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1. (Chapter 29) Consider a regularized least-squares problem of the form:

min
w

[
ρλN∥w∥2 +

N−1∑
m=0

λN−1−m (d(m)− umw)2
]

Show that it is equivalent to the following constrained optimization problem:

min
w

[
N−1∑
m=0

λN−1−m (d(m)− umw)2
]
, subject to ∥w∥2 ≤ α

where α > 0 is a given constant. What is the relation between the regularization
factor ρ and α? Show that there is a one-to-one correspondence between the values
of ρ and α. What is the significance of this result?

2. (Chapter 10) Let W denote an M × M square invertible matrix with individual
entries Wmk.

(a) Show that
∂ det(W )

∂Wmk
= det(W ) ·

[
W−1

]
km

in terms of the (k,m)−th entry of W−1. What would the result be if W is an
orthogonal matrix?

(b) Consider a random variable y with probability density function, fy(y), and
cumulative density function, Fy(y). Assume we select the cumulative density
function to be in the following logistic form:

F (y)
∆
=

∫ y

−∞
fy(t)dt =

1

1 + e−y

If we express the pdf in the form fy(y) = e−q(y), for some function q(y), what
are the expressions for q(y) and its derivative, g(y) = q′(y)?

(c) Let {wT
m} denote the rows ofW , form = 1, 2, . . . ,M . Consider the following

cost function with a matrix argument:

J(W )
∆
= − ln | det(W )| −

M∑
m=1

E ln fy
(
wT

mh
)

where h ∈ IRM represents the feature data, assumed to be independently and
identically distributed. Derive a stochastic-gradient recursion for updating W
from training data {hn}, n = 0, 1, 2, . . . , N − 1.

3. (Chapters 16, 23) Consider the LMS recursion

wi = wi−1 + µ(i)uT
i (d(i) − uiwi−1)

where all variables are real-valued. The step-size µ(i) is taken to be an independent
and identically distributed (i.i.d.) random process with mean µ̄ and variance σ2

µ.



iiiThe regression process ui is i.i.d. Gaussian with zero mean and covariance matrix
Ru = σ2

uI > 0. Moreover, the data {d(i),ui} is assumed to satisfy the stationary
data model d(i) = uiw

o+v(i), where ui and v(j) are independent of each other for
all i and j. The power of the zero-mean process v(i) is denoted by σ2

v . In addition,
the step-size variable µ(i) is assumed to be independent of all random variables in
the learning algorithm for any time instant.

(a) Determine exact conditions to ensure mean convergence of wi towards wo.

(b) Determine a recursion for E∥w̃i∥2.

(c) Determine conditions to ensure the convergence of E∥w̃i∥2 to a steady-state
value.

(d) Use the recursion of part (b) to determine an exact closed-form expression for
the MSD metric of the algorithm, which is defined as the limiting value of
E∥w̃i∥2 as i→∞.

(e) Determine an approximation for the MSD metric to first-order in µ̄.

(f) Determine an approximation for the convergence rate to first-order in µ̄.

(g) Assume µ(i) is Bernoulli and assumes the values µ and 0 with probabilities p
and 1− p, respectively. What are the values of µ̄ and σ2

µ in this case? Consider
further the traditional LMS algorithm with µ(i) replaced by the constant value
µ. How do the MSD values of these two implementations, with µ(i) and µ,
compare to each other?

4. (Chapter 1) All variables in this problem, whether random or deterministic, are
scalar and real-valued.

(a) Consider two zero-mean random variables {x,y} and let fx|y(x|y) denote
the conditional pdf of x given y. We already know that the estimator for x
that minimizes the mean-square-error, E (x − h(y))2, over h(·) is given by
the mean of the conditional distribution fx|y(x|y). We denote this solution by
x̂mean = E (x|y). Show that the solution to the following alternative problem,
where the quadratic measure is replaced by the absolute measure:

x̂median = argmin
h(·)

E |x− h(y)|

is given by the median of the same conditional distribution, fx|y(x|y). We
recall that, for continuous distributions, the median is the point a such that∫ a

−∞
fx|y(x|y)dx =

∫ ∞

a

fx|y(x|y)dx = 1/2

(b) Consider now N noisy measurements of an unknown scalar variable x, say,
y(n) = x+ v(n), and formulate the following two optimization problems:

x̂mean
∆
= argmin

x

1

N

N∑
n=1

(y(n)− x)2

x̂median
∆
= argmin

x

1

N

N∑
n=1

|y(n)− x|

(b.1) Show that x̂mean is equal to the mean of the noisy observations, i.e.,
x̂mean = 1

N

∑N
n=1 y(n).



iv (b.2) Show that x̂median is equal to the median of the observations, i.e.,

x̂median = median{y(1), y(2), . . . , y(N)}

where the median is such that an equal number of observations exists to
its left and to its right.

5. (Chapter 30) All data are real-valued. Consider a regularized least-squares problem
of the form:

min
w,θ

[
ρλN∥w∥2 +

N−1∑
m=0

λN−1−m (d(m)− θ − umw)2
]

where ρ > 0, θ is a scalar, and regularization is applied to w only. Both w and θ are
design parameters. Let {θ̂(N − 1), ŵN−1} denote the estimates for {θ, w} that are
based on data up to timeN−1. Determine recursions that update {θ̂(N−1), ŵN−1}
to {θ̂(N), ŵN}.

6. (Chapter 29) All variables are real-valued. AssumeH is a square orthogonal matrix,
i.e., HTH = I = HHT. Let y denote the transformed vector y = HTy, and
consider the regularized least-squares problem:

min
w

[
ρ∥w∥1 + ∥y −Hw∥2

]
where ρ > 0, and ∥w∥1 denotes the ℓ1−norm of its vector argument, i.e., it is equal
to the sum of the magnitudes of the entries ofw. Show that the entries of the solution
ŵ ∈ IRM are given by:

ŵm = sign(ym) ·
{
|ym| −

ρ

2

}
+

where the notation {x}+ = x when x ≥ 0 and is zero otherwise.

