
CHAPTER 1

Scalar-Valued Data

In this first part of the book we focus on the basic, yet fundamental, problem of estimat-

ing an unobservable quantity from a collection of measurements in the least-mean-squares

sense. The estimation task is made more or less difficult depending on how much infor-

mation the measured data convey about the unobservable quantity. We shall study this

estimation problem with increasing degrees of complexity, starting from a simple scenario

and building up to more sophisticated cases.

The material is developed initially at a slow pace. This is done deliberately in order to

familiarize readers (and especially students) with the basic concepts of estimation theory

for both real- and complex-valued random variables, as well as for scalar- and vector-

valued random variables. We hope that, by the end of our exposition, the reader will be

convinced that these different scenarios (of real vs. complex and scalar vs. vector) can be

masked by adopting a uniform vector and complex-conjugation notation. The notation

is introduced gradually in the two initial chapters and will be used throughout the book

thereafter.

Before plunging into a study of least-mean-squares estimation theory, and the reasons

for its widespread use, the reader is advised to consult the review material in Secs. A.1–A.4.

These sections provide an intuitive explanation for what the variance of a random variable

means. The sections also introduce several useful concepts such as complex- and vector-

valued random variables and the notions of independence and uncorrelatedness between

two random variables. The explanations will help the reader appreciate the value of the

least-mean-squares criterion, which is used extensively in later sections and chapters.

1.1 ESTIMATION WITHOUT OBSERVATIONS

We initiate our discussions of estimation theory by posing and solving a simple (almost

trivial) estimation problem. Thus, suppose that all we know about a real-valued random

variable x is its mean x̄ and its variance σ2
x

, and that we wish to estimate the value that

x will assume in a given experiment. We shall denote the estimate of x by x̂; it is a

deterministic quantity (i.e., a number). But how do we come up with a value for x̂? And

how do we decide whether this value is optimal or not? And if optimal, in what sense?

These inquiries are at the heart of every estimation problem.

To answer these questions, we first need to choose a cost function to penalize the esti-

mation error. The resulting estimate x̂ will be optimal only in the sense that it leads to the

smallest cost value. Different choices for the cost function will generally lead to different

choices for x̂, each of which will be optimal in its own way.

The design criterion we shall adopt is the mean-square-error criterion. It is based on

introducing the error signal

x̃
∆
= x − x̂
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and then determining x̂ by minimizing the mean-square-error (m.s.e.), which is defined as

the expected value of x̃
2, i.e.,

min
x̂

E x̃
2 (1.1)

The error x̃ is a random variable since x is random. The resulting estimate, x̂, will be

called the least-mean-squares estimate of x. The following result is immediate (and, in

fact, intuitively obvious as we explain below).

Lemma 1.1 (Lack of observations) The least-mean-squares estimate of x given
knowledge of (x̄, σ2

x
) is x̂ = x̄. The resulting minimum cost is E x̃

2 = σ2
x
.

Proof: Expand the mean-square error by subtracting and adding x̄ as follows:

E x̃
2 = E (x − x̂)2 = E [(x − x̄) + (x̄ − x̂)]2 = σ2

x + (x̄ − x̂)2

The choice of x̂ that minimizes the m.s.e. is now evident. Only the term (x̄ − x̂)2 is dependent on

x̂ and this term can be annihilated by choosing x̂ = x̄. The resulting minimum mean-square error

(m.m.s.e.) is then

m.m.s.e.
∆
= E x̃

2 = σ2
x

An alternative derivation would be to expand the cost function as

E (x − x̂)2 = Ex
2 − 2x̄x̂ + x̂2

and to differentiate it with respect to x̂. By setting the derivative equal to zero we arrive at the same

conclusion, namely, x̂ = x̄. ¦

There are several good reasons for choosing the mean-square-error criterion (1.1). The

simplest one perhaps is that the criterion is amenable to mathematical manipulations, more

so than any other criterion. In addition, the criterion is essentially attempting to force the

estimation error to assume values close to its mean, which happens to be zero. This is

because

E x̃ = E (x − x̂) = E (x − x̄) = x̄ − x̄ = 0

and, by minimizing E x̃
2, we are in effect minimizing the variance of the error, x̃. In

view of the discussion in Sec. A.1 regarding the interpretation of the variance of a random

variable, we find that the mean-square-error criterion is therefore attempting to increase

the likelihood of small errors.

