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In thi= first chapter we focus on the basie, yet fundarnental | problern of estirnating an
uhokbservable quantity from a collection of measurernents in the least-rean-squares sense.
The estirnation task is rnade rmore or less difficult depending on how much information the
measured data convey about the unobservable quantity. We shall sbudy this estimation
probler with increasing degrees of camplexity, starting frorn a sitnple scenario and bailding
up to rmore sophisticated cases.

The presentation in the chapter relies on sorne basic conce pts frorn probability theory and
randorn variables. For the benefit of the reader, we shall rotivate these concepts whenever
needed, as well as highlight their relevance in the estiration context. In this way, readers
will ke introduced to the necessary concepts in a gradual and motivated manner, and they
will come to appreciate their significance away from unnecessary abstractions.

The material is developed initially at a slow pare. This is done deliberately in order to
familiarize readers {and especially students) with the basic concepts of estimation theory
for both real and complex-valued randorn variables, as well as for scalar and vector-valued
randorn variables. We hope that, by the end of our exposition, the reader will be convineed
that these different scenarios {of real vs. complex and scalar ve. vector) can be masked by
adopting a uniforrm vector and cormplex-conjugation notation. The notation is inkroduced
gradually in the chapter and will be used throughout the bool: thereafter.

1.1 WVARIANCE OF A RANDOM VARIABLE

Before plunging into a discussion of least-rmean-squares estimmation theory, and before giving
some reasons for its widespread use, we find it useful to provide an inbaitive explanation
for what the variance of a random wariable means. The explanation will help the reader
appreciate the walue of the least mean-squares criterion, which is used extensively in laker
sections and chapters.
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Consider a scalar real valied random variable & with mean value £ and variance o, Le.,
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where the symbol E denotes the expectation operator. Observe that we are using boldface
letters to denote randorn variables, which will be our convention in thiz bool:. When & has
zero rnean, its variance is sirnply given by o2 = Ex®. Intuitively, the variance of © defines
an interval an the real axis around £ where the values of £ are rost lilely to ocour:

1 A small o2 indicates that ¢ is more lilely to assurme valies that are close to its mean,
.

2 A large o2 indicates that © can assume values over a wider interval around ite mean,

For this reason, it is custornary to regard the variance of a randorn variabole as a rneasure of
uncertainty about the value it can assume in a given experiment. A small variance indicabes
that we are more certain albout what values to expect for & (hamely, values that are close
to its mean), while a large variance indicates that we are less certain about what to expect.
These two situations are dlustrabed in Figs. 1.1 and 1.2 for teo differert probakbility density
functions.

Figure 1.1 plots the probability density function {pdf) of a Gaussian random variable
r for two different variances. In both cases, the mean of the randorm wariable is fived ab
T = 20 while the variance is o2 = 225 in one case and o2 =4 in the other. Recall that the
pdf of a Gaussian random variable is defined in terms of (£, #2) by the expression

= 1 E_%EE T —o, 0
falz) = oo , T & {—co,00) (112

where o, iz called the stardard deviation of x. Hecall further that the pdf of a random
variable is useful in several respects. In particular, it allows us to evaluate probabilities of
events of the form

Fla<z<h) = £ fa{zidr

ie., the probability of ¢ assuming values inside the interval [2,5]. From Fig. 1.1 we find
that the smaller the variance of x, the maore concentrated ite pdf is around its mean.

Figure 1.2 provides sirnilar plots for a randorn variable © with a Hayleigh distribution,
narmely, with a pdf given by

falz) = = e 37,

a £l o> (1.1.3)
o

where o is a positive parareter that determines the mean and the variance of £ according
to the expressions (see Prob. 1.1}

T 5 T ]
F = =z (e Z)g?
E—ﬂr‘/;, Lo _(d 2) i {1.1.4)

Observe in particular, and in contrast to the Ganssian case, that the mean and variance of
a Hayleigh-distributed randorn variable cannot be chosen independently of each other since
they are linled through the pararmeter o In Fig 1.2, the top plot corresponds to & =1 and
o2 = 0.2732, while the bottom plot corresponds to £ =3 and of = 24502,
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Flgure 1.1. Tha fgiita zhows tha plobz of tha probalbility dansity fubcton=
of a Gatizsish tahdom vatiable @£ with mmesh £ = 90, vatishcs o2 = 225 ih the
top plok, and vadanca 52 =4 in tha bothom plok.

These rernarls on the variance of a randorm variakble can be further qualified by involing a
well-lenowrn result frorn probability theory linown as Chelbyshew’s inequality — see Probs. 1.2
and 1.3, The result states that for a randorn variable T with mean  and variance o2 and
for any given scalar 4 = 0, it holds that

[Plle—3]=8) < o2/5°

(1.15)

That is, the probability that & assurmes values outside the interval (£ — 4, £ + 4} does not
exceed ¢ /57, with the bound being proportional to the variance of . Hence, for a fixed 4,
the smaller the variance of & the smaller the probability that ® will assume values outside
the interval (£ —4,F 4+ 4). Choose, for instance, § = Bo,. Then {1.1.8) gives

Plle—%| 2 50,3 < 1/25=1%

In other words, there is at most 4% chance that r will assume values outside the inberval
(f— bo, T +be )

Actually, the bound that s provided by Chelbyshew’s nequality is generally not tight.
Consider, for exarnple, a zero-mean Gaussian randorn variable & with variance o2 and choose
4 = 2o,. Then, from Chebyshevw’s inequality {1.15) we would obtain

Plle] 2 2%0,) € 1/4=25%
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Flgure 1.2. Tha figiita shows tha plots of tha probakbdlity: dan=ity funckions of
a Rayl=igh tahdom watiable @ with meah ¥ = 1 ahd vatiahca 5'3 = 0.273% in
tha top plot, and meah & =3 and vatiahcs 2 = 21682 ih tha botbom plot.

whereas direct evaluation of the integral'

P{|r|}95}£1—9(;f35= e'f:Edm)
R Ay Ja

yields
Fllx| = 20,) = 4.56%

Remark 1 [Zero-variance random variables] One umsful conmquence of Chebyshev's inequal-
itw 1= the following. It slloss us to interpret & sero-variance random veriable a=z one that is equal
to ite mesn with probebility cne. That i=,

ai =0 = ==41f -+with probebility cne

Thiz i= becsms, for any =uall 4 = 0, we obtain from (1.1.5) that
Pllz—1|26) <@

But =nce the probebility of any event i= neresmerily & nonnegative mumber, we conclude thet
Fllg — 3| = 8 =0, for any § > 0, =0 that ¢ = T with probability one. We =hall call upon this
remit on =everal orcasions (=ee, e.g., the proof of Thm 1.3.2).

<

1NIany books oh shatizbics, and alzo on digital commiinicakions theoty, conbain bables with the valies of
stich inbegtal axptermions in tha Gavsiah casa for diffatant valtes of §. In tha communications cobbext, stuch
integtals ate tmafil in quantifying the probabiliby of attonsots decixions.
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1.2 ESTIMATION GIVEN NO OBSERVATIONS

We now initiabe our discussions of estimation theory by posing and solving asimple {almost
trivial) estirnation problern. Thus suppose that all we lknow about a real-valued randorn
variable T is its mean £ and its variance o>, and that we wish to estimate the value thab
r will assuwne in a given experiment. We shall denote the estimate of © by £ it is a
deterministic quantity {ie., a number). But how do we come up with a value for £7 And
how do we decide whether this value is optimal or not? And if optimal, in what sense?
Thesge inquiries are at the heart of every estiration problem.

T answer these questions, we first need to choose a cost function to penalize the eshi-
mation error. The resulting estimate ® will be optimal only in the sense that it leads to the
smallest cost valune, Different choices for the oost funetion will in general lead to different
choices for £ each of which will be optirmal in it own way

The design criterion we shall adopt is the so-called mean-square-error criterion. It iz
based on introducing the error signal

r

[

r—f

and then determining £ by minimizing the mean-square-error {m.s.e.), which is defined as
the expected value of :i::E, Le.,

min E - {1.2.1)
The error & iz a randorn variable since r is randorn. The resulting estirnate, £, will be
called the least-mean-squares estimate of £ The following result is immediate {and, in fact,
intuitively cbvious as we explain below).

Lemma 1.2.1 {Lack of observations) The least-mean-squares estimate of £ given
knowledge of only {(F,02) is £ =& The resulting minimum cost is Ex” = a2,

Proof: Bxpand the mean-square emor by subtracting and sdding T a= folloss:
Ez? :E(E —i':l'2 :E[I:z: —5'}4—{2" —:1"'}]'2 :<:l'i-|—|:1"—ﬂ"j|'2

The cheoice of £ thet minimizes the m.s.e i= now evident. Only the term (£ — 27 i= dependent on
I ard thiz term can be annihileted by choomng £ =T, The remulting minimum mean-squars eIror
(m.ms.e ) i= then

Y -2 2
m.mse = Ex” = oo

An slternative derivation would be to expand the cost function s=
E{z —ﬂ"}'z =Ez — 357 +1°

and to differentiate it with respect to . By =etting the derivative equal to zero we arowve at the
Eame conclusion, namely, 2 = I.

@

There are several good reasons for choosing the mean-square-ereor criterion {1.2.1). The
sirnplest one perhaps = that the criterion is amenable to mathernatical manipulations, more
&0 than any other criterion. In addition, the criterion is in effect atbernpting to force the
estirnation error to asswne values cose to its mean, which happens to be zero since
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Therefore, oy minimizing E £* we are in effect minimizing the variance of the error. And in
wiew of the discussion in Bec. 1.1 regarding the interpretation of the variance of a randorm
variable, we see that the mean-square-error criterion tries to increase the likelibood of small
£L0OCS,

The effectiveness of this estimation procedure can be measured by examining the walue
of the resulting minimum eost, which is the variance of the resulting estimation error. The
above lemima tells us that the minimum cost iz equal to of. That is,

g0 that the estimate £ = £ does not redoce our initial uneertainty about ® since the error
variable still has the same variance as x iteelf! We thos find that the performance of the
mean-square-error desigh procedare is rather limited in this cazse. Of course, we are more
interested in estirnation procedures that result in error variances that are smaller than the
original signal variance. We shall discuss one such procedore in the next section.

