(·) refers to a suitable instantaneous approximation

for the true gradient vector∇wJ(·).

Assumption 1. The Hessian matrix of J(w) is uniformly bounded,

i.e.,

λminI ≤ ∇2J(w) ≤ λmaxI (12)

for some constants satisfying 0 < λmin ≤ λmax <∞. �

When the risk function J(w) is twice continuously differen-

tiable, then Assumption 1 is equivalent to assuming that J(w) is

strongly convex with a Lipschitz-continuous gradient, as is com-

monly assumed in literature [3, 4, 15]:

‖∇wJ(x)−∇wJ(y)‖ ≤ λmax‖x− y‖ (13)

One common choice for the approximate gradient ∇̂wJ(w) at node

k and time i is the following instantaneous approximation in terms

of the loss function Q(·):
∇̂wJ(wk,i−1) � ∇wQ(wk,i−1,xk,i) (14)

Assumption 2. We model the perturbed gradient vector as:

∇̂wJ(w) = ∇wJ(w) + vk,i(w̃) (15)

where w̃ = wo − w. Moreover, conditioned on the past history of

the estimators {wk,j} for j ≤ i − 1 and all k, the gradient noise

vk,i(w) satisfies:

E{vk,i(w̃)|Hi−1} = 0 (16)

E{‖vk,i(w̃)‖2} ≤ αE‖w̃‖2 + σ2
v (17)

for some α ≥ 0, σ2
v ≥ 0, and where Hi−1 � {wk,j : k =

1, . . . , N and j ≤ i− 1}. �

We further assume that the noise is uncorrelated across all nodes

when the noise is evaluated at the optimizer wo so that

E{vk,i(0)
T
v�,i(0)} = 0 ∀ k �= �,∀ i (18)

This assumption is reasonable when the data samples are collected

independently at the nodes. Now consider the excess-risk at node k:

Ew{J(wk,i)− J(wo)}



(a)
= Ew

{
−
∫ 1

0

∇J(wo − t w̃k,i)
Tdt w̃k,i

}
(b)
= Ew

{
−
∫ 1

0

∇J(wo)Tdt w̃k,i+

w̃
T

k,i

[∫ 1

0

t

∫ 1

0

∇2J(wo−s t w̃k,i)dsdt

]
w̃k,i

}
(c)
= Ew

{
w̃

T

k,i

[∫ 1

0

t

∫ 1

0

∇2J(wo−s t w̃k,i)dsdt

]
w̃k,i

}
� Ew{‖w̃k,i‖2Sk,i

} (19)

(d)

≤ λmax

2
Ew‖w̃k,i‖2 (20)

where w̃k,i � wo−wk,i, Ew{·} denotes expectation over w, steps

(a) and (b) are a consequence of the following property from [7,

p.24]:

f(a+ b) = f(a) +

∫ 1

0

∇f(a+ t · b)T dt · b (21)

And step (c) is a consequence of the fact that wo optimizes J(w) so

that∇wJ(w
o) = 0. Step (d) is due to (12) in Assumption 1. Finally,

the weighting matrix in (19) is defined as:

Sk,i �

[∫ 1

0

t

∫ 1

0

∇2J(wo − s t w̃k,i)dsdt

]
(22)

Expression (19) is a useful result since it relates excess-risk anal-

ysis to mean-square analysis. The result states that the excess-risk

at node k at time i is equal to a weighted mean-square-error with

weight matrix (22). Consequently, if the distributed algorithm can

be guaranteed to converge in the mean-square sense, then (20) would

imply that the algorithm also converges in excess-risk. For this rea-

son, in the next section, we proceed to show that the distributed dif-

fusion strategy (10)-(11) converges in the mean-square sense. Sub-

sequently, we show that the algorithm achieves the desired O(1/Ni)
convergence rate.

3. MEAN-SQUARE-CONVERGENCE

In this section, we show that the diffusion strategy (10)-(11) con-

verges in excess-risk under conditions on the step-size sequence.