7. (Chapters 4, 7) All variables are zero mean. Show that for any three random vari-
ables {x,y, z} it holds that

x̂y,z = x̂y + (̂x̃y)z̃y

where

x̂y,z = linear least-mean-squares estimator (l.l.m.s.e) of x given {z,y}.
x̂y = l.l.m.s.e of x given y.
ẑy = l.l.m.s.e of z given y.
x̃y = x− x̂y

z̃y = z − ẑy

(̂x̃y)z̃y = l.l.m.s.e of x̃y given z̃y .

What is the geometric interpretation of this result?

8. (Chapter 5) All variables are real-valued. Let y(n) = x + v(n), where x is an
unknown scalar constant and v(n) is zero-mean white noise with power σ2

v . An
estimator for x is constructed recursively in the following manner:

x̂(n) = (1− α)x̂(n− 1) + αy(n), n ≥ 0



vstarting from x̂(−1) = 0 and where 0 < α < 1. Determine the steady-state mean
and variance of x̂(n) as n→∞. Any optimal choice for α?

9. (Chapter 23) Consider an LMS update of the form

wi = wi−1 + µ · α · u∗
i (d(i) − uiwi−1), i ≥ 0

where the data {d(i),ui} satisfy the stationary data model from Sec. 15.2 in the text,
and α is a binary random variable assuming the values 1 and 0 with probabilities p
and 1 − p, respectively. In other words, the filter performs updates p fraction of
the time. Assume further that the regressors {ui} are independent and identically
distributed and arise from a circular Gaussian distribution with covariance matrix
Ru.

(a) Determine the condition on the step-size µ to ensure stability in the mean.

(b) Determine the condition on the step-size µ to ensure stability in the mean-
square-error sense.

(c) What is the convergence rate of the algorithm?

(d) Determine the learning curve of the filter, i.e., a recursion for E |ea(i)|2 over
time.

(e) Determine expressions for the EMSE and MSD performance of the filter for
sufficiently small step-sizes.

10. (Chapter 23) Consider a network of two LMS-type nodes running the following
interlaced recursions:

w1,i = aw1,i−1 + (1− a)w2,i−1 + µu∗
1,i(d1(i)− u1,iw1,i−1)

w2,i = (1− a)w1,i−1 + aw2,i−1 + µu∗
2,i(d2(i)− u2,iw2,i−1)

where the data {dk(i),uk,i} at node k satisfy the stationary data model from Sec. 15.2
in the text with the same vector wo and with noise variances σ2

v,k and regression co-
variance matrices Ru,k for k = 1, 2. Moreover, the combination coefficient a satis-
fies 0 ≤ a ≤ 1 and wk,i denotes the weight estimator for wo computed by node k at
time i. Assume the {uk,i} and the {vk(i)} random processes are each independent
over both time and space, and that {uk,i,vm(j)} are independent of each other for
all i, j, k,m.

(a) Determine the condition on the step-size µ to ensure stability in the mean.

(b) Determine the condition on the step-size µ to ensure stability in the mean-
square-error sense.

(c) What is the convergence rate of the algorithm?

(d) Determine the learning curve of the filter, i.e., a recursion for the average
excess-mean-square-error of both nodes over time.

(e) Determine an expression for the MSD performance of the filter for sufficiently
small step-sizes, which is defined as

MSD ∆
= lim

i→∞

1

2

2∑
k=1

E∥wo −wk,i∥2

(f) Optimize the MSD over a.



vi (g) Assume a = 1 so that both nodes end up running separate LMS recursions.
Assume further that Ru,1 = Ru,2 ≡ Ru. Determine the condition on µ to
ensure stability in the mean of both independent filters.

(h) Is the condition of part (g) sufficient to ensure stability of the interlaced filters
when a ̸= 1? Prove or give a counter-example.

(i) Assume a = 1/2 and Ru,1 = Ru,2 ≡ Ru. Compare the MSD performance of
the individual LMS filters (corresponding to a = 1) with the performance of
the cooperative filter using a = 1/2.

11. (Chapter 30) Two least-squares estimators are out of sync. At any time i, estimator
#1 computes the estimate w1,0:i−1 that corresponds to the solution of

min
w

 δλi∥w∥2 +

i−1∑
j=0

λi−1−j |d(j)− ujw|2
 =⇒ w1,0:i−1

where δ > 0 and λ is the forgetting factor. Note that w1,0:i−1 is an estimate that is
based on measurements between times j = 0 and j = i − 1. On the other hand,
estimator #2 computes the estimate w2,1:i that corresponds to the solution of

min
w

 δλi∥w∥2 +
i∑

j=1

λi−j |d(j)− ujw|2
 =⇒ w2,1:i

Here, w2,1:i is an estimate that is based on measurements between times j = 1 and
j = i. Can you use the available estimates {w1,0:i−1, w2,1:i, i ≥ 0} to construct the
recursive solution of

min
w

 δλi+1∥w∥2 +
i∑

j=0

λi−j |d(j)− ujw|2
 =⇒ wi

where wi is an estimate that is based on all data up to time i? If so, explain the
construction. If not, explain why not.

12. (Appendix B and Chapter 23) Let H denote a positive-definite Hermitian matrix
and let G denote a Hermitian square matrix of compatible dimensions. Show that

HG ≥ 0 if, and only if, G ≥ 0

where the notation A ≥ 0 means that all eigenvalues of matrix A are nonnegative.

13. (Chapters 1 and 3) A random variable x assumes the value +1 with probability p
and the value−1 with probability 1−p. The distribution of a second random variable
v depends on the value assumed by x. If x = +1, then v is normal with zero mean
and variance σ2

a, i.e., N (0, σ2
a), with probability a and uniformly distributed within

the interval [−σa, σa] with probability 1−a. On the other hand, if x = −1, then v is
N (0, σ2

b ) with probability b and uniformly distributed within the interval [−σb, σb]
with probability 1− b. Let y = x+ v.

(a) Determine E (v|x = +1), E (v|x = −1), and E (v).