The reasnn for the poor performance of the estimate £ = £ lies in the lack of more
sophisticated prior information about ®. MNote that Lemnrna 1.2.1 simply tells us that the
best we can do, in the absence of any other information albout a randeom variable ®, other
than its mean and variance, is to use the mean value of T as our estirnate. This sbaternent
i=, in & sense intuitive. After all, the mean value of a random wvariable iz, by definition, an
indication of the value that we would expect to occur on average in repeabed experimernts.
Henee, in answer to the question: what is the best guess for x7, the analysis tells us thab
the best guess is what we would expect for © on average! This is a circular answer, but one
that is ab least consistent with intuition.

Example 1.2.1 {Binary signal;'l Aemime z represent=z & BPSK (binery phase-shift keving) =ignal
thet i= equel to £1 with probability 172 each. Then

2= ()4 5 (-1) =0

and
ar=Ezx® =1

New given koowledge of {f,a’i} slone, the best estimate for = in the least-meansquares z=n= 1=
T =F = 0 Thi= example shows that the least-mean-squarss (and, hence, optimsl) estimate doss
net alweys lead to & meaningful sclution! In thiscase, 7 =10 i= net 1meful in gueming whether ¥ iz 1
or —1in e@mven realization. If we could incorporats into the demign of the estimetor the knowledge
that = 1= & BP5K =gnel, or some other related informabion, then we could perhaps come vp with
& better eshimate for =.

&

1.3 ESTIMATION GIVEN DEPENDENT OBSERVATIONS

5o let us now exarnine the case in which more is known about a random variable &, other
than its rean and variance. Specifically, let us assurne thak we have access to an observakion
of a second randorn wariakle g that is related to © in sorne way, For exanple, 4 could be a
noisy messurernent of &, say

y=r+

where = denotes the disturbance, or % could e the sign of &, or dependent on £ in some

other way.
The dependency kbetween two real-valued random variables {x, 3] is usually described in
terms of their jrint probability density function {pdf). Thus let fo (T, 3) denote the jint
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pdf of & and y; this function allows us to evaluate probabilities of events of the form:

g b
P{aﬁrib,rﬂy*_ﬂd}:f f fa u(T, videdy

narmely, the probability that ¢ and ¥ assume values inside the intervals [2,3] and [e,d],
respectively. Let also fo {7y} dencte the conditional pdf of x given g, this function allows
us to evaluate probabilities of everts of the forrm

Plage<s|y=y)= [ faploic

narnely, the probability that r assumes values inside the interval [2,b] given that g is fixed
ab the walue y It is known that the joint and conditional pdfs of two random variables are
related via Bayes' rule, which states that

fm,-y{m:y} = fy{y} fm|yimly} = .fmf.mi:' .fy|m{y|1}| {1-3-1}

in terms= of the probability density funetions of the individual randoem variables £ and 4.
The variables { £, 4] are said to be independent if

fmly{ﬂ:ly} = fm{m} and fy|ﬂ{ylm} = fy{y}

in which case the pdfs of & and ¥ are not rmodified by conditioning on ¥ and E, respectively.
Otherwize | the variables are said to be dependent In particular, when the variables are in-
dependent, it follows that Exy = E £Ey. It also follows that inde pendent randorn variables
are wncorrelabed, raeaning that their cross-correlation is zero as can be werified frorm the
definition of cross-correl abion:

[k

Ty E{r— %)y —§) =Exy—TF=ExEy—TF =0

The converse staternent is not true: uncorrelated random variables can be dependent. ®

Now given two dependent random variables {&, %], we can pose the problemn of deter-
mining the least-rnean-squares estimator of © given 3. Observe that we are now erploying
the terminology estimator of © as opposed to estimate of ©. In order to highlight this dis-
tinction, we denote the estimmator of & by &, it s a random variable thab is defined as a
function of ¥, say

T = hly)

for some function R{) to be determined. Onee the function A{-) has been determined,
evaluating it ab a particular occarrence of 3, say for 4 =y, will result in an estimate for x|
le.,

£ = Alyll,=, = Ay

Differert cccurrences ¢ = y lead to different estirnates £ In Sec. 1.2 we did not need to
rnalee this distinetion between an esbimmator and an estirnate. There we sought directly an
estitnate T for x© since we did not have access to a random variable %, we only had access
to the deterministic quantities {7, 2} and we could only come up with an estimate for .

? Conmider the followding scaimple. Lek 8 ba a tandom sariskle that iz wniformly diskHibibed over the
ibtmtial [0.2x]. Drafine the zato-mesh tahdom watiables &£ = coz  and i ==zih 8. Then ®° + 4f = 1 zo thak
£ and 3 ara dapandant. However , E®y = Ecom @ =ind = 0.5E sin ¥4 =0, =0 that ¢ and 4 ata thcottalakad.
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1.3.1 Mean-Square-Error Criterion

The criterion we shall use to determine the estitnator & i still the mean-square-error crite-
rion. We define the error signal

I

(1%

T— & (1.3.2)

and then deterrnine ¥ by minimizing the mean-square-error over all possible functions Af-):

fﬁ E=z (133

The solution is given by the following staternernt.

Theorem 1.3.1 {Optimal mean-square-error estimator) The least-mean-squares
estimator {l.mse ) of £ given % is the conditional expectation of £ given ¥, ie,
# =E{x|y). The resulting estimate is

$=E{dy=p) = f 2 farg (T2l

where &, denctes the support {or domain) of the random wvariable £ Moreover, the
estimator is unbiased, ie., Ef£ =T, and the resulting minimum cost is given by either
EXprEsSIon

o b bl

s . ]
Ex"=Ex” — Ex™ = o] — o}

Proof: There are several waye to establish the result. Onwr argument i= besed on recalling thet
for any two random verisbles » and 4, it bolds that (=== Frob. 1.4}

| Ex = E[E(=|y) | (134

where the outermest expectation on the right-hand =ide i= with respect to 3, while the innermest
expectabion 1= with respect to . We shall indicate these fack= expliatly by =howing the wrisble=s
with respect to which the expectation= are performed, =o that

Ez = Ey[Ex(z|u)]
It new follows that, for any function of o, =ay gy, it helds that
Exy zgly) = Ey [E=(zg{v)lv)] = Ey [E=(=lu)giy)] =Exy [E=f=lurig{u)]
Thiz means that, for any gy,
Exp [z — E=(alw)] glv) =0

which we write more compactly as

[Elz - E(=lwilglz) = 1| (1.3.5)

Expre=sion (1.3.5) states that the randem varisbls z — E(z|y) i= uncorrelated with any funchon
glyofy?

Az manbiohsd befotra, two fahdom vatiables & and 4 ate ubcottalabsd if, and only if, thatr cross-
cattalation iz zato, ia, E{2 — :E:Ify - ﬁ] = 0. On tha otheat hand, tha tandom arisbles ate zaid to ba
orihogoral if, and only if, Exy = 0. It iz as=y bo vatify thak the cobcapts of atthog ohality and theottalakad-
heem coincide if ak laast one of the tandom watisbles iz seto mean. From sguakion (1.3.5) wea concluds thak
tha variables & — E(T|y] and g(y) at= orthogonal. Howeveat, zihca £ — E (®|y) is sato mean, thah wa can
alzo may that they ats vhcortalated.
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Using thi= intermediate result, we return to the cost funckion (1.3.3), add and =subtrect E (=|y)
to its argument, and express it as=
E(x - " =E[z— E(z|s) + E(z|v) — 7]
The term E(z|y) — ¥ i= s funchion of 3. Therefore, if we choose glw) = E(z|y) — £, then from the
urcorrelated ness property (1.3.5) we conclude that

Ez - 3 = Efe - E(zlw]]? + E[E(zly)— I*

Cinly the mecond term on the right-hand =ide i= dependent on * snd the m.s.e. i= minimized by
chocming & = E x|y
Te evaluate the resulting m.m s.e. we fird note that the oplimal e=himater 1= uohiasd =oce

Ez = E[E(z|y)] = Exz = =

=o thet its venance 1= @iven by

2 -7 =1
g =Ex" -

Mereowver, in view of the uncemrelatedness preperty (1.3.5), and in view of the fact that the optimal
estimator # = E(x|y) i= it==lf & function of ¥, we hawve

E{z — z)z =0 (1.3.8)

In other words, the estimetion error, ¥, i= al=e uncorrelated with the optimel estimetor. Using thi=
fack, we can evaluste the m.ms.e. as fdlows:

Ez® = E[z—#|[z- ]
= E[z-z]= (becauss of (1.3.6))
= Ez' - E&x

= Ex’ — Ez[* +3]
= Ex" - Ex" (becau= of (1.3.61)
= (E2? — 9 + {F - E?)