Theorem 1 (Asymptotic MSE Bound). Let Assumptions 1-2 hold

and let the step-size sequence satisfy

∞∑
i=1

μi =∞, lim
i→∞

μi = 0, (23)

then

E‖w̃k,i‖2 → 0. (24)

Furthermore, let the step-size sequence be chosen as μi � μ/i
where μ > (2λmin)

−1, then the MSE at each node k satisfies

lim
i→∞

E‖w̃k,i‖2
i−1

≤ μ2σ2
v

2μλmin − 1
(25)

for all k = 1, . . . , N .

Sketch of proof. Extending the arguments of [10], and noting that

the step-size sequence is time-varying as opposed to constant, it is

possible to derive the following scalar recursion:

‖Wi‖∞ ≤ βi‖Wi−1‖∞ + σ2
vμ

2
i (26)

where

Wi �
[
E‖w̃1,i‖2, . . . ,E‖w̃N,i‖2

]
T

(27)

βi � 1− 2μiλmin + μ2
i (λ

2
max + α) (28)

We can now use Lemma 3 from [7, p.45] to establish the asymptotic

convergence result (24). Moreover, using the same technique as the

one used in the proof of Lemma 4 from [7, p.45], it is possible to

establish the rate of convergence (25). �

Observe that (24) implies that each node converges in the mean-

square-error sense. Combining this result with (20), we also con-

clude that each node converges in excess-risk. However, the bound

(25) is still not sufficient to reveal the gain that results from coop-

eration; the bound only shows that the nodes are converging at the

rate of O(1/i), which is still the same rate as the non-cooperative

scheme (7). The main cause for this weaker result is that the bound

in (25) does not depend on (or exploit) the combination matrix A.

In order to quantify the benefit of cooperation, we continue our dis-

cussion by assuming that the matrix A is left-stochastic and primi-

tive [16, p.730]; every connected network with at least one self-loop

(akk > 0) automatically leads to a primitive A [8].

4. EXCESS-RISK APPROXIMATION

From the previous section, we know that the diffusion algorithm

guarantees a rate of at least O(1/i) when μ > (2λmin)
−1 and A is

left-stochastic. We show that the diffusion algorithm can approach

the rate O(1/Ni) achieved by the centralized algorithm (8).

4.1. Approximate Steady State Performance

The arguments presented here extend the results of [10] to the case

in which the step-size sequence is time-variant as opposed to con-

stant. We begin by introducing the network error vector w̃i �

col{w̃1,i, . . . , w̃N,i} and the quantities:

A � A⊗ IM , gi(w̃) � col {v1,i(w̃), . . . ,vN,i(w̃)} (29)

where ⊗ denotes the Kronecker product [17, p.243]. We also let

Rv � E{gi(0)gi(0)
T} = I ⊗Rv (30)

where the last equality is due to our assumption that the noise is

uncorrelated across the nodes and the matrix Rv is defined as:

Rv � E{vk,i(0)vk,i(0)
T}, k ∈ {1, . . . , N} (31)

The covariance matrix Rv does not depend on the node at which it is

being evaluated since all nodes are assumed to sample from the same

distribution X and have the same loss function Q(·). Some algebra

similar to [10, 11] would show that for large enough i:

E‖w̃i‖2S ≈ μ2
i

2
vec

(
ATRvA

)
T

(I −Fi)
−1vec(S) (32)

where ‖x‖2S � xTSx and

Fi � BT

i ⊗ BT

i (33)



Bi � AT ⊗ (
IM − μi∇2

wJ(w
o)
)

(34)

S � Ekk ⊗ Sk (35)

Sk �
1

2
∇2

wJ(w
o) (36)

Ekk � eke
T

k (37)

where ek is the k-th standard basis vector in R
N . The weight matrix

Sk corresponds to the asymptotic approximation of (22) when w̃k,i

is small (in the mean-square sense), which occurs for large i:

Sk,i ≈ Sk �
1

2
∇2

wJ(w
o) [large i] (38)

4.2. Distributed Performance Gain for Diffusion

In order to assess the learning rate of the algorithm, we extend the

arguments of [11] and examine more closely the structure of the ma-

trices appearing in (32). Since the Hessian at wo is symmetric, we

represent its eigenvalue decomposition as:

∇2
wJ(w

o) = ΦΛΦT
(39)

where Φ is orthogonal and Λ is diagonal with positive entries. On

the other hand, since the combination matrix A is not necessarily

diagonalizable, we represent its Jordan decomposition as:

A = TDT−1
(40)

where D is a block diagonal matrix with Jordan blocks. We can now

rewrite Bi as

Bi = (T−T ⊗ Φ)[DT ⊗ (I − μiΛ)](T
T ⊗ ΦT) (41)

and Fi as

Fi = G [(D ⊗ (IM − μiΛ))⊗ (D ⊗ (IM − μiΛ))]G−1

where

G � (T ⊗Φ) ⊗ (T ⊗ Φ) (42)

Then, from (19) and (32):

ERk(i) ≈μ2
i

2
vec(DTT TTD⊗ΦTRvΦ)

TΩ−1
i vec(T−1EkkT

−T⊗Λ)

(43)

where

Ωi � IM2N2 − (D ⊗ (IM − μiΛ))⊗ (D ⊗ (IM − μiΛ)) (44)

We can now establish the following result.

Theorem 2. Given a left-stochastic primitive matrix A and a step-

size sequence μi � μ/i where μ > (2λmin)
−1, the excess-risk at

node k and large enough time i is approximated by

ERk(i) ≈ μTr(Rv)

4i
‖r‖22 (45)

where r is the right-eigenvector of the matrix A associated with

eigenvalue 1 and satisfies 1
Tr = 1. Furthermore, the excess-risk

is minimized when the matrix A is doubly-stochastic and primitive;

in which case the excess-risk is approximated by

ERk(i) ≈ μTr(Rv)

4Ni
(46)

Table 1. Asymptotic performance for the non-coopertive, diffusion,

and centralized strategies.

Non-Cooperative (7) Centralized (8) Diffusion (10)-(11)

ERk(i)
μTr(Rv)

4i
μTr(Rv)

4Ni

μTr(Rv)
4Ni

Proof. See Appendix A. �

One particular choice of a doubly-stochastic combination matrix

A can be constructed from the following Metropolis rule [9]:

a�k =

⎧⎪⎨
⎪⎩
min

(
1

|N�|
, 1
|Nk|

)
, � ∈ Nk, � �= k

1−∑
j∈Nk\{k} ajk, � = k

0, otherwise

(47)

This result can be used to derive the non-cooperative asymptotic per-

formance by letting N = 1 in (46). The performance of all three

strategies are listed in Table 1. Observe that the asymptotic per-

formance of the diffusion algorithm matches that of the centralized

algorithm.

The above result implies that every node in the network will

improve its estimate (in comparison to the non-cooperative solution

(7)) by a factor of N . In addition, this result also implies that each

node will be converging in excess-risk at the same rate as the central-

ized algorithm (8). Therefore, if an excess-risk on the order of O(ε)
is desired, then only O(1/Nε) samples per node are necessary, as

opposed to O(1/ε) samples for the non-cooperative solution in (7).

Finally, we note that the excess-risk approximation in (46) does not

explicitly depend on the Hessian of the risk function evaluated at wo,

unlike the bounds derived in (20) and (25).

5. SIMULATION

In order to demonstrate our results, we simulate the diffusion al-

gorithm on a moderate-size regularized logistic regression problem.