The effectiveness of the estimation procedure (1.1) can be measured by examining the

value of the minimum cost, which is the variance of the resulting estimation error. The

above lemma tells us that the minimum cost is equal to σ2
x

. That is,

σ2

x̃
= σ2

x

so that the estimate x̂ = x̄ does not reduce our initial uncertainty about x since the error

variable still has the same variance as x itself! We thus find that the performance of the

mean-square-error design procedure is limited in this case. Clearly, we are more interested

in estimation procedures that result in error variances that are smaller than the original

signal variance. We shall discuss one such procedure in the next section.

The reason for the poor performance of the estimate x̂ = x̄ lies in the lack of more

sophisticated prior information about x. Note that Lemma 1.1 simply tells us that the best
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we can do, in the absence of any other information about a random variable x, other than

its mean and variance, is to use the mean value of x as our estimate. This statement is,

in a sense, intuitive. After all, the mean value of a random variable is, by definition, an

indication of the value that we would expect to occur on average in repeated experiments.

Hence, in answer to the question: what is the best guess for x?, the analysis tells us that

the best guess is what we would expect for x on average! This is a circular answer, but one

that is at least consistent with intuition.

Example 1.1 (Binary signal)

Assume x represents a BPSK (binary phase-shift keying) signal that is equal to ±1 with probability

1/2 each. Then

x̄ =
1

2
· (1) +

1

2
· (−1) = 0

and

σ2
x = Ex

2 = 1

Now given knowledge of {x̄, σ2
x} alone, the best estimate of x in the least-mean-squares sense is

x̂ = x̄ = 0. This example shows that the least-mean-squares (and, hence, optimal) estimate does not

always lead to a meaningful solution! In this case, x̂ = 0 is not useful in guessing whether x is 1
or −1 in a given realization. If we could incorporate into the design of the estimator the knowledge

that x is a BPSK signal, or some other related information, then we could perhaps come up with a

better estimate for x. ¦
1.2 ESTIMATION GIVEN DEPENDENT OBSERVATIONS

So let us examine the case in which more is known about a random variable x, other than

its mean and variance. Specifically, let us assume that we have access to an observation of

a second random variable y that is related to x in some way. For example, y could be a

noisy measurement of x, say, y = x + v, where v denotes the disturbance, or y could be

the sign of x, or dependent on x in some other manner.

Given two dependent random variables {x, y}, we therefore pose the problem of deter-

mining the least-mean-squares estimator of x given y. Observe that we are now employing

the terminology estimator of x as opposed to estimate of x. In order to highlight this dis-

tinction, we denote the estimator of x by the boldface notation x̂; it is a random variable

that is defined as a function of y, say,

x̂ = h(y)

for some function h(·) to be determined. Once the function h(·) has been determined,

evaluating it at a particular occurrence of y, say, for y = y, will result in an estimate for

x, i.e.,

x̂ = h(y)|
y=y

= h(y)

Different occurrences for y lead to different estimates x̂. In Sec. 1.1 we did not need to

make this distinction between an estimator x̂ and an estimate x̂. There we sought directly
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an estimate x̂ for x since we did not have access to a random variable y; we only had

access to the deterministic quantities {x̄, σ2
x
}.

The criterion we shall use to determine the estimator x̂ is still the mean-square-error

criterion. We define the error signal

x̃
∆
= x − x̂ (1.2)

and then determine x̂ by minimizing the mean-square-error over all possible functions

h(·):

min E x̃2

h(·) (1.3)

The solution is given by the following statement.