2 2
= oy —T;

&

Theorera 1.3.1 tells us that the leastrnean-squares estitnator of r is its conditional ex-
pectabion given 3. This result is again inbuitive. In answer to the question: what iz the best
guess for T given that we observed %7, the analysis tells us that the best guess is what we
would expect for © given the occurrence of g

Example 1.3.1 {Noiksy measurement of a binary signal) Let vu= return to Bx. 1.2.1, where =
iz & BPSK =ignel that ssimes the values £1 with probebility 172, A==ime now thet in sddifion
to the mean and verience of ®, we al= have aoces= to & noisy cbesrvebion of =, =ey

y=xr+=r
Aemime further thet the =mignel z and the dighurtbance v are independent, with © being & ==1to-mean

Geu==an random varneble of unit varience, i.e, it= pdf iz given by

fulth = 1 a Wt
4w
Cur intution tells us that #= should be sble to de better here than in Ex. 1.2.1. But beware, even
here, we shall be sble te meke some interesting observations.
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According te Thm. 1.3.1, the optimal estimate of ¥ given an cbesrvation of ¥ i=

i=Efzly=y) = fm T fapy x|y

{13.7)

We therefors need to determine the conditional pdf, fo),(x|y), and evaluste the integral (1.3.7).
For thiz purpose, we start by noting that mnce v = ¢ + v, and Aance = and © are independent, the

pdf of ¥ i=given byt
1 1
faly) =S hly + 1)+ S fly - 1)
Sirmilerly, the joict pdf of {F, ¥} i= given by

-f=|lll:Ily} = f:l:ﬂ-}'jyhl:ylﬂ-}
= |36z -1) + 26z 41| Ay -a)
= Jhely— 18z — 1) + 3 fuly +198(x + 1)
Using (1.3.1) we zet
f |:ﬂ'|‘!,|':l — j=.v|:ﬂ-:'§|':| — fﬂl:'y_l}al::_j'} fﬂl:'y"'l}al::"_l}
=l fu(w) flv+ L+ hly—1) " fly+1)+fly—1)
Substituting into expresgon (1.3.7) for T and integrating we obtain
;= Lly-1) _ Lly+1)
Tyt D+ fuiv -1 flv+ L+ Ay -1
1 1 a¥ _ 27K
= = - - = — = tanhy
Em e (e o

In other worde, the lesst-mesn-squarss etimeter of £ i= the hyperbolic tangent finchion,

The remult i= represented schematically 1o Fig. 1.3,

b s

tanhI:-:l I S

Flgure 1.2. Cpbimal sshimakion of a BPSHK, sighal ambeddad in thit-vatiahcs
ad ditive Gatizxiah hoize,

{1.3.8)

{13.9)

Figure 1.4 plots the funchon tanh(y). We =« thet it tends to £1 as y — oo, For other
waluee of ¢, the functicn e=smesreal wmlves that are digtinct from +1. Thi= i= & bit puezling from

AFtom probability theoty, it iz khowh that tha pdf of tha sum of two ibdapandant tandom variables ix

mqttal bo bhe comealbion of bhe individual pdfs, i,
L)

falih = [ petepuly —lox
—o

In thiz sxampla,
1 1
f:f:l.'] = EJI{I — l:l + ;5(1' + ].]
whete §{-] iz tha ditac-dalbs, fisnckion, =0 thak fi,(y)] i= givan by (1.3.8).
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Optimal decEion devics for EP Sk data bured in Gaussian noEe

tanhiy)

Flgurs l.4d. A plot of tha function tanh(y].

the demigner’s perspective. The demgner iz interested in knowing whetber the =ymbel =z i= +1 ar
—1 baxed on the cb=erved welie of . The above congtiruchon tells the demgner to estimete = by
computing tanh(yh But this value will pever be exactly +1 or —1; it will be & real mimber in=ide
the interval (—1,1%. The desgrer will then be induced to make & hard decimion of the fam:

decide in favor of | 11 i ¥ iznonnegative
—1 if Ti=negative
In effzct, the demgner end=1up implementing the alternetive estimator:
& = sign[tanhiy}] (1.3.1a}%

where sign(- ) denctes the =ign of itz argument; it 1= equal to +1 if the argument i= nonnegative and
—1 otherwize.

We therefore have s mtushion where the optimal estimater, although known 1o closed form,
dees not =dwve the original problem o recovering the symbols £1's directly. Instesd, the deggrer
i= forced to implement & suboptimel =elution; it i= =nboptimel from & least-mean-=jvueres point of
view. Bven more puseling, the designer could cormider implementing the slternative (and sopler)
=uboptimeal estimateor:

z =signiy) (1.3.11%

where the sign(.) function operates directly on o rather than on tanh(y) — =« Fig. 1.5. Both
=ubeptimal implementeations (1.3.10) and (1.3.11) lead to the =ame remult snce, &= i= svident from
Fig. 1.4, sign[tanhiy]] = sign(y). Inthe computer project st the end of the chapter we shall compers
the performance of the optimal and suboptimel estimators (1.3.9}—(1.3.11}.‘:'

sign(-} e -

Flgure 1.4. Sub-opbimal sskimakioh of a BFSK =zighal ambeddsd in undk-
aatiancs addibive Gapzzian hoize.

Tha putpoma of Ex=. 1.2.1 and 1.3.1 iz hok to confiza tha rasd =, bub rathet to zbtemz the fact that an
opbimal a=bimakat iz opkimal only ih the sanza that it zabi=fies o catbain opkimality ctibation. C'ha zhould
hot confiiza an opkimal giess with a patfact ge===. Cha should alzo hot cobfiza an optimal giess with a
ptackical ohs; anh opkimal giesz do== hot hmed b0 ba patfack of mmb practical, thotigh it can stigg=st good
prackical solutions.
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We may mention that in the digitel communications literature, egpedally in sudies on equal-
ization methods, an implementation 1ming (1.3.11) iz u=uelly =aid to be based on hard decisions,
while an implementetion vEng (1.3.9) i= =aid to be based on saff decisions.

&

Remark 2 [Complexity of optimal estimation] Examgple 1.3.1 highlight= ore of the income-
niences of working with the optimel estimeator of Thoa. 1.3.1. Although the form of the optimal
solution 1= known, in general it 1= pot an easy tesk to find & co=d-form expresmon for the con-
ditionel expectetion of beo random wwerisbles (empecially for other choice= of probehility densty
function=). Meoreover, even when & closed-form expresdion can be fourd, ore iz tmnally led to s
nonlinesr eshimetor whose implemerntation mey oot be practicel or mey even be costly, For this
rea=cn, from Chepter 2 onwards, we =shaell restrict the class of estimetors to finerr esfimaters, and
study the capebilities of these estimators.

@

1.3.2 Orthogonality Principle

There are two lrnportant concdusions that follow fror the proof of Thea, 1.3.1, narmely, the
orthogonality properties {1.3.5) and {1.3.8). The first one states that the difference

r— E{x|y)
iz orthogonal to any function g of . MNow since we already know that the conditional
expectation, E (E|y), is the optimal least-mean-squares estimator of £, we can re-stabe this
result by saying thak the estimabion error & is orthogonal to any function of ¥,

EZ gly) =0 (1.3.12)
We shall sornetimes use a geommetric notation to refer to this result and write instead

z 1 gly) (1.3.13)

where the syrabol 1 is nsed to signify that the two randomn variables are orthogonal, a
schernatic representation of this orthogonality property is shown in Fig. 1.6

giy)

Figure 1.6. Tha otthogonality condibion: & 1 g{y).

Relation {1.3.13) admits the following interpretation. It sbates that the optimal esti-
mator & = E{r|y) is such that the resulting error, &, is orthogonal to {and, in fact, also
uncorrel abed with) any transformation of the daba 4. In other words, the optimal estimator
i= such that no matter how we modify the data g, there (s no way we can extract additional
information in order to reduce the variance of T any further other than the information that
has already been extracted by £ Thisis becanse any additional processing of 4 will rernain
uncorrelated with .
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The second orthogonality property (1.3.6) is a special case of {1.3.13). It states that
rl &

That is, the estiration error is orthogonal to {or uncorrelated with) the estimator itself
This is a special case of {1.3.13) since £ is a function of ¥ by virtue of the result £ = E{ x|y}
In swnmary, the optirnal least-rnean-squares estimator is such that the estirnation er-
ror is orthogonal to the estirnator and, more generally, to any function of the observation.
It turns out that the converse staternent is also true so that the orthogonality condition
{1.3.13) is in fact a defining property of optimality in the leastmean-squares sense.

Theorem 1.3.2 {Orthogonality condition) Given two random variables £ ard %, an
estimator & = Aly) is optimal in the least-mean-squares serse {1.3.3) if, and only if, &
iz unbiased {i.e, E® =) and £ — & L g{y) for any function g{-}.

Proof: Ore direction hes slready been proven prior to the statement of the theorem, namely,
if ® iz the optimel ssfimator and hencs, 2 = E(x|y), then we slready know fram (1.3.13) thet
F L glw), for any g(.). MMorecwver, we koow from Thm. 1.3.1 thet thiz estimater iz unbiased.

Conversely, a=mume ¥ i= an unbiassd estimetor for ¢ and thet it smtisfies 2 — ® L gy}, for any
gi-). Define the random wrisble 2 =& — E{=z|y) and let us show that it i= the zero vansbls with
probabilty one. For thiz purpose, we note first that z 1= sero mean =ince

Ez=E# - E(E(zjp)) = T-3 =10

Moreover, from [1.3.8) we have # — E(=|p) L gl and, by essimption, we have = — # L gy for
ary gl-) Sublrecting the= twe conditions we conclude thet

= J__q'I:y}

which i= the =ame a= Ezgly) =0. Since the variable z it==lf i= & funchion of 4, we choo= gly) =z
toget Ex? =0, We thnix find thet = iz 2e10 mean and has zero weriance, = that, from Remark 1 st
the end of Section 1.1, we conclude thet z =, or equivalently, * = E(=|y}, #ith prebebility one.

&

Example 1.3.2 (Suboptimal estimator for a binary signal) Cons=ider sgain Fx. 1.3.1, where
z i=2 & BPSK =gnel thet asmimes the welues +1 -with probability 172 Let = werify thet the
estimator = sign(y) i= not optimel in the lesst-mean =quares =en=. We slready koow thet this
iz the ca= becaime we found in Ex. 1.3.1 that the optimal estimeter i= tanhiy) Hers we wish to
werify the =ub-optimality of sign(y) without se=eiming prier knowledge of the optimel estimater,
and by relyving =olely on the orthogonality condition.