The loss function is defined as:

Q(w,h,y) =
ρ

2
‖w‖2 + log

(
1 + e−yhTw

)
(48)

This loss function can be seen as a twice-differentiable approxima-

tion to the hinge-loss that is used in the SVM formulation (1). The

data used in the simulations originate from the “alpha” and “beta”

datasets [18]. The datasets contain P = 500, 000 instances each,

where y ∈ {−1,+1}, h ∈ R
M×1, and M = 500. The data are

randomly permuted and divided evenly across N = 8 nodes on a

randomly generated topology at every experiment. The Metropolis

combination rule (47) is used for the combination weights since it

leads to a doubly-stochastic A. The regularization constant ρ is taken

to be ρ = 5 and the step-size sequence μi is taken to be μi � 0.9/i.
The performance metric is the excess-risk (6). Since the distribu-

tion from which the data {hi, yi} arise is not available, we use the

empirical mean to estimate the expectation over the data. That is,

J(w) ≈ 1

P

P∑
p=1

Q(w, hp, yp) (49)

Furthermore, the optimizer wo that is required in order to evaluate

the excess-risk is taken to be

wo ≈ argmin
w

1

P

P∑
p=1

Q(w, hp, yp) (50)
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Fig. 2. Excess-risk attained by nodes that utilize the non-cooperative

algorithm (7), the centralized algorithm (8), and the diffusion algo-

rithm (10)-(11). The theoretical curves are from Table 1. Data for

this simulation originate from the “alpha” dataset [18].

In Fig. 2, we plot the excess-risk attained by the diffusion algorithm

(10)-(11), the non-cooperative solution (7), and the centralized al-

gorithm (8) for the “alpha” dataset. The performance of the algo-

rithms is plotted in Fig. 3 for the “beta” dataset. The curves are aver-

aged over 100 experiments. Observe that the diffusion algorithm and

the centralized algorithm achieve the expected 9dB improvement in

excess-risk when compared with the non-cooperative solution (7).

The simulation curves are within 1dB of the theoretical excess-risk

(46). In addition, notice that every node that utilizes the diffusion

algorithm asymptotically achieves the same rate as the centralized

algorithm. For this reason, it is beneficial for the nodes to cooperate

in order to improve their performance.

6. CONCLUSION

We demonstrated the convergence in mean-square-error and excess-

risk of the diffusion optimization algorithm (10)–(11) under reason-

able conditions on the gradient noise and step-size sequence when

all nodes from the network optimize the same loss function over data

sampled from some common distribution X . In addition, we estab-

lished that the diffusion algorithm improves the asymptotic conver-

gence rate of every node by a factor of N , where N is the number

of nodes in the network. This convergence rate matches that of the

centralized algorithm (8).
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A. PROOF OF THEOREM 2

Since the stability of Fi is guaranteed for sufficiently small step-

sizes (see App. C in [10]), we can express the inverse of Ωi in terms

of its power-series expansion:

Ω−1
i =

∞∑
j=0

(D ⊗ (IM − μiΛ))
j ⊗ (D ⊗ (IM − μiΛ))

j
(51)

Substituting (51) into (43) and simplifying yields

ERk(i) ≈ μ2
i

2

∞∑
j=0

Tr

(
DTT TTDDjT−1EkkT

−TDjT⊗

ΦTRvΦ(IM − μiΛ)
jΛ(IM − μiΛ)

j
)
(52)

The matrix (IM − μiΛ)
jΛ(IM − μiΛ)

j is diagonal, and we get

Tr(ΦTRvΦ(IM − μiΛ)
jΛ(IM − μiΛ)

j) =

M∑
m=1

(ΦTRvΦ)mmλm(1− μiλm)2j

where λm is the m-th diagonal entry of Λ, and the notation (B)ij in-

dicates the (i, j)-th element of matrix B. Additionally, since Tr(X⊗
Y ) = Tr(X)Tr(Y ), we have

ERk(i) ≈ μ2
i

2

M∑
m=1

λm · (ΦTRvΦ)mm

∞∑
j=0

(1− μiλm)2j×

Tr

(
DTT TTDDjT−1EkkT

−TDjT
)