(b) Determine E (y|x = +1), E (y|x = −1), and E (y).



vii(c) Determine the optimal mean-square-error estimator, x̂opt = E (x|y).
(d) Compute σ2

x, σ2
y , and σxy = E (xy).

(e) Determine the linear least-mean-squares-error (l.l.m.s.e.) estimator of x given
y.

(f) Compute the minimum mean-square-error (m.m.s.e.) of part (e).

14. (Chapters 3 and 7) The output of an FIR filter is described by

y(i) = x(i) +
1

2
x(i− 1) + v(i), i > −∞

where v(i) is a zero-mean white random process with variance σ2
v and x(i) is also a

zero-mean white random process with variance σ2
x. The variables v(i) and x(j) are

independent for all i and j. The filter is assumed to be operating since the remote
past so that all processes can be assumed to wide sense stationary. Let

si
∆
=

[
x(i)

x(i− 1)

]
(a) Find the l.l.m.s.e. estimator of si given the observations {y(i),y(i−1)}. What

is the resulting m.m.s.e.?

(b) Find the l.l.m.s.e. estimator of si given {y(i),y(i− 1),y(i− 2)}. What is the
resulting m.m.s.e.?

(c) Find the l.l.m.s.e. estimator of si given {y(i),y(i− 1), . . . ,y(i−m)}. What
is the resulting m.m.s.e.?

(d) Optimize the m.m.s.e. of part (c) over m.

(e) Find the innovations process corresponding to the random process y(i).

15. (Chapter 7) Consider the following state-space model:

xi+1 = αxi + ui + d, |α| < 1

y(i) = 1T(xi + xi−1) + v(i), i ≥ 0

with a constant driving factor d of size n× 1, and where 1 is the column vector with
unit entries and

E


ui

v(i)
xo

1


 uj

v(j)
xo

∗

=


qInδij 0 0

0 rδij 0
0 0 πoIn
0 0 0


where {q, r, πo} are positive scalars. Determine the innovations process of {y(i)}.

16. (Chapters 3, 10, and 16) All variables are zero-mean. Consider a complex-valued
scalar random variable d and a complex-valued 1×M regression vector u. Let

d̂ = uwo

denote the linear least-mean-squares error (l.l.m.s.e.) estimator of d given u for
some M × 1 vector wo. Consider additionally the problem of estimating separately



viii the real and imaginary parts of d using knowledge of the real and imaginary parts of
u, also in the linear least-mean-squares error sense, namely,

d̂real =
[
Re(u) Im(u)

]
wo

real, d̂imag =
[
Re(u) Im(u)

]
wo

imag

for some 2M × 1 vectors wo
real and wo

imag.

(a) Argue that estimating the real and imaginary parts of d from the real and imag-
inary parts of u is equivalent to estimating the real and imaginary parts of d
from {u,u∗}.

(b) What are the optimal choices for wo, wo
real and wo

imag?

(c) Let d̂2 = d̂real + jd̂imag denote the estimator that is obtained for d from this
second construction. What is the corresponding m.m.s.e.? How does it com-
pare to the m.m.s.e. obtained for d̂ = uwo? Under what conditions will both
constructions lead to the same m.m.s.e.?

(d) Derive an LMS-type filter for updating separately M × 1 complex weight vec-
tors ao and bo when the data d(i), at successive time instants i, are related to
the regressors {ui,u

∗
i } through the linear model:

d(i) = uia
o + (u∗

i )
Tbo + v(i)

Assume the noise is white with variance σ2
v (its real and imaginary parts are

independent of each other). Assume further that the regressor sequence is tem-
porally white and independent of the noise process.

(e) Assume sufficiently small step-sizes. Derive an expression for the EMSE of
this so-called widely-linear LMS filter. How does the performance compare to
that delivered by the regular LMS filter, when we assume that d(i) = uiw

o +
v(i) and estimate wo via the LMS iteration? Under what conditions will both
filters have similar EMSE performance?

17. (Chapter 30) Node #1 observes even-indexed data {d(2n), u2n} for n ≥ 0 and
computes the recursive least-squares solution of

min
w

 δ · λ2n+1 · ∥w∥2 +

n∑
j=0

λ2n−2j |d(2j)− u2jw|2
 =⇒ w2n

where λ is the forgetting factor. Note that w2n is an estimate that is based solely
on the even-indexed data. Likewise, node #2 observes odd-indexed data {d(2n +
1), u2n+1} for n ≥ 0 and computes the recursive least-squares solution of

min
w

 δ · λ2n+2 · ∥w∥2 +
n∑

j=0

λ2n−2j |d(2j + 1)− u2j+1w|2
 =⇒ w2n+1

Here, w2n+1 is an estimate that is based solely on the odd-indexed data. Can you
use the available estimates {w2n, w2n+1, n ≥ 0} to construct the recursive solution
of

min
w

 δ · λi+1 · ∥w∥2 +
i∑

j=0

λi−j |d(j)− ujw|2
 =⇒ wi



ixwhere wi is an estimate that is based on all data (both even and odd-indexed) up to
time i? If so, explain the construction. If not, explain why not.

18. (Chapter 23) Consider a collection of N agents, indexed by k = 1, 2, . . . , N , with
each agent k observing zero-mean random processes {dk(i),uk,i} over time i . The
regression data {uk,i} are assumed to be temporally white and spatially independent,
i.e.,

Euk,iu
∗
m,j = Ru,kδkmδij

It is assumed that the data {dk(i),uk,i} satisfy the linear model

dk(i) = uk,iw
o + vk(i)

where the noise vk(i) has zero mean, and is also temporally white and spatially
independent:

Evk(i)v
∗
m(j) = σ2

v,kδkmδij

The noise process is further assumed to be independent of all other random pro-
cesses. The agents are interested in determining wo by seeking the M × 1 column
vector w that minimizes E |d− uw|2. Two modes of operation are considered.

In mode A, each agent k operates individually and uses the standard LMS iteration:

wk,i = wk,i−1 + µku
∗
k,i[dk(i)− uk,iwk,i−1], i ≥ 0

where µk is the positive step-size used by node k and wk,i is the estimator of wo at
time i.