According to Thoa 1.3.2, we need to werify thet the estimator sign(y) feils the crthomnality
tezt. In particular we shell exhibit & funchion gy} =och thet the difference = —sign(y) i= comelated
with it. Actuslly, we =hell =imply chooss glar) = sign () and werify that

E[z —sign(p|sign{y) £ (1.3.14)
Let u= first check whether the edtimator # = sign(y) i= biassd or not. For thi= purposs we recall
that vy = 4+ v and that

. +1 if x4+ =40
sgnfz+t) = (21 jfzieed

We therefore need to evaluate the probability of tle event= r+ v >0 and T+ © < 0. Fo the first

cazs we hewe

r4v >0 I::z::-l-land*t:z—l} or I:I::—land'uzl}
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INow recall that ¢ ard v are independent ard that © 1= 6 zero-mean unt-variance Gau=man randon
warnable. Thu= let

S

Flrz1) 2 a (1.3.15)

Then
Plez-1)=1-Fer 2 -1}

1-FPlezli=1-a
and we obtain
FPlr+rvz0)=[1—-alf2+a/i = 12
Coresquently,
Flx+r<0) = 1/2
=o that
E signfz+u)i=4
Thi= means that the estimator # =signy) i= unbiesd.
We now return to (1.3.14) and note thet

E[z — sign(g|sign{y = E z=igniy) — 1

Thersfore, all we nesd to do in order to werify thet (1.3.14) hold= iz to check thet Exsign(y) i=
not unity. Te deo this, we introduce the recdom verisble 2 = sign(y) ard procesd to computs it=
LSan.

It i= clear from the definition of = that

—land v = 1)

_ ] +1 fr=+ladr >-1) or [z
== —land® > 1)

-1 ifl:m:-l-iand*r.:-c:—l}ml:z:

The everts
(z=4+land v = -1} or (z=-land= <1}

each hes probability 0.5(1 — a). Likewi=, the events
(r=+land v < -1} oo (z=-landz =1}
each hes probebility 0.5a. It then follows thet
Ez =1-2a #£1

=0 that = — sign(y) iz correlated with sign(y). Henee, the esbimetor sign(y) does not stisfy the
crthegonelity condition and, therefere, it cannct be the optimel l=est-mean-=vueres estimator.

Let 1= further compute the enhancement in the signel-to-noi= ratic (SMRY that results from
the 1me of this miboptimel eshimator. Recsll that the wariancezof ¢ and v are both vty =o that,
for thi= example, the 5NR pnor to the eshmation procediore i

2

SNR,, 2 mleg(”_;) = 0dB
T
After the eshimeabion precedure, the SNR iz taken &=

2
SNR_., = 10log ("_;)
.

where
Ez’ =E[z—signip)]> =2 — 2Emsign(z) +1 =2 — 21— 2a) = 4n

=0 that
SNR_s = —10log(da)

The improwement 1o SMR 1= then mwen by

SNRow — SNR:a = —1dlog(da)

W wtiba log (-] o tefat bo tha logatithm of a posdtive btimbet talabive bo baza L0,
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Recall from the definition of a in (1.3.15) that it i= & mumber in the interval (0, 1) and iz given by

- L [T ey 0.1587
a = E X = 2 .

The improvemernt 10 SNR iz therefore approxmately 19736 dB. Thiz exemple 1= pursued firther
in Probe. 1.5 ad 1.6
&

1.3.3 Gaussian Random Variables

We mentioned earlier in Remarl: 2 prior to Sec. 1.3.2 thab it is not always possible to
determine a closed form expression for the optimal estimator E{E|y). Only in some special
cases this caleulation can be carried oot to completion {as we did in Ex. 1.3.1 and as we
shall do in ancther example below). This difficulty will motivate us to limit ourselves in
Chapter 2 to the subclass of lirear (or affine) estimators, namely, to choices of (-} in
{1.3.3) that are affine functions of the observation, say Aly) = ey + b for some constants ¢
and b to be determined. Despite its apparent narrowness, this class of estimators performs
reasonably well in many applications.

There = an important special case for which the sptimal estimator of Thia 1.3.1 turns
ont to be affine in . This scenario happens when the randor variables ® and g are jointly
Gaunssian. Th =see this let us introduce the matrix

i
R 2 [ i ”‘ﬁ”]
Try Ty

where {o7, 03] denote the variances of © and ¥, respectively,

b

o, =E{y— )

]
]

ol =Efr— 1)

whereas o, denobes their crosscorrelabion

Try 2 E{x — )y — )

We further assume that 1 is nonsingalar, in fact positive-definite since it can be regarded
as the covariance matrix of the column vector col{x, 3}, namely,

nee([GI-GDGI-ED aem

where the symbeol T denotes vector transposition. Every such covariance matrix is necessarily
syrametric, B = RT. It is also nonnegative-definite, written as B = [ — see the argument
pricr to Ex 142 further ahead ® Here we are requiring it to be positive-definite, B = D,
and, hence, invertible — see Prob. 1.7

The joint pdf of {x,%} iz given by {see App 1B for a review of Ganssian random
variables and their probability density functions:

e
|
=2 H

11 {‘%[E—f y—g |7

faulz,v) = o Vaet R exp

} {13.17)

"‘T']:.u hobakion cal{_ﬂ.&l} danhotes a colimb vectat whosa ahbties ate a abd &

3 A zymmattic maktix A iz zaid to ba hohhegakive-d diniba (witban az 7 > 0] if, and only if, a'fia >0
for all column vmctots a. Tt iz said b0 ba positive-definite (wtitban az R = 0] if, and only if, al Ao > 0 far
all hon-ato columb vecbats a. Evaty pomibive-dafinite mattix is hacassatily inverbibla — zoa App. LA for a
biimf tencderw of Harmibian and =igh-definibs maktices.
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Also, the individual probability density functions of & and ¥ are given by

1 1 1 1 P
= — = fr—£)7 {2 = = —(p—F 2oy
fml::fﬂ} VTTF O E‘X.p{ ]:l fy{y} V;E Gp E‘:K.p{ }
According to Thrn, 131, the leastrmean-squares estimator of ® is & = E{r|y), which
requires that we determine the conditional pdf f,,{z|y). This pdf can be cbtained from the
calenlation:

— .fﬂ! ﬂ:,'y}
fm|y{.ﬂ:|y} - fy{y}
S el b
T A= &¥P
= Tydeth {1.318)
{23}
VIm Ty

In order to sirnplify the above ratio, we shall use the fact that 8 can be factored into a
product of an upper triangular, diagonal, and lower triangular matrices, as follows (this can
be checked by straightforward algebra)®

R =[ é "’fvlf"’f ] ["DE j ] [a,:iaf E } ‘ (13.10)

where we introduced the scalar

r U;y;"llgz

which is called the Schur complement ofa in R; it is guaranteed to be positive in view of
the asswmed positive-definiteness of R ltSf.'lf 1a
Now, by inverting both sides of {1.3.18), we find that the inverse of R can be factored
11

R g

This factorization of ™! allows us to express the terrn

[z-2 y-7]8° 717 ]

Phlota gehatally, 1=t
A B
f= [ BT © ]
ba any symmebtic matric with pomsibly mabrizvalisd anbties {A. B C} sabisfying A = AT and © =T,
Azsztima furthetr that © iz inwvettibla, Thab it iz saxy bo vetify by ditect calcilakion that evety stich maktic
cah b factorsd in the form

4 B] _[1 BCT? =T a I 0
ET o T |0 I o c c-lBT I
whata T = A — BC~ 18T iz callad tha Schiit com plamant of & with tespack {:c- . Tha fackati=akion fl 315
iz & zpmcial caza of thiz textilt whets the ahttie {A. B.C) ars scalats: A —a' , B =gzy,and C =g
¥ Tha dgbutmmm’a of a posibve-dainibs maktic iz posikive — 88 App. lA Wa zas Bom (L3 L‘il] thak
det B = &2 "’r z0 that o in hecemmatily pomitive,
1 Mt wm tmad the zimple fact that for any scals: a,
L al™_[1 —a
a1 — | a 1

TR
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which appears in expression (1.3.18), as a separable sum of two quadratic terms. Indeed,
direct caleulation using {1.3.20) shows that

= + .
¥

L e

[z-z y—?]ﬂ‘l[m_%] iz -2 - ooy "y 9 | -9

which allowrs 1= to write

{—%[ z-% y-gla| T3 }
exp y—7
{_[{m —E) — oryo Y —eﬂ]ﬂ}
22 .2 z
—exp -“ Exp{—fu—u}l a3 ]
This equality, along with det R = ¢”e, allows us to simplify expression {1.3.18) for fajy (T]y)
to
{_[{z 3 = 00y —@}13}
1 1 2o
fallzly) = ——= —= exp
WAL s

This expression has the forrn of the pdf of a Gaissian randor variable with variance o and
mean value £ + ¢, yoy (¥ — 7). Consequently, the optimal estimator is given by the affine
relation;

T=Eflrly)==%+ Lly—7 ‘ f1.3.21)

m.m.s.e. =a f1.3.22)

Ok=erve that, in this Gaussian case, the m.m.se. is completely specified by the second-order
statistics of the random variables {x,y} (namely, o7, o, and o). Note also that the
m.m.se. is smaller than oo,

Example 1.2.2 {Correlation c:neffic:ient} A measire of the correlstion between téo randeom
wariebles 1= their correlation coefficdent, defined by

.y
Py = TzplTzTy

It iz shown in Frob. 1.7 that po, elwsys liss in the inkerwal [—-1,1]. A= g, moves clossr to zere,
the vansble= x ard 3 become more uncorrelated (in the Gmrmian cas | this slse means thet the
variables become lem dependent ). We =& from (1.3.22) that the m.ms.e. in the Gaussian cas can
be rewritten in the form
mmse = aofl— ;JZF}

Thi= shows that when g, =0, which eccurs when oo, =40, the reanlting m.m s.e. iz 2. Alen from
(1.3.21}, the estimetor collapses to & = I. Thet iz, #e are reduced to the simples extimator studied
in Sec. 1.2, Thi= iz expected =mince in the Gan==ian ce®, & zeTo comsm-correlstion mesns that the
rarlom wanshbles © and o are independent = there i= no sdditionsl informetion availsble that ==

can u= to estimete x, bemdes its mean and veriance.
43
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Example 1.3.4 (Gaussian noise) let z denote & CGeumian random varishle with mean £ =1
and variance of = 2. Similarly, let v denote & Sair=ian random wwerisbls independect of =, with

mean ¥ = 2 and vanance oo, Now cormider the noi=zy messirement
p=Ir4+r

and let uzestimate = from y. Accordingto (1.3.21), we need to determine the quantities {4, o=y, o0}
From the abowe equation we find that § = 2F + & =4 The independernce of = and v implies that
r:r': =3a2 4+ o2 = B4 o2, Finslly, the comscomelation Ty 1= given by

er:E(m - Ty - =Elz -1z +v —-4) =4

where weu=md Ex = a2 +4° =3and Exze =ExEx =32
Using (1.3.21) #= obtain

(-

end the remilting m.m.s.e. from (1.3.22) 1=

75 % Py
T B4 T B4 2

J:

hiorecner, mnce ar o= ot —a'ijwealsaﬁ.nd that

- _ 18
B4 a2

Figure 1.7 shows the result of 50 random smmlations for téo noime variances, al =14 (top
plot) and o2 =0.1 (bottom plot). The dotted lines indicate the wwlues of » diring the experiments,
while the =olid lines indicate the remulting wallesof .