Theorem 1.1 (Optimal mean-square-error estimator) The least-mean-squares
estimator (l.m.s.e.) of x given y is the conditional expectation of x given y,
i.e., x̂ = E (x|y). The resulting estimate is

x̂ = E (x|y = y) =

∫

Sx

xfx|y(x|y)dx

where Sx denotes the support (or domain) of the random variable x. More-
over, the estimator is unbiased, i.e., E x̂ = x̄, and the resulting minimum cost
is E x̃

2 = σ2
x

− σ2

x̂
.

Proof: There are several ways to establish the result. Our argument is based on recalling that for

any two random variables x and y, it holds that (see Prob. I.4):

Ex = E [E (x|y)] (1.4)

where the outermost expectation on the right-hand side is with respect to y, while the innermost

expectation is with respect to x. We shall indicate these facts explicitly by showing the variables

with respect to which the expectations are performed, so that (1.4) is rewritten as

Ex = E y[E x(x|y)]

It now follows that, for any function of y, say, g(y), it holds that

E x,y xg(y) = E y

�
E x

�
xg(y)|y

��
= E y

�
E x

�
x|y
�
g(y)

�
= E x,y

�
E x

�
x|y
��

g(y)

This means that, for any g(y), it holds that E x,y

�
x − E x

�
x|y
��

g(y) = 0, which we write more

compactly as

E [x − E (x|y)] g(y) = 0 (1.5)

Expression (1.5) states that the random variable x − E (x|y) is uncorrelated with any function g(·)
of y. Indeed, as mentioned before in Sec. A.2, two random variables a and b are uncorrelated if, and

only if, their cross-correlation is zero, i.e., E (a − ā)(b − b̄) = 0. On the other hand, the random

variables are said to be orthogonal if, and only if, Eab = 0. It is easy to verify that the concepts

of orthogonality and uncorrelatedness coincide if at least one of the random variables is zero mean.

From equation (1.5) we conclude that the variables x − E (x|y) and g(y) are orthogonal. However,

since x − E (x|y) is zero mean, then we can also say that they are uncorrelated.
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Using this intermediate result, we return to the cost function (1.3), add and subtract E (x|y) to its

argument, and express it as

E (x − x̂)2 = E [x − E (x|y) + E (x|y) − x̂]2

The term E (x|y) − x̂ is a function of y. Therefore, if we choose g(y) = E (x|y) − x̂, then from

the orthogonality property (1.5) we conclude that

E (x − x̂)2 = E [x − E (x|y)]2 + E [E (x|y) − x̂]2

Now only the second term on the right-hand side is dependent on x̂ and the m.s.e. is minimized by

choosing x̂ = E (x|y). To evaluate the resulting m.m.s.e. we first note that the optimal estimator is

unbiased since

E x̂ = E [E (x|y)] = Ex = x̄

and its variance is therefore given by σ2
x̂ = E x̂2 − x̄2. Moreover, in view of the orthogonality

property (1.5), and in view of the fact that x̂ = E (x|y) is itself a function of y, we have

E (x − x̂)x̂ = 0 (1.6)

In other words, the estimation error, x̃, is uncorrelated with the optimal estimator. Using this result,

we can evaluate the m.m.s.e. as follows:

E x̃
2 = E [x − x̂][x − x̂] = E [x − x̂]x (because of (1.6))

= Ex
2 − E x̂[x̃ + x̂]

= Ex
2 − E x̂

2 (because of (1.6))

=
�
Ex

2 − x̄2� +
�
x̄2 − E x̂

2� = σ2
x − σ2

x̂

¦

Theorem 1.1 tells us that the least-mean-squares estimator of x is its conditional expec-

tation given y. This result is again intuitive. In answer to the question: what is the best

guess for x given that we observed y?, the analysis tells us that the best guess is what we

would expect for x given the occurrence of y!

Example 1.2 (Noisy measurement of a binary signal)

Let us return to Ex. 1.1, where x is a BPSK signal that assumes the values ±1 with probability

1/2. Assume now that in addition to the mean and variance of x, we also have access to a noisy

observation of x, say,

y = x + v

Assume further that the signal x and the disturbance v are independent, with v being a zero-mean

Gaussian random variable of unit variance, i.e., its pdf is given by

fv(v) =
1√
2π

e−v2/2

Our intuition tells us that we should be able to do better here than in Ex. 1.1. But beware, even here,

we shall make some interesting observations.