In mode B, the agents cooperate with each other as follows. The nodes are assumed
to be connected by some topology and each node is allowed to share information
with its neighbors. The set of neighbors of any node k is denoted by Nk and it
consists of all nodes that are connected to k by edges. Each agent then runs instead
the following diffusion LMS iteration:

ψk,i = wk,i−1 + µku
∗
k,i[dk(i)− uk,iwk,i−1], i ≥ 0

wk,i =
N∑
ℓ=1

aℓkψℓ,i

where the coefficients {aℓk} satisfy

aℓk ≥ 0,
∑
ℓ∈Nk

aℓk = 1, aℓk = 0 if ℓ /∈ Nk

The corresponding matrix A = [aℓk] is said to be left-stochastic (the entries of each
of its columns add up to one). In this algorithm, the first step is similar to the LMS
iteration except that it generates an intermediate vector estimate ψk,i. The second
step combines all intermediate estimates from the neighbors of node k to obtain wk,i.



x

FIGURE 0.1 A network of cooperating nodes running the diffusion LMS algorithm.

(a) Introduce the weight error vector

w̃i
∆
=


w̃1,i

w̃2,i
...

w̃N,i


and define the extended matrix A = A ⊗ I in terms of the Kronecker product
operation ⊗. Find recursions for E w̃i under both modes of operation.

(b) Provide conditions on the step-size parameters {µk} to ensure mean stability
in each mode of operation.

(c) Which mode of operation exhibits faster convergence of E w̃i towards zero?

(d) Prove or give a counter-example: the mean weight-error vector E w̃k,i of each
node k will converge faster towards zero in the diffusion LMS case than in the
non-cooperative LMS case.

(e) Assume each node employs a more sophisticated diffusion mechanism of the
following alternative form:

ψk,i = wk,i−1 + µk

∑
ℓ∈Nk

cℓku
∗
ℓ,i[dℓ(i)− uℓ,iwk,i−1], i ≥ 0

wk,i =
∑
ℓ∈Nk

aℓkψℓ,i

where the coefficients {cℓk} satisfy

cℓk ≥ 0,
N∑

k=1

cℓk = 1,
N∑
ℓ=1

cℓk = 1, cℓk = 0 if ℓ /∈ Nk

The matrix C is said to be doubly-stochastic (each of its rows and columns add
up to one). Does using C ̸= I improve the rate of convergence of E w̃i towards
zero over the case C = I in the diffusion case?

(f) Prove or give a counter-example: Using C ̸= I in the diffusion case always re-
sults in faster convergence of E w̃i towards zero relative to the non-cooperative
case.



xi19. (Appendix B) Conditions of the following form are generally useful in the study
of stable adaptive schemes over networks. Let A1 and A2 be N ×N left-stochastic
matrices (i.e., the entries on each of the columns ofA1 andA2 add up to one). Define
A1 = A1 ⊗ I and A2 = A2 ⊗ I . Prove or disprove: For matrices of compatible
dimensions, if D is any stable matrix, then AT

1 DAT
2 is also a stable matrix.

20. (Chapters 1 and 3) A random variable x assumes the value +1 with probability p
and the value −1 with probability 1 − p. The variable x is observed under additive
noise, say, as y = x + v, where v has mean v̄ and variance σ2

v . Both x and v are
independent of each other. In this problem, we consider different probability density
functions (pdf) for v.

(a) Assume initially that v is Gaussian. What is the optimal mean-square-error
estimator of x given y? What is the corresponding minimum mean-square-
error (m.m.s.e.)?

(b) Assume instead that v is uniformly distributed. What is the optimal mean-
square-error estimator of x given y? What is the corresponding m.m.s.e.?

(c) Assume now that v is exponentially distributed. What is the optimal mean-
square-error estimator of x given y? What is the corresponding m.m.s.e.?

(d) Which noise distribution results in the smallest m.m.s.e.? How would your
conclusion differ if we instead compute the m.m.s.e. values that result from the
optimal linear mean-square-error estimators in the three cases (a)–(c)?

(e) Over all possible pdfs, determine the pdf of noise that results in the smallest
m.m.s.e. for optimal estimation.

21. (Chapter 3) Consider two nodes {A1, A2} and assume each node has an unbiased
estimator, {wk, k = 1, 2} for some M × 1 column vector wo. Let {Pk, k = 1, 2}
denote the error covariance matrix, Pk = E (wo − wk)(w

o − wk)
∗. Assume the

errors of the two estimators are uncorrelated, i.e., E(wo − w1)(w
o − w2)

∗ = 0.
Consider an aggregate estimator of the form

ŵ = αw1 + (1− α)w2

(a) If α is nonnegative, determine the optimal scalar α that minimizes the mean-
square-error, i.e.,

min
α≥0

E∥wo − ŵ∥2

(b) Repeat part (a) when α is not restricted to being nonnegative. When would a
negative α be advantageous?

(c) Let P = E (wo − ŵ)(wo − ŵ)∗. How does P compare to P1 and P2 in both
cases (a) and (b)?

(d) Now assume the errors of the two estimators are correlated instead, i.e., E (wo−
w1)(w

o −w2)
∗ = C. Repeat parts (a)–(c).

22. (Chapter 5) All variables are zero-mean. Let ya

y
yb

 =

 Ha

H
Hb

x+

 va

v
vb





xii where {va,v,vb}, are uncorrelated with x and have zero mean and covariance ma-
trices:

E

 va

v
vb

 va

v
vb

∗

=

 Ra Sa 0
S∗
a R Sb

0 S∗
b Rb


Let x̂ya,y denote the linear estimator of x given {ya,y}. Let x̂yb,y denote the linear
estimator of x given {yb,y}. Can you relate these estimators, and their minimum-
mean-square-error, to each other?

23. (Chapters 17 and 24) Consider an LMS filter with a real-valued regression vector
ui = [u(i) u(i − 1)], where the entries of ui arise from a wide-sense stationary
stochastic process described by

u(i) = A cos(ωi+ θ)

The random variable A has mean A and variance σ2
a. The random variable θ is

uniformly distributed over [−π, π]. The random variables A and θ are independent
of each other and of all other random variables appearing in this problem.