&

1.4 ESTIMATION IN THE COMPLEX AND VECTOR CASES

We have focused =o far in the chapter on scalar real walued randorm variables. The resalts
however can be extended in a straightibroard manner, by using the convenience and power of
the wector notation, to the cases of vector- valued and even cormnplex-valued randorn variables.

These two situakions are common in applications. For example, in channel esbirmabion,
the quantities to be estirnated are the samples of the impuolse response sequence of a sup-
posedly finite-impulse-response (FIR) channel. If we group these samples into a vector &,
then we are fared with the problemn of estimating a wector rather than a scalar quantity.
Likewize, in quadrature amplitude modulation {QAM)Y or in quadrature phase-shift Ley-
ing {QPSK)Y transmissions over a communications channel, the transmitted symbols are
comnplex-valued. The recovery of these symbols at the receiver requires that we solve an
estitnation problern thatb involves estitnating complex-valued quantities.

1.4.1 Complex-Valued Random Variables

WNow a cornplex-valued randorn variable iz one whose real and imaginary parts are real-valoed
randorn variables thernselves, say

Y
= =1

=i +jK, J

where &, and x; denote the real and imapginary parts of £ Therefore, the pdf of a complex-
valued random variable & is fully characterized in terms of the joint pdf, fo z(-,-), of its

1
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Flgure 1.%7. Flok= of tha waltes of @2 and & ot 5] tandom axpatimants with
e2 = 0.5 [lop figure] and &2 = 0.1 (bdtior: figure] for Ex. 131 Tha dolted
line= -with citcles cottespond to taali-sbiohs of & whila tha eelid lin== wwith
diamond= cai‘t\mpﬂhd to tasli-abicoh= of the s=titmakar .

real and imaginary parts. This means that we can treat a complex randorn variable as a
function of two real randorn varialbles, The mean of & will then be defined as

Er = Ex, + jEx = %, + 3%

in terms of the rmeans of its real and imaginary parte It variance, however, will e defined
as

c? 2 E{r—£){r —2)* = E|z — | (1.41)

T

where the symbol + denotes complex conjugation. Corparing with the definition {1.1.1) in
the real case, we see that the above definition is different becausze of the use of conjugation
{in the real case, the conjugate of {£— £} is (£ — £} iteelf and the above definition collapses
to {1.1.13). The use of the conjugate term in {141} is necessary in order to guarantee thatb
a2 will be a nonnegative real number. In particular, it is immediate to verify from (1.4.1}
that
53 = o + of

in terms of the individual variances of &, and x;.

We shall say that two complex-valued random variables & and 4 are uncorrelated if, and
anly if, their cross-correlation is zero, ie., if

A - —
ory = Efx — By - =D
On the other hand, we shall say that they are srthogonal if, and only if,

Exgt =0
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It can be immediately verified that the concepts of orthogonality and uncorrelatedness co-
incide if at least one of the randorm variables is zero rmean.

Example 1.4.1 (QPSK curﬁtellat'mn} Cons=ider & =mignel ® that i=cheosen vniformly from e QPSK

consbelletion, 1.6, » s=unes any of the values

VI, O

i

with probebility 1/4 (=e Fig. 1.8). Clearly, = i= & complex-walued random smrisble; its mean and
warnance are casly found to be £ =0 and 72 = 1.

+

2

Imamnary part
kA
) w2 Real part
7 7
Xt X
-

Flgure 1.&. A QF5K conzballation.

1.4.2 Vector-Valued Random WVariables

A wertor-valued randorn variable, on the other hand , is a collection {in column or row vector
forms) of randorm variables. The individ ual entries can be real or complex-valued themselves,
For example, if £ =col{x(D), £(1}} is a random vector with entries {£{D},£{1)}!* then we
shall define its mean as the vector of individual means,

- )]

and its covariance malric as

By

R, 2 Efr—o){z -z (142)

where the symbol + now denotes complex-conjugate transposition {i.e., we transpose the
vector and then replace each of ite entries by the corresponding conjugabe value). '® Com-
paring with the definition (1.3.18) in the real-valued case, we see that the symbol + replaces

Y2 timm paranthesis bo index the scalat anbties of a vechar, ag., ®(k] dancbas tha k—th anky of .
12 may mantioh in pasdinyg that if & weats a row tandom veckat, tather than a cotumen tandom vmchor,
than ilx covarianca maktix would ba dafined ax

RB: = E(z—9'(z—%
with tha conjugate tatm coming fitzt. Thiz iz bacatiza in thiz ca=ma, it iz the ptoduct (® — £)*(® — 3] thak
imld= & maktix, whils the product f:!: - :E:If:!: - i'j' wrotild ba a scalat.
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the transpesition syrobol T, MMoreowver, we al=o see that R, is not symrnetric anyrore but
rather Hermitian. That is, B, satisfies

R, =R
For the above two-element vector © we cbtain
E|z(D) — £{D)|* E[x{D) — Z{0)][x{1) — Z{1}]*
o E[x{1) — {1}][x{D) — 2{D)]* E|xf{1) - £(1)]*

with the individual variances of the variables {®{D}, £{1)] appearing on the diagonal and
the cross-correlations between thern appearing on the off-diagonal entries. In the zero-rmean
case, the definition of R, , and the above expression, simplify to

R, 2 Exgt

o Ele{D)?  Ex{Dr*{1)
T EeUet)  Efx(y)?

We mentioned before, following the definition (1.3.16), that the covariance matrix of a
randorn vector is always nonnegative-definite 1+ In order to verify this claim in the general
complex and vector-valued case, we introduce the scalar-valued randorn variable 4 = a*{E—
Y, where @ i= an arbitrary colurmn wector. Then 4 has zero mean and

ci =E|y|* =a*R.a

But since the variance of any scalar-valued randeorn varisble is always nonnegative, we oon-
clude that a*f 2 = 0 for any 2. This means that A, s nonnegative definite, as claimed.

Example 1.4.2 (Transmissions over a noisy channel) Con=ider the =etting of Fig. 19, A ==
quence of indeperdent and identically distributed (i.id.) =yombel= {s(t)} i= freremitted owver an
initielly relaved FIR channel with trander function Cf2) = 140527, where 27! denotes the unit-
tirme delay in the -c—transform demein. Each symbel iz either 41 with probebility g or —1 with
probability 1 — p. The outpit of the channel i= comrupted by zero-mean additive white'® Gan=san

nol=s 1:{':'} o unit variance, 1.2,
Eeliye’(j) =84

where 8y derctes the Fronecker delta function thet iz equal to unity when ¢ = J and zero otherwiss.
The moi=e and the symbeole are asmimed independent.
The outpit of the chanrel &t aoy specific time insbant ¢ 1= given by
(i) = s(2) + 05801 — 1% (1)

Aemime we cellect N 4+ 1 meammrements, (i), =0,1,...,N}, inte & column wecter y, and then
poee the problem of recovering the trarmmitted symbels {s(¢),: = 0,1, .., N} over the =ame interval
of ime. If we collect the mymbel= {5(i)} inte & column vector = a=well

z 2 cals(0),5(1),. .., s[N)}

HWa dafined ih ah satlist fockhobs what wa mean by a hobhegative dafinits maktiz, Thata howeeat wea
wwrata dasling with tasl-valiied mabktrices. I'n the ganatal complac-wvaliisd caza, wa zay- that a Hatmibian mabbies
Ft iz honhegative definite if, and only if, a* fAa > 0 for ahy column veckar a (taal o complac-valusd). Wa
zay that B iz posibive-dafinibs if, and only if, a* fa = 0 for any hoh-=o calumn vackar a.

1A fandom process W(T) iz whits if Ew(tlu*(3] =0 for all 1 # j; ia., if its tatm=x ate vhcottalatsd -with
mach othet.
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sli) el 14085:70 wid)

Figure 1.9. Ttabzmiz~ioh ovet ah addikive whita Gabssian FIF channal.

then we are faced with the problern of estimeting & vectar = from & vector 3. Here the entrie=of =
and y are all real-valued. If the symbels s(¢) were ingead chosen from a QPSK constellation, then
both  ard ¢ will be complex-valusd., We shall return to this problem firther sbhead in BEx. 1.4
and alm in Chapter 2 (z=e Ex. 2.2.3)

&

1.4.3 Optimal Estimator in the Vactor Case

It turks out that the optimal estirnator in the general vector and cornplex-wvalued case iz still
given by the conditional expectakion of © given 3. Th see this, let us start with a special
case,

Asmsune rand y are both real-valued with ¢ a sealar and ¥ a vector, say

y =col{y{D), %1}, ..., %ig — 1)}

As before, let & = Afy) denote an estimator for . Since ¥ is vector-valued, the function (-
operates on the entries of 4 and provides a real scalar quantity as a result. More explicitly,
we write
The function Af-) is to be chosen optimally oy minimizing the variance of the error £ = £,
ie., by solving

min E &

By
The sarne argument thab we used to establish Thea 1.3.1 can be repeated here to verify
that the optimal estirnator is still given by

& = Efrly) = E[z|y{), »{1), .., ulg—1]] {14.3)

The only difference between this result and that of Thrm 1.3.1 is that the conditional
expectation is now computed relative to a collection of random variables {y{i)], rather
than a single random variable. Moreover, the orthogonality condition {1.3.5) extends to this
caze and iz still given by

E fe — E (zly}lg(y) = D (144)

for any function g{- of 4.