According to Thm. 1.1, the optimal estimate of x given an observation of y is

x̂ = E (x|y = y) =

Z ∞

−∞

xfx|y(x|y)dx (1.7)
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We therefore need to determine the conditional pdf, fx|y(x|y), and evaluate the integral (1.7). For

this purpose, we start by noting, from probability theory, that the pdf of the sum of two independent

random variables, namely, y = x + v, is equal to the convolution of their individual pdfs, i.e.,

fy(y) =

Z ∞

−∞

fx(x)fv (y − x)dx

In this example, we have

fx(x) =
1

2
δ(x − 1) +

1

2
δ(x + 1)

where δ(·) is the Dirac-delta function, so that fy(y) is given by

fy(y) =
1

2
fv(y + 1) +

1

2
fv(y − 1) (1.8)

Moreover, the joint pdf of {x, y} is given by

fx,y(x, y) = fx(x) · fy|x(y|x)

=

�
1

2
δ(x − 1) +

1

2
δ(x + 1)

�
· fv(y − x)

=
1

2
fv(y − 1)δ(x − 1) +

1

2
fv(y + 1)δ(x + 1)

Using (A.6) we get

fx|y(x|y) =
fx,y(x, y)

fy(y)
=

fv(y − 1)δ(x − 1)

fv(y + 1) + fv (y − 1)
+

fv (y + 1)δ(x + 1)

fv(y + 1) + fv(y − 1)

Substituting into expression (1.7) for x̂ and integrating we obtain

x̂ =
fv(y − 1)

fv (y + 1) + fv(y − 1)
− fv(y + 1)

fv (y + 1) + fv(y − 1)

=
1 

e−(y+1)2/2

e−(y−1)2/2

!
+ 1

− 1 
e−(y−1)2/2

e−(y+1)2/2

!
+ 1

=
ey − e−y

ey + e−y

∆
= tanh y

In other words, the least-mean-squares estimator of x is the hyperbolic tangent function,

x̂ = tanh(y) (1.9)

The result is represented schematically in Fig. 1.1.

Figure 1.2 plots the function tanh(y). We see that it tends to ±1 as y −→ ±∞. For other

values of y, the function assumes real values that are distinct from ±1. This is a bit puzzling from

the designer’s perspective. The designer is interested in knowing whether the symbol x is +1 or

−1 based on the observed value of y. The above construction tells the designer to estimate x by

computing tanh(y). But this value will never be exactly +1 or −1; it will be a real number inside

x x̂

v

y
tanh(·)

FIGURE 1.1 Optimal estimation of a BPSK signal embedded in unit-variance additive Gaussian

noise.
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Optimal decision device for BPSK data buried in Gaussian noise
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FIGURE 1.2 A plot of the function tanh(y).

the interval (−1, 1). The designer will then be induced to make a hard decision of the form:

decide in favor of

(
+1 if x̂ is nonnegative

−1 if x̂ is negative

In effect, the designer ends up implementing the alternative estimator:

x̂ = sign[tanh(y)] (1.10)

where sign(·) denotes the sign of its argument; it is equal to +1 if the argument is nonnegative and

−1 otherwise.

We therefore have a situation where the optimal estimator, although known in closed form, does

not solve the original problem of recovering the symbols ±1 directly. Instead, the designer is forced

to implement a suboptimal solution; it is suboptimal from a least-mean-squares point of view. Even

more puzzling, the designer could consider implementing the alternative (and simpler) suboptimal

estimator:

x̂ = sign(y) (1.11)

where the sign(·) function operates directly on y rather than on tanh(y) — see Fig. 1.3. Both sub-

optimal implementations (1.10) and (1.11) lead to the same result since, as is evident from Fig. 1.2,

sign[tanh(y)] = sign(y). In the computer project at the end of this part we shall compare the

performance of the optimal and suboptimal estimators (1.9)–(1.11).

x x̂

v

y
sign(·)

FIGURE 1.3 Suboptimal estimation of a BPSK signal embedded in unit-variance additive

Gaussian noise.