(a) Use the separation principle to find an expression for the EMSE of the filter.
How does it depend on ω?

(b) Use the small-step size approximation to determine an expression for the learn-
ing curve of the filter.

(c) How does the convergence rate of the filter depend on ω?

24. (Chapter 30) Consider the optimization problem

min
w

λN+1w∗Πw + E

(
N∑
i=0

λN−i|d(i)−αuiw|2
)

=⇒ wN

where the data {d(i), ui} are deterministic (not random) measurements with d(i) a
scalar and ui a row vector of size 1 ×M . The random variable α is Bernoulli and
assumes the value 1 with probability p and the value 0 with probability 1 − p ; it is
used to model a faulty sensor – when the sensor fails, no regression data is measured.
LetwN denote the solution. Can you determine a recursion to go fromwN towN+1?

25. (Chapters 15, 16, 22, 23) Consider three nodes, k = 1, 2, and 3. Each node k
collects data {dk(i),uk,i} that satisfy the linear model dk(i) = uk,iw

o + vk(i),
where wo is M × 1 and uk,i is 1 ×M . The processes vk(i) are zero mean white
noises that are independent of each other and have variances σ2

v,k. At every iteration
i, the nodes exchange the output estimation errors {ek(i)}, defined as

ek(i) = dk(i)− uk,iwk,i−1

and each node updates its weight estimate according to the following rule:

wk,i = wk,i−1 + µu∗
k,ie(i)

where

e(i) = α1e1(i) + α2e2(i) + α3e3(i), α1 + α2 + α3 = 1, and αk ≥ 0



xiiiUnder reasonable assumptions:

(a) Determine expressions for the individual EMSEs of the nodes. Determine the
average EMSE.

(b) Determine a condition on the step-size µ to ensure mean-square convergence
of all nodes.

(c) Can you pick values for {α1, α2, α3} to minimize the average EMSE?

26. (Chapter 3) Consider a collection ofN independent and identically-distributed real-
valued random variables, {y(n), n = 0, 1, . . . , N − 1}. Each y(n) has a Gaus-
sian distribution with zero mean and variance σ2. We want to use the observations
{y(n)} to estimate the variance σ2 in the following manner:

σ̂2 = α ·

(
N−1∑
n=0

y2(n)

)

for some scalar parameter α to be determined.

(a) What is the mean of the estimator σ̂2 in terms of α and σ2?

(b) Evaluate the mean-square-error MSE below in terms of α and σ2:

MSE = E|σ̂2 − σ2|2

(c) Determine the optimal scalar α that minimizes the MSE. Is the corresponding
estimator biased or unbiased?

(d) For what value of α would the estimator be unbiased? What is the MSE of this
estimator and how does it compare to the MSE of the estimator from part (c)?

(e) What do you learn from this problem?

27. (Chapter 5) Let y1 = H1x+v1 and y2 = H2x+v2 denote two linear observation
models with the same unknown random vector x. All random variables have zero-
mean. The covariance and cross-covariance matrices of {x,v1,v2} are denoted by

E

x
v1

v2

x
v1

v2

∗

=

Rx 0 0
0 R1 C
0 C∗ R2


In particular, observe that we are assuming the noises to be correlated with C =
Ev1v

∗
2. All covariance matrices are assumed to be invertible whenever necessary.

(a) Show how you would replace the observation vectors {y1,y2} by two other
observation vectors {z1, z2} of similar dimensions such that they satisfy linear
models of the form

z1 = G1x+w1, z2 = H2x+w2

for a matrix G1 to be specified, and where the noises {w1,w2} are now un-
correlated. What are the covariance matrices of w1 and w2 in terms of R1 and
R2?

(b) Let x̂1 be the linear least-mean-squares estimator (l.l.m.s.e.) of x given z1

with error covariance matrix P1. Similarly, let x̂2 be the l.l.m.s.e. of x given



xiv z2 with error covariance matrix P2. Let further x̂ denote the l.l.m.s.e. of x
given {y1,y2} with error covariance matrix P . Determine expressions for x̂
and P in terms of {x̂1, x̂2, P1, P2, C,Rx, R1, R2}.

28. (Chapter 5) Let y = Hx+v. All random variables have zero-mean. The covariance
and cross-covariance matrices of {x,v} are denoted by

E

[
x
v

] [
x
v

]∗
=

[
Rx C
C∗ Rv

]

with positive-definite Rx and Rv .

(a) What is the l.l.m.s.e. of x given y? What is the corresponding m.m.s.e.?

(b) A new scalar observation is added to y and a new row vector is added to H
such that [

y
α

]
=

[
H
u

]
x+

[
v
γ

]

where γ is uncorrelated with all other variables and has variance σ2
γ . Let x̂new

denote the new estimator of x given {y,α}. Relate x̂new to x̂ from part (a).
Relate also their m.m.s.e.

29. (Chapters 8, 10) The initial condition is w−1 = 0. Consider the following two
algorithms:

Alg. I :


For every time i ≥ 0:

Start with w0,i = wi−1 and iterate over k = 1, 2, . . . , N :
wk,i = wk−1,i + µu∗k,i[dk(i)− uk,iwi−1]

set wi ← wN,i

repeat

and

Alg. II :


For every time i ≥ 0:

Start with ϕ0,i = wi−1 and iterate over k = 1, 2, . . . , N :
ϕk,i = ϕk−1,i + µu∗k,i[dk(i)− uk,iϕk−1,i]

set wi ← ϕN,i

repeat

Which of the above algorithms would result directly from a stochastic gradient ap-
proximation to the problem:

min
w

N∑
k=1

E|dk − ukw|2

where all variables are zero-mean and {dk(i), uk,i} are realizations of {dk,uk}.
What is the difference between both algorithms?



xv30. (Chapters 22, 24) Consider an LMS filter with a real-valued regression vector ui =
[u1(i) u2(i)]. The first entry u1(i) is an i.i.d. random variable distributed accord-
ing to

u1(i) =


a with probability 1/3

−a
2

with probability 2/3

The second entry u2(i) is also i.i.d., independent of u1(i) and has the same distri-
bution as u1(i).