(53)

Using the property Tr(ATBCDT) = vec(A)T(D⊗B)vec(C) [17,

p.252], where the operation vec(·) stacks the columns of its matrix

argument on top of each other, we get

ERk(i) ≈ μ2
i

2

M∑
m=1

λm · (ΦTRvΦ)mmvec
(
DTT TTD

)T

×

(IM − (1− μiλm)2D ⊗D)−1vec
(
T−1EkkT

−T

)
Now, for sufficiently large i, we have that μi = μ/i will become

sufficiently small and we approximate (1− μiλm)2 ≈ 1− 2μiλm.

Therefore,

ERk(i) ≈ μ2
i

2

M∑
m=1

λm · (ΦTRvΦ)mmvec
(
DTT TTD

)T

× (54)

(IN2−(1− 2μiλm)D ⊗D)−1vec
(
T−1EkkT

−T

)
Using the fact that A is a left-stochastic and primitive matrix, we

conclude from the Perron-Frobenius theorem [16, p.730] that D has

the form

D =

[
1 0TN−1

0N−1 DN−1

]
(55)

where 0N−1 is the zero vector of length N − 1, DN−1 is an N −
1×N − 1 matrix formed of stable Jordan blocks. It follows that

μi(IN2−(1− 2μiλm)D ⊗D)−1 = (56)⎡
⎢⎢⎣

1
2λm

0 0 0

0 Pi,m 0 0
0 0 Pi,m 0
0 0 0 Qi,m

⎤
⎥⎥⎦ (57)

where

Pi,m � μi(IN − (1− 2μiλm)DN−1)
−1

(58)

Qi,m � μi(IN2 − (1− 2μiλm)DN−1 ⊗DN−1)
−1

(59)

Observe that both matrices Pi,m and Qi,m are approximately pro-

portional to μi when μi is sufficiently small:

Pi,m ≈ μi(IN −DN−1)
−1

(60)

Qi,m ≈ μi(IN2 −DN−1 ⊗DN−1)
−1

(61)

For this reason, we approximate (57) by

μi(IN2−(1− 2μiλm)D ⊗D)−1 ≈ 1

2λm

E11 ⊗ E11 (62)

We can now rewrite expression (54) for the excess-risk at node k as:

ERk(i) ≈μTr(Rv)

4i
vec(DTT TTD)T(E11⊗E11)vec(T

−1EkkT
−T)

Now, noting that vec(ATA)T = vec(I)T(A⊗ A), we have

ERk(i) ≈ μTr(Rv)

4i
vec(I)T(TDE11⊗TDE11)vec(T

−1EkkT
−T)

Due to the structure of D in (55), we have that DE11 = E11 and the

expression for ERk(i) simplifies to:

ERk(i) ≈ μTr(Rv)

4i
Tr(TE11T

−1EkkT
−TE11T

T) (63)

We now observe that TE11T
−1 is a rank-1 matrix that is spanned by

the left- and right-eigenvectors of A corresponding to the eigenvalue

1. The left eigenvector is 1N since A is left-stochastic. Denote the

right eigenvector by r and normalize the sum of its entries to unity;

i.e., rT1N = 1 and Ar = r. Then, TE11T
−1 = r1T

N . Substituting

into (63) we get

ERk(i) ≈ μTr(Rv)

4i
Tr(r1T

NEkk1NrT)

=
μTr(Rv)

4i
‖r‖22 (64)

Motivated by [11], consider the optimization problem that minimizes

expression (64) over vectors r:

min ‖r‖22
subject to: rT1 = 1

This optimization problem has the closed-form solution:

ro =
1

N
1N (65)

Therefore, we conclude that the excess-risk expression for doubly-

stochastic combination matrices can be approximated by

ERk(i) ≈ μTr(Rv)

4Ni
(66)

which is our desired result.