We may mention that in the digital communications literature, especially in studies on equaliza-

tion methods, an implementation using (1.11) is usually said to be based on hard decisions, while an

implementation using (1.9) is said to be based on soft decisions. ¦
Remark 1.1 (Complexity of optimal estimation) Example 1.2 highlights one of the inconve-

niences of working with the optimal estimator of Thm. 1.1. Although the form of the optimal solution

is given explicitly by x̂ = E (x|y), in general it is not an easy task to find a closed-form expression

for the conditional expectation of two random variables (especially for other choices of probability

density functions). Moreover, even when a closed-form expression can be found, one is usually led
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to a nonlinear estimator whose implementation may not be practical or may even be costly. For this

reason, from Part II (Linear Estimation) onwards, we shall restrict the class of estimators to linear

estimators, and study the capabilities of these estimators.

¦
The purpose of Exs. 1.1 and 1.2 is not to confuse the reader, but rather to stress the fact

that an optimal estimator is optimal only in the sense that it satisfies a certain optimality

criterion. One should not confuse an optimal guess with a perfect guess. One should also

not confuse an optimal guess with a practical one; an optimal guess need not be perfect or

even practical, though it can suggest good practical solutions.

1.3 ORTHOGONALITY PRINCIPLE

There are two important conclusions that follow from the proof of Thm. 1.1, namely, the

orthogonality properties (1.5) and (1.6). The first one states that the difference

x − E (x|y)

is orthogonal to any function g(·) of y. Now since we already know that the conditional

expectation, E (x|y), is the optimal least-mean-squares estimator of x, we can restate this

result by saying that the estimation error x̃ is orthogonal to any function of y,

E x̃ g(y) = 0 (1.12)

We shall sometimes use a geometric notation to refer to this result and write instead

x̃ ⊥ g(y) (1.13)

where the symbol ⊥ is used to signify that the two random variables are orthogonal; a

schematic representation of this orthogonality property is shown in Fig. 1.4.

Relation (1.13) admits the following interpretation. It states that the optimal estimator x̂ =
E (x|y) is such that the resulting error, x̃, is orthogonal to (and, in fact, also uncorrelated

with) any transformation of the data y. In other words, the optimal estimator is such that

no matter how we modify the data y, there is no way we can extract additional information

from the data in order to reduce the variance of x̃ any further. This is because any additional

processing of y will remain uncorrelated with x̃.

The second orthogonality property (1.6) is a special case of (1.13). It states that

x̃ ⊥ x̂

g(y)

x̃ = x − E (x|y)

x

FIGURE 1.4 The orthogonality condition: x̃ ⊥ g(y).
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That is, the estimation error is orthogonal to (or uncorrelated with) the estimator itself. This

is a special case of (1.13) since x̂ is a function of y by virtue of the result x̂ = E (x|y).
In summary, the optimal least-mean-squares estimator is such that the estimation error

is orthogonal to the estimator and, more generally, to any function of the observation. It

turns out that the converse statement is also true so that the orthogonality condition (1.13)

is in fact a defining property of optimality in the least-mean-squares sense.

Theorem 1.2 (Orthogonality condition) Given two random variables x and
y, an estimator x̂ = h(y) is optimal in the least-mean-squares sense (1.3) if,
and only if, x̂ is unbiased (i.e., E x̂ = x̄) and x − x̂ ⊥ g(y) for any function
g(·).

Proof: One direction has already been proven prior to the statement of the theorem, namely, if x̂

is the optimal estimator and hence, x̂ = E (x|y), then we already know from (1.13) that x̃ ⊥ g(y),

for any g(·). Moreover, we know from Thm. 1.1 that this estimator is unbiased.