(a) Find the exact condition that the step-size µ should satisfy to ensure mean-
square stability.

(b) Find also exact expressions for the filter’s EMSE and MSD.

(c) Find the number of iterations that the filter needs for its mean-square error to
be within 10% of its final value.

31. (Chapters 30, 35) Consider an unknown M × 1 vector w = col{w1, w2}, where w1

is L× 1. Introduce the least-squares problem:

min
w

w∗
1Πw1 + ∥yN −HNw∥2 + ∥dN −GNw1∥2

where

yN =


y(0)
y(1)

...
y(N)

 , dN =


d(0)
d(1)

...
d(N)

 , HN =


u0
u1
...
uN

 , GN =


s0
s1
...
sN


Let wN denote the solution and let ζ(N) be the resulting minimum cost.

(a) Relate wN to wN−1.

(b) Relate ζ(N) to ζ(N − 1).

(c) Motivate and derive an array algorithm for solving the least-squares problem
recursively.

32. (Chapters 16, 23) Consider the network shown in the figure with two adaptive
nodes. The network functions as follows.

1 2

a

1− a

1− b

b

Consider node 1. It starts with a weight estimator w(1)
i−1 and updates it to w

(1)
i in

two steps. First, node 1 combines its estimator with the estimator of node 2 and
generates an intermediate estimator ϕ(1)i−1, say,

ϕ
(1)
i−1 = aw

(1)
i−1 + (1 − a)w

(2)
i−1



xvi where a is some real scalar. Node 2 performs a similar step to obtain its intermediate
estimator:

ϕ
(2)
i−1 = (1 − b)w

(1)
i−1 + bw

(2)
i−1

Subsequently, each node performs an LMS-type update:

w
(1)
i = ϕ

(1)
i−1 + µ1u

∗
1,i[d1(i)− u1,iϕ

(1)
i−1]

w
(2)
i = ϕ

(2)
i−1 + µ2u

∗
2,i[d2(i)− u2,iϕ

(2)
i−1]

where the {dk(i),uk,i} are the data collected at node k; they are assumed to satisfy
the linear model

dk(i) = uk,iw
o + vk(i)

where the noise components are temporally and spatially white with variances σ2
v,k.

The noise components are further assumed to be independent of all other data. All
data are zero-mean and circular. Assume all regressors are Gaussian i.i.d. with a
diagonal covariance matrix σ2

u · I. For all parts below, except for the bonus part,
assume a = b.

(a) Find conditions on the step-sizes {µ1, µ2} and the combination scalar a that
will ensure that the estimators w(1)

i and w
(2)
i are asymptotically unbiased for

any initial condition.

(b) Assume from now on that µ1 = µ2 = µ. Find conditions on the step-size µ
and the combination scalar a that will ensure that the estimators w(1)

i and w
(2)
i

converge in the mean-square sense.

(c) Find expressions for the steady-state EMSE and MSD for each node in the
network.

(d) Find the optimal value of a that minimizes the individual EMSEs.

(e) How do the EMSE values from part (c) depend on the relation between σ2
v,1

and σ2
v,2? In particular, assume σ2

v,1 = α ·σ2
v,2 and compare the EMSE of node

1 with the EMSE of node 2 as a function of the positive scalar α for all three
cases: α > 1, α = 1, and α < 1.

(f) Repeat part (e) for the optimal EMSE values from part (d).

(g) Assume σ2
v,1 = σ2

v,2 = σ2
v . How does the EMSE obtained in part (c) compare

to the value that would result if the nodes were operating independently of each
other and without combining their estimators (i.e., using a = 1)?

(h) Assume a ̸= b. Repeat parts (c) and (e).

33. (Chapters 1, 2) The state of some system of interest is described by a binary variable
θ, which can be either 0 or 1 with equal probability. Let y be a random variable that
is observed according to the following probability distribution:

y = 0 y = 1

θ = 0 q 1− q

θ = 1 1− q q

We collectN independent observations {y(1), . . . ,y(N)}.We wish to employ these
observations in order to learn about the state of the system. Assume the true state is
θ = 0.



xvii(a) Find the optimal mean-square-error estimator of θ given these observations,
namely,

θ̂N = E [θ|y(1),y(2), . . . ,y(N)]

(b) Assume q ̸= 0.5. Show that θ̂N decays to zero exponentially in the mean-
square-error sense as N → ∞. That is, verify that the mean-square error
converges to zero at an exponential rate. What happens when q = 0.5?

(c) Find an expression for the variance of θ̂N . Find its limit as N →∞.

(d) Why are these results useful?

34. (Chapters 3-5) The state of some system of interest is described by a Gaussian
random variable θ with mean θ̄ and variance σ2

θ . An observation of θ is collected
under additive white Gaussian noise, namely,

y = θ + v

where v has zero-mean and variance σ2
v and is independent of θ. All variables are

real-valued.

(a) Show that the optimal mean-square-error estimator, θ̂ = E (θ|y), has a Gaus-
sian distribution. Find the mean and variance of this distribution in terms of
SNR = σ2

θ/σ
2
v .

(b) Find the optimal mean-square-error estimator of θ given N independent obser-
vations {y(1), . . . ,y(N)}.

(c) Determine the variance of the estimator in part (b) and evaluate its limit as
N →∞.

35. (Chapters 3-6) Consider N nodes {A1, A2, . . . , AN}. Each node has an unbiased
estimate of some unknown column vector wo. We denote the individual estimator at
node Ak by wk. We also denote the covariance matrix of wk by Pk and the cross-
covariance matrix of wk and wℓ by Pkℓ. A node S wishes to combine the estimators
{wk, k = 1, . . . , N} as follows:

ŵS =
N∑

k=1

akwk

in order to optimize the cost function

min
{ak}

E

∥∥∥∥∥wo −
N∑

k=1

akwk

∥∥∥∥∥
2

where the {ak} are real-valued scalars.