Example 1.4.3 (Various noisy measurements of a BPSK signal) Let usretirn to Bx. 1.3.1,
where z iz & BP5K =ignal thet iz either +1 or —1 with prebaebility 172 each. A==ime that we collect
two poisy mesmrements Y0} and (1) of =, =ay

vil)==+2(0), wl)j=z+e(l

whers {=(0),2(1)} &re zero-mean unit-werisnce Gmemian random verisble= that are independent

of each other and of . The wwlue of # 1= the =ame 10 both messurement= I:i.E-.:| if 1t 1= +1 1o the
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mea=urement y(0), it i= al=s +1 in the mesmirement ¥(1), and =imilaly for — 1.} For indance, we
could interpret {4(0), 4(1)} a=the noizy sgnals measured st tvo antennas e & remlt of transmmitting

r orer bwo addifive Gau=man-nei=s channels — =ee Fig. 1.10.

Flgure 1.10. Bacabion by o antahnax of a =mpmbol 8 Hanzmitkad ovet bao
ad ditive Gayiz=ian-hoize chahhals

We can then pose the preblem of estimating  given hoth mesmrements [2(0},2(1}}. According
to (1.4 3}, the solution i= given by
# = E [2[p(0),»(1]
The evmlusation of the conditional expectebion 1o thiz case 1= & triviel exten=zion of the derivebon

given in BEx. 1.53.1, and it i= l=ft &= 6n exerc=e to the resder — == Prob. 1.11, where the mere
general came of rmilbiple messmrement= 1= treated. The re=malt of that problem show= that

x = tanh[p(0} + 2(1}]

In the context of the two-antenne example of Fig. 1.10, thiz remilt leads to the optimal receiver
structire zhosn 1o Fig. 1.11.

© ()

w0}

Gl tanh(-} —p-—i:
w1} ‘i

=(1)

Flgure 1.11. Cptimal tecmivear shiscbute for tecowmting & =symbol & from o
zapatats memxiitam stz ovet addibive GGalzzianh-hoize channal=

&

Let us now study the general case and determine the form of the optirnal estirnabor for a
vector-valeed randorm wariable ® given ancther vector-valued randorm varialle 4, with both
variables allowed to be complex-valued as well. Thus assume that x iz p—dimensional while
3 s g—dimensional
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Again, let £ = Aly) denote an estimator for £ Since £ and y are vector-valued, the
function fAf-) operates on the entries of ¥ and provides a vector quantity as a result. More
explicitly, we can write for the individual enfries of & and g,

&0 falg (D), ¥{1), . .., yig — 1)]
£(1) R [g{0), 91}, .. wlg — 1]
lp—1) s [(D), (1), ., wlg — 1)

where the {A;({-}] represent the individual mappings from the observation vector y to the
estimators {£{k)]. We can then seel: optimal functions {Ag{ )] that minimize the variance
of the error in each component of &, namely, each Rg{-) is determined by salving

Fi:i{flj E |afk)|® (L45)

where 4\
E(k) 2 T{k) — Anly)

This formulation is also equivalent to solving over all {fg{-1} the following problerm:

. Y
min  E &7 (146)

1kl 3}

This is becanse the quantity E *& is the sum of the individual terms E |£{k)|%,

Ez*c = E|z{D)* + E|={1)|* + ... + E|={p - 1j|*
with each term E|£(k}|* depending only on the corresponding function Akl ). In this way,
minimizing the sum Ex*r over all {iy()} is equivalent to minimizing each individual term,
E |[&fk)|*, over its hy{-). Note further that
Ez*c = Tr{Ezd*) = Tr{Rs)

That is, the scalar quantity E£*® in {1.4.6) is equal to the trace of the error covariance
ratrix Rz '® so that (1.4.8) is also equivalent to solving over all {fg{-J}:

i)

MNow the solution to the general problem {1.4.5) follows from the special case discussed
ab the beginning of this section. Indeed, if we express £(k) and fix{-) in terms of their real

and imaginary parts, say

2 kY
:I!{Hl = :I!r{k::l + 7 Ii{k}, B = fRep+ 37 fip
then we can expand the error criterion as

Elz{k) — fir ':y;"lg =E [z {k) — hr,k{y}]z + E[m{k) - IFi-i,p:I:‘?,p‘;'l]E

¥iTha ttaca of a maktix iz aquial to tha sum of ils diagonal alamanks. hloteover, fot aby coliimb veckat a,
it holds thata*a =Tr{aa*).
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and we are reduced to minimizing the sun of teo nonnegative quantities over the unlnowns
{her(), Aiel-)}. This is equivalent to minimizing each term separately,

g Elod) —houfyll®,  min Eln(k) - Ryl

and the solution we already lknow from (1.4.3) to be given by

if{k} = E[rf{k}lyr{D}:yiD}:yr{l}: y,{l:l, .- :yr{q - 1}: yll:q - 1}]
i:l{k}l = E[rl{k}lyr{ﬂ}nyl{n}zyrllr.l;ll:lyl{l}l:l .- Jyr{q - l}Jyl{q - 1}}

Therefore, the optimal choice for Ay () is
E(k) = E [x{k)[y]

s0 that the optimal estimabtor that minimizes the variances of the individual errors {£{k}]
is

£ =Efzly) 2 | (148)
E[x{p — 1)|4]

Likewise, using the property {13.5) of conditional expectations, we conclude that the ar-
thoponality condition in this case is still given by

Elr —E{z|yllaly) =0 (14.9)

for any function g{-) of the observation ¥.

Theorem 1.+.1 {Optimal estimation in the vector case) The least-mean-squares
estimator of a {possibly complex-valued) vector & given another {posibly complex-
valued) vector  is still the conditional expectation of & given ¥, ie, & = E{x|y).
This estimator solves

min Tr{ Rz}

where B; =EXE* and £ =r — £

Example 1.4.4 {Estimation of transmitted symbok) Cormider agein the =stting of Bx. 142
and s=imne N = 2, =0 that we are interested in estimebing the vector = = col{s(0), 5(1}} from the
cb=rvation ¥ = col{2(0}, w(1}}, where

(0 = s [0 +u(@), (1) = s(1) +0E8s(0) 421}
Here we are a=uming that trensmi==ions start st time 0 = that s(—1) = 0. ¥ = inlredixe the

2 % 2 metrix
1 a
7= [ as 1 ]
and the vector © = col{v(d), ©(1}}, then the sbove equations can be written more compactly in
metnx fam e= follows:
y=Hr4
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Ve are therefore feced with the problem of esbimebing = from w, with the noi=s term v e=sumed
independert of . Mow recell thet the mymbols s(i) are either +1 or —1 with probebilities g or
1 — p, respectivel y. Hence, the wector ® can assume any of four values:

+1 -1 +1 -1 A
r RE REE REE +1 = {wmg,m,mq, g}
with prebebihbes
£, 1-#F, p(1 - p}), P(1-pj}
rempectively. Observe that we are dencting the four posibilities of # by {mg, ¢ = 0,..., 3} for
compeactre= of notation. et aleo g =1 —p
Merecmrer, the pdf of v 1= Gau=san and given by
o i {-=Term}
fule) = o exp
=mince the covariance matrix of © 1= a==nimed to be the idenbity matrix. It then follos= that the pdf of
iz gven by
L) = f. (v — Hag) + °f (v — Hmy) + paf (v — Hmg) + paf (v — Hemg)
Similarly, we obtain, = in Bx 1.3.1, that

feplz,w) = fziz) foly— Hz)
F foly — Hma)d(z —wma) + @ foly — Hmaddlz — mi)
+ pofely — Hmaldlz —ma) + pofoly — Hma bz — ma)

The expresmions = derived for f,, () and - ix,u) sllow u= to evaluate ;F=|vl:ﬂ'|'y}, from which ==
can svaluats the desred condifional expectation E (x|y) and, consquently, {5(0%, 5(1)}. Thi= finsl
computetion 1= left &= a0 exercize to the reeder — =e Prob. 1,12

&

1.4.4 Equivalent Optimization Critarion

A useful fact to highlight here is that the optimal estimator E (|y) defined by {1.4.8), which
solves problems {1.4.5)-{14.7), is also the optimal solution of another related matric-valued
error eriterion {ef. {1.4.11) further ahead), as we now explain.

Thus consider the following alternative formulation. Assume that we pose the problem of
estimating & from ¥ by requiring that the functions { k(-] e such that they minimize the
variance of any arbitrarylinear combination of the entries of the error vector, say a*{z—h{g)}
for any @ That is, assume we replace the optimization problern {1.4.5) by the alternative
problern

{:"ﬂ.ift}} Ele*x|®, for any column vector 2 f1.4.10)
The error vector & iz dependert an the chioice of fi and, therefore, the covariance ratriv
E&xr* iz also dependent on i Let us indicate this fact explicitly by writing

[[Le

R:(R) Exi*
Now note that
Ele*z|* = a*Rsifhla

20 that problemn (1.4.10) is in effect seeling an optimal function & such that, for any vector
a and for any other A,
a*Rilhie = a*R; (A%
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That is, the difference matrix R:(h) — B:{h=) should be nonnegative-definite for all . For
this reason, we can equivalently interpret {1.4.10} as the problem of minimizing the error
covariance rmatriv Ry iteelf writken as

fﬁ Exs* (1.4.11)

Comparing with {1.46) we see that we are replacing the scalar E&*E by the matrix E&x*.
Let us now verify that the solution to {1.4.10}, or equivalently {1.4.11}, is again A®{y) =
E {x|y). For this purpose, we recall that, for any Afy),

E=x—&=x—h{y
20 thab the covariance matrix F:(h) i= given by

Rs(h) = Elr — Ayl — A{z)*

Exe' —Exh*(y) — EAly)c" + EA{yiaty)

We now verify that
() — Re{h7) = D

for any choice of . Indeed, from the orthogonality property {1.3.5), we have that £— =y}
iz uncorrelated with any function of . Hence,

R:{h7) = E[x— A%(yll[z — h%(x)]* = E[z - k(y)lz* = Exzz* — EA(y)x*
Subtracting frorm Rs(h) leads o
Rz(h) — R:{h%) = —Exh*{y) — BAly)c® + ERyat(y) + EA(y)ct
From the orthogonality property {1.3.5) we again have that
Elz— A(y)]A™{y) =D, Elr—r(y)h*{y) =0

=0 that
Exh™{y) = ER{y 1™ (y) and Exh*{g) = ER° (g %)

These two equalities allow us to rewrite the difference Rz {h) — R:{A®) as a perfect square:

Rs{h) — R:(R°) =E [h°(%) — als] [{y) - als)]*

The right-hand side is nonne gative-definite for all A, as claimed. Finally since the cost uzed
in {1.4.6) is simply the trace of the error covariance matrix, we conclode that minimizing
the error covariance ratriv is equivalent to minimizing its trace.