Conversely, assume x̂ is some unbiased estimator for x and that it satisfies x − x̂ ⊥ g(y), for

any g(·). Define the random variable z = x̂ − E (x|y) and let us show that it is the zero variable

with probability one. For this purpose, we note first that z is zero mean since

Ez = E x̂ − E (E (x|y)) = x̄ − x̄ = 0

Moreover, from (1.5) we have x − E (x|y) ⊥ g(y) and, by assumption, we have x − x̂ ⊥ g(y)
for any g(·). Subtracting these two conditions we conclude that z ⊥ g(y), which is the same as

Ezg(y) = 0. Now since the variable z itself is a function of y, we may choose g(y) = z to get

Ez2 = 0. We thus find that z is zero mean and has zero variance, so that, from Remark A.1, we

conclude that z = 0, or equivalently, x̂ = E (x|y), with probability one. ¦

Example 1.3 (Suboptimal estimator for a binary signal)

Consider again Ex. 1.2, where x is a BPSK signal that assumes the values ±1 with probability

1/2. Let us verify that the estimator x̂ = sign(y) is not optimal in the least-mean squares sense.

We already know that this is the case because we found in Ex. 1.2 that the optimal estimator is

tanh(y). Here we wish to verify the sub-optimality of sign(y) without assuming prior knowledge

of the optimal estimator, and by relying solely on the orthogonality condition (1.12).

According to Thm. 1.2, we need to verify that the estimator sign(y) fails the orthogonality test.

In particular, we shall exhibit a function g(y) such that the difference x− sign(y) is correlated with

it. Actually, we shall choose g(y) = sign(y) and verify that

E [x − sign(y)]sign(y) 6= 0 (1.14)

Let us first check whether the estimator x̂ = sign(y) is biased or not. For this purpose we recall

that y = x + v and that

sign(x + v) =

(
+1 if x + v ≥ 0

−1 if x + v < 0

We therefore need to evaluate the probability of the events x + v ≥ 0 and x + v < 0. For the first

case we have

x + v ≥ 0 ⇐⇒ (x = +1 and v ≥ −1) or (x = −1 and v ≥ 1)
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Now recall that x and v are independent and that v is a zero-mean unit-variance Gaussian random

variable. Thus, let

P (v ≥ 1)
∆
= α (1.15)

Then

P (v ≥ −1) = 1 − P (v ≤ −1) = 1 − P (v ≥ 1) = 1 − α

and we obtain

P (x + v ≥ 0) = (1 − α)/2 + α/2 = 1/2

Consequently, P (x + v < 0) = 1/2 and E sign(x + v) = 0. This means that the estimator

x̂ = sign(y) is unbiased. We now return to (1.14) and note that

E [x − sign(y)]sign(y) = E xsign(y) − 1

Therefore, all we need to do in order to verify that (1.14) holds is to check that Exsign(y) does not

evaluate to one. To do this, we introduce the random variable z = xsign(y) and proceed to evaluate

its mean. It is clear from the definition of z that

z =

(
+1 if (x = +1 and v ≥ −1) or (x = −1 and v < 1)

−1 if (x = +1 and v < −1) or (x = −1 and v ≥ 1)

The events

(x = +1 and v ≥ −1) or (x = −1 and v < 1)

each has probability 0.5(1 − α). Likewise, the events

(x = +1 and v < −1) or (x = −1 and v ≥ 1)

each has probability 0.5α. It then follows that Ez = 1 − 2α 6= 1, so that x − sign(y) is correlated

with sign(y). Hence, the estimator sign(y) does not satisfy the orthogonality condition (1.12) and,

therefore, it cannot be the optimal least-mean-squares estimator. ¦
1.4 GAUSSIAN RANDOM VARIABLES

We mentioned earlier in Remark 1.1 that it is not always possible to determine a closed

form expression for the optimal estimator E (x|y). Only in some special cases this calcu-

lation can be carried out to completion (as we did in Ex. 1.2 and as we shall do in another

example below). This difficulty will motivate us to limit ourselves in Part II (Linear Esti-

mation) to the subclass of linear (or affine) estimators, namely, to choices of h(·) in (1.3)

that are affine functions of the observation, say, h(y) = ky + b for some constants k
and b to be determined. Despite its apparent narrowness, this class of estimators performs

reasonably well in many applications.