(a) Find a condition on the coefficients {ak} to ensure that the resulting ŵS is an
unbiased estimator for wo.

(b) Under condition (a), find the optimal coefficients {ak}. Your solution should
not depend on wo.



xviii (c) Assume the reliability of each estimator wk is measured by the scalar σ2
k =

Tr(Pk). The smaller the σ2
k, the more reliable the estimator is. What is the

relation between the optimal coefficients {ak} and the reliability factors {σ2
k}?

(d) Evaluate the reliability of the estimator ŵS .

(e) Motivate and derive an adaptive filter for updating the coefficients {ak} in part
(b).

(f) How is the estimator of part (b) different from the unbiased linear least-mean-
squares estimator of wo based on the {wk}? Find the latter estimator.

(g) Find the minimum MSEs of the estimators in parts (b) and (f) for the case
where Pkℓ = 0 when ℓ ̸= k. Specialize your result to the case Pk = P for all
k and compare the resulting MSEs.

36. (Chapters 1, 3, 5) Consider two real-valued scalar random variables x1 and x2. The
random variable x1 assumes the value +1 with probability p and the value −1 with
probability 1− p. The random variable x2 is distributed as follows:

if x1 = +1 then x2 =

{
+2 with probability q
−2 with probability 1− q

if x1 = −1 then x2 =

{
+3 with probability r
−3 with probability 1− r

Consider further the variables

y1 = x1 + v1 and y2 = x1 + x2 + v2

where {v1,v2} are independent zero-mean Gaussian random variables with unit
variance. The variables {v1,v2} are independent of x1 and x2.

(a) Express the pdfs of the individual random variables x1 and x2 in terms of delta
functions.

(b) Find the joint pdf of (x1,x2).

(c) Find the joint pdf of (y1,y2).

(d) Find the joint pdf of (x1,x2,y1,y2).

(e) Find the conditional pdf of (x1,x2) given (y1,y2).

(f) Find the minimum mean-square error estimator of x2 given {y1,y2}.
(g) Find the minimum mean-square error estimator of x2 given {y1,y2,x1}.
(h) Find the linear least-mean-squares error estimator of x2 given {y1,y2,x1}.

37. (Chapters 15, 16) Consider a NLMS recursion of the form

wi = wi−1 +
µu∗

i

∥ui∥2
[d(i)− uiwi−1]

with 1 ×M regression vectors ui and step-size µ. Each entry of ui has the form
rejθ, where θ is uniformly distributed over [0, 2π] and r > 0. In other words, the
entries of ui lie on a circle of radius r. Assume the data d(i) satisfy the stationary
data model of Section 6.2.



xix(a) Find an exact expression for the EMSE of NLMS under such conditions.

(b) Does the value of r have an influence on the EMSE? Is there an optimal choice
for r?

(c) The entries of the regression vectors are further assumed to be independent of
each other. Find an exact condition on the step-size µ to ensure mean-square
convergence.

(d) Which algorithm will have the lower MSE in steady-state for the same step-
size: LMS or NLMS?

(e) Evaluate the number of iterations that are needed for LMS to be within 5% of
its EMSE? What about NLMS? Which algorithm converges faster? Assume
the same step-size for both algorithms.

38. (Chapters 35, 40, 41) Consider a least-squares problem of the form

min
wM

τλi+1∥wM∥2 +
i∑

j=0

λi−j |d(j)− uM,jwM |2


where τ > 0 is a regularization parameter, 0 ≪ λ ≤ 1 is a forgetting factor, and
uM,j is a 1×M regression vector. We denote the solution vector by wM,i. Introduce
the data matrix

HM,i =


uM,0

uM,1
...

uM,i

 ((i+ 1)×M)

and partition HM+1,i as follows:

HM+1,i =
[
x0,i H̄M,i

]
=
[
HM,i xM,i

]
where {x0,i, xM,i} denote the leading and trailing columns ofHM+1,i. It is assumed
that the regression data satisfy the following structural relation:

H̄M,i =

[
0

HM,i−1Φ
−1
M

]
where ΦM is an M ×M invertible matrix of the form

ΦM =

[
FM−1

µ

]
where FM−1 is a unitary matrix and µ is a scalar.

(a) Derive an a-posteriori-based lattice filter for order-updating the least-squares
solution.

(b) Derive an array-based lattice filter for order-updating the same least-squares
solution.

(c) Can you think of a situation where such structural relations arise?



xx 39. (Chapters 29, 30) Consider a least-squares problem of the form

min
w

δ∥w∥2 +
N∑
j=0

λN−j |d(j)− ujw|2


where δ > 0 is a regularization parameter, uj is a 1 × M regression vector, and
0≪ λ ≤ 1 is a forgetting factor defined as follows:

λ =

{
λe for j even
λo for j odd

Let wN denote the solution to the above least-squares problem. Can you derive a
recursive least-squares solution that updates wN to wN+1?

40. (Chapters 7 and 26) Consider a standard state-space model of the form:

xi+1 = Fixi +Gni

yi = Hxi + vi

where

E


ni

vi

xo

1


 nj

vj

xo

∗

=


Qδij Sδij 0
S∗δij Rδij 0
0 0 Πo

0 0 0


where all parameters are time-invariant, with the exception of Fi, which is defined
below.

(a) Assume first that Fi = F1 with probability p and Fi = F2 with probability
1 − p, where F1 and F2 are some constant matrices. Determine a recursive
procedure for constructing the innovations process.

(b) Assume instead that F2i = F1 and F2i+1 = F2. Determine a recursive proce-
dure for constructing the innovations process.

(c) Assume the filters converge to steady-state in both cases so that the correspond-
ing output processes {yi} are stationary. Determine their auto-correlation se-
quences {Ry(k)}, and the z−transforms of these auto-correlation sequences
(also called z-spectra).

(d) Under part (c), determine the corresponding spectral factors and the pre-whitening
filters.

41. (Chapter 33) Consider two n ×M matrices A and B with n ≤ M . Lemma 33.1
in the textbook establishes that the equality AA∗ = BB∗ holds if, and only if, there
exists an M ×M unitary matrix Θ such that A = BΘ. Is Θ unique?