Lemma 1.4.1 [Cost function) The conditional expectation of & given % is optimal
relative to either cost
minTr{R:) or min R

where B —Exr*and T =r — £
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1.4.5 Spherically Invariant Gaussian Variables

We saw earlier in Sec. 1.3.3 that for scalar real-valued Gaussian random variables {x, %],
the optimal estirmator of & given 4 depends in an affine rmanner on the obeervation 4. The
sarme conclusion holds in the general sector complex-valued case.

5o assurne that ® and g are jointly Ganssian random wectsr variables with a nonsingalar

covari ance ratris
3 [ Re Ray
w2 5]
where
R, =E{z —f){r —z)*, R,=Ely—-fy—-7"
and
Rey =E{r —Z){y —§)* = Ry,

The variables {E, %] are assumed to be complex-valued with dimensions p % 1 for ® and
qx 1for

If £ and ¥ were real-walued, then their individual probability density functions, as well
&s their joint pdf, would be given by {see App. 1.BY:

_ 1 1 {—%fz—z‘}"ﬂ;lfz—i}}
R0 = oy VEem T
Fils) = —me e expl =3RRI )

Vi fdet Ry

B 1 1 {‘%[ (x—2Y fy—g) | y_g }
-fm,?{z:y} - va exXp [ ]

In particular, observe thatif © and y were uncorrelated, Le., if R, =0, then the covariance
matrix R becomes block diagonal, with entries { By, By}, and it is straightforward to verify
fromn the above pdf expressions that in this case

fm,y{I:y:' = .fmf.m:' ’ .fy{y:'

In other word=, uneorrelated real-valued Ganssian random wariables are alzn independent.

When, on the other hand, ® and 4 are compler-valeed, they need to satisfy two conditions
inorder for their individual and joint pdfs to have fortns sirnilar to the above in the Gaussian
case. These conditions are linown as cércplarity assurmptions, and the need for them is
explained in App. 1B. The conditions are as follows, FEach wvariable is required to be
circular, meaning that {x, 4} shoold satisfy

E{y—fify—d)" =0 and Ef{z—=Z)c—27 =D

with the transposition syrmbol T used instead of the conjugation symbol «. The variables
are also required to e second-order circular, ie.

Efe—z){y—g) =D

These circularity assumptions are not needed when the variables { £, %] are real-valued. The
circularity of © guarantees that its pdf in the Ganssian case will have the form

1 1 I
—_ e —fz—:r_:l Rz f:r—z_:l
.fiﬂ {E:I aF dftﬂ;t p{ }
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Lilewise, the circularity of ¥ guarantees that ite pdf will have the form

1 1

folv) = 79 det R,

expl—{v—8° 7 {v-71}
The second-order circularity of £ and % guarantees that the joint pdf of { x, %] will have the

forrn
= _ .| T—T
i i {‘[ fx—x* (w—@* ]H [ _-”
—— —— exp y—y
xFta det A
Thus cbserve again that if © and 3 were wncornlated, then the above pdf expressions lead
to

.fsn,y{.m: Y =

fm,y{I:y:' = .fmf.m:' ’ .fy{y:'

which shows that weorrelated circular Ganssian randorm variables are also independent.
Thiz conclusion would not hawve held without the circularity asswnptions in the cormplex
case. We rmay add that circular Gaussian random variables are alzo called spherically-
irreariant Gaussian randorm variables.

Mow the least-rean-squares estimator of £ given y requires that we determine the con-
ditional pdf fu,fzfy). Thiscan be obtained from the calculation
)

Following the same argament thab we used earlier in Sec. 1.3.3, we can sirnplify the above
expression by introducing the dlock upper-diagonal-lower triangular factorization {whose
validity can again be verified, e.g., by direct calculation):

g2 B Ry |_[1 BB ][Z D I D
= | Re Ry |T|D I D R, || Ry'R,. 1

where X is the Schur complement of Ry, in R, namely,

=2 H

f
T ex u—
faplzly) = faglT,u) _ 1 detR, pé[

fufy)y — wF detR Exp{—fu—ﬁrﬂ;lfu—ﬁjl]

A -
T = R, — Ry R]A,

Inverting both sides of the above factorization for H we get

Bl I p][=* o 1 —R, R
| ARy T D AL ||D I

which allows us to express the termn
[(z-2* (-7 ] [y_y

which appears in the expression for f 4(T,%), a5 a separable sum of two quadratic terms,

ltr — %) — R By My — N T (2 — B — Rey R My — 9] + (0 —00R y - )

Substituting this equality into the expression for f o, {r|y), and using det i =det . det R,
we conclude that

11 —[fz—%)— “Yp—pl* = fr—51— =lfu—§
faplzly) = Fmﬂp{ [fz—2) = Ry R7  y— @] = [z ) - R R - 001}
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which can be interpreted as the pdf of a circular Gaossian randorn variable with covariance
matrix T and mean value T+ Rry R 'y — 7). We therefore conclude that

£ 2 E(ry) = T+ Ry B (y—B)

and the resulting m.m.s.e ratrix is

mmse. = By = Ry —Rs = R, — Ay R Ry,

These are the extensions to the vector case of expressions {1.3.21) and {1.3.23) in the scalar
cage. Mote further that in the zero-mean case we obtain

L= H,E_H; ly

with {Hz, By, A, | defined accordingly,

A =E:I!:I!":I ‘HI-' = Ew*, ‘E"—'I-' =E;]:y*

Observe from the albowve expressions that the solubion of the optimal estirnation problern
inthe Gaussian case is cornpletely determined by the second-order moments of the variables
{r,%}{ie by A, A, and A, ). This means that, in the Gaussian case, the m.m.se. matrix
can be evaluated beforehand by the designer (i.e., prior to the collection of the observations),
a step that provides a mechanism for checdiing whether the least-mean-squares estirmator
will be an acceptalole solution.

Lemma 1.4.2 {Circular Gaussian variables) If = ard % are two circular and jointhy
Galssian random variables with means {%,§} and covariance matrices { H., R, H., ],
then the least-mean-squares estim ator of £ given ¥ is

& = £+ R Ryt (y—a)

and the resulting minimum cost is

m.mse = B — RBppfiy By

156

SUMMARY OF MAIN RESULTS

Thizchapter highlights several concept= and remilis in least-mean-squares ez metion. Some of thess
concepts are reproduced here 1o & less technicel language 10 order to reinforce their importance.

1.

1=

The variance of & random varieble =rves a2 & measure of the amourt of uncerteinty sbout
the wariable: the larger the wariance the le== certain we are about the wwmlue it meay asmime

1o a0 expenoment.

. The least-mean-muares error cribernion iz tmeful in thet it lesds to trectable mathemabcsl

zolutions. The crniterion 1= al=o intuitivel v appealing. By seeking to minimize the varnamnce of
the estimebion error w= &re in effect attempting to force this error to asmime values clo= to

it= mean ard, hence | to asmime =mall walues moce the mean 1= zero.
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3. The least-mean-squares estimator of & random variable © given ancther random veanable 4 1=
the conditionsl expectation estimator, namely, # = E{=|y). Thiz sshimator i=optimal in the
=enme thet it minimize= the coweriance matnx of the error vector (or, equivelently, it trace),
i.e., 1t =cves

min Exz* e min TriF:)
R-) R

4. A defining property of the least-mean-squares estimater i= that the resulting estimation error

iz uncerrelated with any function of the eb=rvations, nemely, it held= that

Eiz — 2)gie) =0 for any functien g{-) of v

In particulaer,
r Ll = ard r Ly
§. The evelusbon of the condifionel expectation, E{x|y), i= & formideble task in most casmes.

Heorwewer, for arcular Geismian reardom vansbles the estimator ® iz related to the cbeerveation
o in &n &ffine menner. Specficelly, it bold=s that

T = 14 FeyRy (v—9)

where

and

Fzy =E(z - 2){y -5’
In particuler, the eslimeter i= complstely determined from knowledge of the first and =cond-
order momentzof {z,y}, namely, their means, covanances and o covanance.

1.6 BIBLIOGRAPHIC NOTES

Probability theory. The exposmition in thi= chapter a=mimes =ome basic koowlsdge of probebility
theory; mainly with regards to the concepts of mean, variance, probability denmty function, and
wector-randeom variables. Lieodk of thes idess were defined and irtroduced in the chapter from first
principles. If sddifionel help i= needed, 2ome sooesmible references on probability theory and basic
randerm verisble concept= are Papouliz (1991), Picicbone (1993), Leon-Carda (1994}, Stark and
Wood=s (1994}, and Dumett (1998). The textbock by Leon Garcia (1994) i= rich in examples, and
1= particulerly directed to an engineering sudience.