There is an important special case for which the optimal estimator of Thm. 1.1 turns

out to be affine in y. This scenario happens when the random variables x and y are jointly

Gaussian. To see this, let us introduce the matrix

R
∆
=

[

σ2
x

σxy

σxy σ2
y

]

where {σ2
x
, σ2

y
, σxy} denote the variances and cross-correlation of x and y, respectively,

σ2

x
= E (x − x̄)2, σ2

y
= E (y − ȳ)2, σxy = E (x − x̄)(y − ȳ)
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The matrix R can be regarded as the covariance matrix of the column vector col{x, y},

namely,

R = E

([

x

y

]

−
[

x̄
ȳ

])([

x

y

]

−
[

x̄
ȳ

])T

(1.16)

where the symbol T denotes vector transposition, and the notation col{α, β} denotes a

column vector whose entries are α and β. As explained in Sec. A.4, every such covariance

matrix is necessarily symmetric, R = RT. Moreover, R is also nonnegative-definite,

written as R ≥ 0. To proceed with the analysis, we are going to assume that the covariance

matrix R is positive-definite and, hence, invertible — see Prob. I.6.

Now the joint pdf of two jointly Gaussian random variables {x, y} is given by (see

Sec. A.5 for a review of Gaussian random variables and their probability density functions):

fx,y(x, y) =
1

2π

1√
detR

exp

{

− 1

2

[

x − x̄ y − ȳ
]

R−1

[

x − x̄
y − ȳ

]}

(1.17)

Also, the individual probability density functions of x and y are given by

fx(x) =
1√
2π

1

σx

exp
{

−(x − x̄)2/2σ2

x

}

fy(y) =
1√
2π

1

σy

exp
{

−(y − ȳ)2/2σ2

y

}

According to Thm. 1.1, the least-mean-squares estimator of x given y is x̂ = E (x|y),
which requires that we determine the conditional pdf fx|y(x|y). This pdf can be obtained

from the calculation:

fx|y(x|y) =
fx,y(x, y)

fy(y)

=

1

2π

1√
detR

exp

{

− 1

2

[

x − x̄ y − ȳ
]

R−1

[

x − x̄
y − ȳ

]}

1√
2π

1

σy

exp
{

−(y − ȳ)2/2σ2
y

}

(1.18)

In order to simplify the above ratio, we shall use the fact that R can be factored into a

product of an upper-triangular, diagonal, and lower-triangular matrices, as follows (this

can be checked by straightforward algebra):

R =

[

1 σxy/σ2
y

0 1

] [

σ2 0
0 σ2

y

] [

1 0
σxy/σ2

y
1

]

(1.19)

where we introduced the scalar

σ2 ∆
= σ2

x
− σ2

xy
/σ2

y

which is called the Schur complement of σ2
y

in R; it is guaranteed to be positive in view of

the assumed positive-definiteness of R itself. Indeed, and more generally, let

R =

[

A B
BT C

]
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be any symmetric matrix with possibly matrix-valued entries {A,B, C} satisfying A = AT

and C = CT. Assume further that C is invertible. Then it is easy to verify by direct

calculation that every such matrix can be factored in the form

[

A B
BT C

]

=

[

I BC−1

0 I

] [

Σ 0
0 C

] [

I 0
C−1BT I

]

where

Σ = A − BC−1BT

is called the Schur complement of R with respect to C. The factorization (1.19) is a special

case of this result where the entries {A, B,C} are scalars: A = σ2
x

, B = σxy , and C = σ2
y
.

Moreover, the determinant of a positive-definite matrix is always positive — see Sec. B.1.

We see from (1.19) that detR = σ2σ2
y
, so that σ2 is necessarily positive since detR > 0.