42. (Chapters 15, 16, 23) Consider the following constrained LMS recursion

wi = wi−1 + µ

[
I − cc∗

∥c∥2

]
u∗i (d(i)− uiwi−1), c∗w−1 = 1



xxiwhich results from considering an instantaneous approximation for the following
linear least-mean-squares estimation problem:

min
w

E |d− uw|2 subject to
M∑
k=1

c(k)w(k) = 1

where the {w(k)} denote the individual entries of w and the {c(k)} are the scalar
entries of the column vector c. Moreover, d denotes a scalar zero-mean random
variable with variance σ2

d, and u denotes a 1 ×M zero-mean random vector with
covariance matrix Ru = Eu∗u > 0. Assume all data are circular Gaussian.

(a) Perform a transient mean-square-error analysis of the adaptive filter and pro-
vide conditions on the step-size µ in order to ensure that the filter is mean-
square stable. Specify clearly the conditions on the data that you are assuming
for your analysis.

(b) Derive expressions for the EMSE and the MSD of the filter.

(c) Derive an expression for the learning curve of the filter.

43. (Chapters 29, 32) Let ŵ denote the solution to the following regularized least-
squares problem

min
w

[w∗Πw + (y −Hw)∗W (y −Hw)]

where W > 0 and Π > 0. Let ŷ = Hŵ denote the resulting estimate of y and let ξ
denote the corresponding minimum cost. Now consider the extended problem

min
wz

{
w∗

zΠzwz +

([
y

d

]
−
[

ha H hb

αa u αb

]
wz

)∗

Wz

([
y

d

]
−
[

ha H hb

αa u αb

]
wz

)}

where a and b are positive scalars, ha and hb are column vectors, αa and αb are
scalars, d is a scalar, u is a row vector, and

Πz =

 a
Π

b

 , Wz =

[
W

1

]

Let

ŷz =

[
ha H hb
αa u αb

]
ŵz

and let ξz denote the corresponding minimum cost of the extended problem.

(a) Relate {ŵz, ŷz, ξz} to {ŵ, ŷ, ξ}.
(b) Can you motivate and derive an array algorithm to update the solution from ŵ

to ŵz?

44. (Chapter 30) Let wi denote the solution to the following regularized least-squares
problem:

min
w

[
λi+1w∗Πw + ∥yi −Hiw∥2

]



xxii where λ is a real scalar such that 0 < λ ≤ 1, Π is a positive-definite diagonal matrix,
and where yi and Hi are related to yi−1 and Hi−1 as follows:

yi =

[
yi−1

d(i)

]
Hi =

[
Hi−1

ui

]
with d(i) denoting a scalar and ui denoting a row vector. We also define the matrix

Pi =
[
λi+1Π+H∗

i Hi

]−1

a) Assume that at time i, it holds that H∗
i Hi > 0. Let wu,i denote the solution to

the following un-regularized least-squares problem:

min
w
∥yi −Hiw∥2

and let Pu,i = [H∗
i Hi]

−1. Provide a recursive algorithm to compute the un-
regularized quantities {wu,i, Pu,i} from the regularized quantities {wi, Pi}.

b) Derive a recursive algorithm to update the regularized solution, i.e., to compute
{wi, Pi} from {wi−1, Pi−1}.

In both parts (a) and (b), your algorithm should use a series of rank-1 updates, and
direct matrix inversions are not allowed.

45. (Chapters 2, 4) Consider noisy observations y(i) = x+v(i), where x and v(i) are
independent random variables, v(i) is a white random process with zero mean and
distributed as follows:

v(i) is Gaussian with variance σ2
v with probability q

v(i) is uniformly distributed over [−a, a] with probability 1− q

Moreover, x assumes the values {1+j, 1−j,−1+j,−1−j}with equal probability.
The value of x is the same for all measurements {y(i)}.

(a) Find an expression for the optimal least-mean-squares estimate of x given a
collection of N observations {y(0),y(1), . . . ,y(N − 1)}.

(b) Find the linear least-mean-squares estimate of x given the combined observa-
tions {y(0),y(1), . . . ,y(N − 1)} and {y2(0),y2(1), . . . ,y2(N − 1)}.

46. (Chapters 3, 4) Let x be a zero-mean random variable with an M ×M positive-
definite covariance matrix Rx. Let x̂y1

denote the linear least-mean-squares estima-
tor of x given a zero-mean observation y1 with covariance matrix Ry1 . Likewise,
let x̂y2

denote the linear least-mean-squares estimator of x given another zero-mean
observation y2 with covariance matrix Ry2 . Let Ry1,y2 = Ey1y

∗
2. We want to de-

termine another estimator for x by combining x̂y1 and x̂y2 in a convex manner as
follows:

x̂ = λx̂y1 + (1− λ)x̂y2

where λ is a real scalar lying inside the interval 0 ≤ λ ≤ 1.

(a) Determine the value of λ that results in an estimator x̂ with the smallest mean-
square error.



xxiii(b) If λ is allowed to be any arbitrary real scalar (not necessarily limited to the
range [0, 1]), how much smaller can the mean-square-error be?

47. (Chapters 8, 10) Let d denote a scalar zero-mean random variable with variance
σ2
d, and let u denote a 1 × M zero-mean random vector with covariance matrix
Ru = Eu∗u > 0. Consider the optimization problem

min
w

E |d− uw|2 subject to
M∑
k=1

c(k)w(k) = 1

where the {w(k)} denote the individual entries of w and the {c(k)} are scaling
coefficients.

(a) Derive a stochastic-gradient algorithm for approximating the optimal solution
wo in terms of realizations {d(i), ui} for {d,u}, and starting from an initial
condition w−1 that satisfies the constraint.

(b) Derive an approximate expression for the EMSE of the filter for sufficiently
small-step-sizes.

(c) Derive an optimal choice for the coefficients {c(k)} in order to result in the
smallest EMSE.

(d) Can you repeat parts (a)-(c) when the {c(k)} are required to be nonnegative
scalars?