Now, by inverting both sides of (1.19), we find that the inverse of R can be factored as

R−1 =

[

1 0
−σxy/σ2

y
1

] [

1/σ2 0
0 1/σ2

y

] [

1 −σxy/σ2
y

0 1

]

(1.20)

where we used the simple fact that for any scalar a,

[

1 0
a 1

]−1

=

[

1 0
−a 1

]

,

[

1 a
0 1

]−1

=

[

1 −a
0 1

]

Then

[

x − x̄ y − ȳ
]

R−1

[

x − x̄
y − ȳ

]

=
[(x − x̄) − σxyσ−2

y
(y − ȳ)]2

σ2
+

(y − ȳ)2

σ2
y

where the right-hand side is expressed as the sum of two quadratic terms. It follows that

exp

{

−1

2

[

x − x̄ y − ȳ
]

R−1

[

x − x̄
y − ȳ

]}

=

exp
{

−[(x − x̄) − σxyσ−2

y
(y − ȳ)]2/2σ2

}

exp
{

−(y − ȳ)2/2σ2

y

}

This equality, along with det R = σ2σ2
y
, allows us to simplify expression (1.18) for

fx|y(x|y) to

fx|y(x|y) =
1√
2π

1√
σ2

exp
{

−[(x − x̄) − σxyσ−2

y
(y − ȳ)]2/2σ2

}

This expression has the form of the pdf of a Gaussian random variable with variance σ2

and mean value x̄ + σxyσ−2
y

(y − ȳ). Consequently, the optimal estimator is given by the

affine relation:

x̂ = E (x|y) = x̄ +
σxy

σ2
y

(y − ȳ) (1.21)

Moreover, the resulting m.m.s.e., which is the variance of x̃ = x − x̂, is given by

m.m.s.e.
∆
= σ2

x̃
= σ2

x
− σ2

x̂
= σ2

x
−

σ2
xy

σ2
y

= σ2 (1.22)
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Observe that, in this Gaussian case, the m.m.s.e. is completely specified by the second-

order statistics of the random variables {x,y} (namely, σ2
x

, σ2
y
, and σxy). Note also that

the m.m.s.e. is smaller than σ2
x

.

Example 1.4 (Correlation coefficient)

A measure of the correlation between two random variables is their correlation coefficient, defined

by

ρxy
∆
= σxy/σxσy

It is shown in Prob. I.6 that ρxy always lies in the interval [−1, 1]. As ρxy moves closer to zero, the

variables x and y become more uncorrelated (in the Gaussian case, this also means that the variables

become less dependent). We see from (1.22) that the m.m.s.e. in the Gaussian case can be rewritten

in the form

m.m.s.e. = σ2
x(1 − ρ2

xy)

This shows that when ρxy = 0, which occurs when σxy = 0, the resulting m.m.s.e. is σ2
x. Also,

from (1.21), the estimator collapses to x̂ = x̄. That is, we are reduced to the simple estimator

studied in Sec. 1.1. This is expected since in the Gaussian case, a zero cross-correlation means that

the random variables x and y are independent so there is no additional information available that we

can use to estimate x, besides its mean and variance. ¦
Example 1.5 (Gaussian noise)

Let x denote a Gaussian random variable with mean x̄ = 1 and variance σ2
x = 2. Similarly, let

v denote a Gaussian random variable independent of x, with mean v̄ = 2 and variance σ2
v . Now

consider the noisy measurement

y = 2x + v

and let us estimate x from y. According to (1.21), we need to determine the quantities {ȳ, σxy, σ2
y}.

From the above equation we find that

ȳ = 2x̄ + v̄ = 4

The independence of x and v implies that

σ2
y = 4σ2

x + σ2
v = 8 + σ2

v

Finally, the cross-correlation σxy is given by

σxy = E (x − x̄)(y − ȳ) = E (x − 1)(2x + v − 4) = 4

where we used

Ex
2 = σ2

x + x̄2 = 3

and

Exv = ExEv = 2

Using (1.21) and (1.22) we obtain

x̂ = 1 +
4

8 + σ2
v

(y − 4) and σ2
x̃ = 2 − 16

8 + σ2
v

=
2σ2

v

8 + σ2
v

Moreover, since σ2
x̃ = σ2

x − σ2
x̂, we also find that

σ2
x̂ =

16

8 + σ2
v

¦