Mean-square-error performance. The squared-error criterion, whereby the muare of the ==ti-
mation error iz 1med a2 & meamre of perdformance, has s very dishngnished history. It dates back
to C. F. Geu=s (1795}, who developed & deterrministic least-squarssemor criterion a= oppossd to
the stochastic least-mean-squeres criterion of thi= chapter. Gau= forrmiletion was motiveted by
hi= work on celestial orbite, and w= shall comment on it mere fully in the conduding remarks of
Chepter 11 when we =study the lesst-mqueres cotedon. A distincbive festurs of the squareerror
criterion 1= thet it penehzes large emrors more than smell errora. In this way, it 15 more sen=tive
to the presence of outlier= in the date. Thi= i= in contrest, for exemple, to Laplace’= propestion
to u=e the sbeclute emor criterian &= & performance mesmire (zee Sheynin (1977)). Gau=s was very
rxh eware of the dishiorbion between both demgn criteria and this i= bow he commented on his
=quared-errer cnitenon 1n relabion te Laplace’s abeclute-errer cnterion:

" Laplace has also considered the problem in a similar manner, but he adopted the absolute value
of the error as the measure of this loss. MNow if | am not mistaken, this convention is no less arbitrary
than mine. Sheould an error of double sze be considered as tolerable as a single error twice repeated or
worse? |s it better to amign only twice as much influence te a double errcr or more? The answers are
not self-evident, and the problem cannot be resclved by mathematical proofs, but only by an arbitrary
decision."

Extracted from the translation by Stewart (1995
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Bemdes Ganss’ meotivetion, there are many good reemns for 1=ming the mean-equare-errar crite-
ricno, not the least of which 1= the fact thet it leads to & closed-form characterization of the sclution
a8z 8 condibional mean. In addition, for Geusman random weriebles, it can even be argoed thaet
the least-mean-=quares error esbimetor 1= precticelly optimnal for aoy other chowce of the error cost
function (quadratic or ctherwi=) — =ee, for example, Pugachev (1958) and Zakai (1964}

Statistical theory. Thers iz extendve work on the leeast-mean-squerss error criterion in the =te-
tishical hterstire. For instance, the result of Thm. 131 on the condibional mean eshmater 1=
related to the m-celled Reo-Blackwsll theorem from stetistics (=e, ez, Caines (1988) and Scharf
(1991%). Hewever, in =tatizhics, there i= often & distinction between what i= known as the classcal
approach to estimabon and the alternative so-called Baveman approach to estimetion. In the deas
=mical appreach, the unkoown quantity to be estimated iz modeled a= 8 deterministic it unkoown
constant; we shell encounter this mtuation in Chapter 3 while studying the Gauss harkew theorem.
The Bayesan approach, on the other hand, medel= the unknown quentity &= & rendom vansble,
which is the point of view we adopted in this chepber. Such Beyesian formuletons sllos us to
incorporate prior knowledge about the unknown veneble iteslf into the =clution, =uch &= informe-
ticn abeut i1t= prebability dersmity funchen. This fart helps explain why Bayeman techmques are
dominant in many =uccessful filtering and estimetion demgns; =ill the Beyesan approad has not
been immure to controversies along its history (zee Box and Tiao (1973%).

Complex random variables. Cornplex werisbles, a= well &= corplex random werisbles, are frequent
in slectrical engineering (and perhaps more =o than in soy other disipline). One notable exarmpls
arizes in digitel comrmurications whereby symbels sre often =lected st random from & complex
constellstion (or even in the complex representation of bandpase signale). Since complex random
wvarables will pley & prominent role throughout thi= textbook, we hawve cho=n to motivate them
from firet principles in the bedy of the chapter. In App. 1B we purmsue their study more cdesly
and focus, in particular, on the impertant class of complex-valued Geussirn random warsblez It 1=
expleined in the appendix that & certain circulanty asmimphon eeds to be =atisfied if the resulting
pdf in the complex ce=es i= to be uniquely determined by the first ardd =econd-order moment=s of
the complex rendom warieble, a= heppens in the real case. The mein concu=mion appears in the
statement of Lemma 1.B.1, which shows the form of &8 complex Geausman distribubion under the
drculenty se=umption. The onginel derivetion of thiz form i= due to Weoding (1958 — == al=
Coedmen (1963} and Liiller (1974). It i= for thiz reszon thet, in fiture discu=ions, whenever we
refer to & complex Gausman distribution we shall often sttach the qualificetion circular” to it and
refer ingdead to a circular Geummian distribution.

Linear algebra. Throughout the bodk, the reader will be expossd to & vwariety of smiler concepts
from lineer algebre amd matrix thecry in & =lf-conteined and meotiveted manner. In thi= way,
efter progresming sfficiently encugh inke the bock, student= will be sble to mester meny v=ful
concepts. If sdditional help iz needed, =mome accesmible references on metrix theory are the teo
volumes by CGantrmacher (1959, the book by Bellman (1970, and the two volumss by Horn and
Johrmon [1967,1991Y. Accemmible references an linear algebra are, for example, the books by Strang
(198819493}, Lay (1994}, and Lax (1997
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1.¥ PROBLEMS

Problem 1.1 {(Rayleigh distribution) Con=ider & Rayleigh-digribited random wariable z with
pdf given by (1.1.3). Show thet it= mesn and wwrisance are given by (1.1.4%.

Hemark, Bacall that for a ganaral tahdom vatiable ® with pdf fz(x), the mash and watishcs ates dafined by

22 [Tane 22 Pree) -2

—o

Problem 1.2 {Markov's Inequality] Suppose T i= & scalar nonnegative real -valved random vari-
sble with probability den=mity function fz(z). Establish the inequelity Flr = a] £ Ex/fa.

Problem 1.3 [Chebyshev's ineguality) Corsider & =alar real-valusd random werisble x with

mean I and wariance o2, Define the nonpegetive random wvernable ¢ = (= — f:lg, whos mean i=s

clearly 2. U= harkow’s inequelity to esbablish Chebyshes's inequality (1.1.5%.

Problem 1.4 {Conditinnal expectation) Congder two reel-welued random verisbles 7 and 3.
E=teblish thet E[E(z|y)] = Ex. That i=, shows that

[ oanns = | R [L x foelatu)ia] oy

where & amd &5, dencte the support= of the variablez ® and 9, rempectivelsy.

Bemark, This idankity shabss that wa can split tha saltabkion of E® inbo fbwo zapatrabs sxpeckabion=: ona
iz the conditichal empechabion of = given 3t (the temilt of which iz & function of ), and the othet iz an
axpactation ovet i

Problem 1.5 (Estimator for & binary signel) Consder the =ame sstting of Bx. 1.3.1 but as
sume now that the noise © has & generic wariance o2

(e} Show that the optimal least-mean-mueres eslimetor of = given p iz & = tanhliyja's}. Flot
the ectimete T &2 & funchion of y for the wloes 72 = (05,1, 2,

by Argue thet = = sign(y) can be teken a= & suboptimeal esbimator. Follos the denismtion st the
erd of Bx. 1.3.2 to show thet the improvement 1o SMR 1= @ven by

SMRout — SNR:. = 10leg(osda)

1 1 p= 4
a = f e =ide
1

W AT :u

() Plot the improvemert in SNR &= & funchion of s,

where

Problem 1.6 (Blased messurement=s) Con=ider the zame =etting of Bx. 1.3.1 bt asmime now
thet the noi=e © he=s mean € and unit variance.

&) Show that the optimal lesd-mean-squares estimeter of * given y iz # = tanhiy — &) Fleot
the estimete T 6= & function of ¢ for the walue= ¢ = —0.5,0,0.5.

(b) Argye thet # = sign(y — ©) can be taken a= & suboptimal estimator.

i) Following the deriwmtion st the end of Bx. 1.3.2, wenfy that the improvemsnt in SMR iz given
by

142
SMRemt — SMR: = lﬂlng( + 5 )

where
1 1 [/ _te-m?
a:——Jlr a7 dv
1

W ar T,

Bemark Sinca ¥ iz hot caro meah, wa ate masstting itz powat by t=ing Ev? and ok op.
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Problem 1.7 {Correlation coefficiant) Consder two scaler rendom varisbles [ &, ¥} with means
{Z,5}, variances [-:ri,-:r:}, and cos-correletion oo, Define the comelation coefficient g, =
Tz f[o=my ). Uk the fack thet the covanance metric

l

see((]-LEDA -
E E
iz nonnegative-definite, to concluds that |az,| = 1.

Problem 1.8 (Fully corvelated randam varlables! Con=ider two =alar reel-welued random
2

wariables = and o with comelstion cosfhcient g, means {£,5}, ard vereoces {a2 o2k Show

"y
that |p=p| = 1 if, and only if, the random venables are related &=

e M
M|

P
—_ = :I:—= —_—
E—-I = (=

Problem 19 {Chisquare distribution) Let #be a real-valued random variable with pdf 1 (z).
Define gy =x°.

(8) U==the fact that for any nonoegative ¥, the event (v = v} ocowrs whenever {— A = = 5 3}
to conclude that the pdf of ¢ 1= @iven by

fulyy = 308

+

%lei—ﬁ} .

'u'@ ’
(b} A=mime ¥ iz Geix=ian #ith sere mean and unit varience. Uss part (&) te conclude that

1 e—w"l
Iy ?

Bemiark Tha abowvm pdf iz khowh a=z tha Chi-zquara diskribibion with obha degrem of frasdom. hlota
ganatally, a Chi-=quatre dizsktribibion with & degte= of Fendom iz chatacbati-ad by tha pdf

fuleh = y=0

_— L =21, _ — g3
fyf!]—m?t Mi—w? gy w0

whats T[] iz tha so-callsd Gamma, fiihckion , which iz definsd by tha integral
N
I‘f:) = f ol da. 2=0
ad

Tha function T[] hax the following tz=ful propertes: T{LfE = /7, T2 + 1] = :T(:] fot any 2 =0,
and {r 4+ 1) ==! for anyr = 0.

Problem 1.10 (Rayleigh distribution) Conmider an FIR chennel with two real-valued taps,
(1) and z(2). The taps are ammimed to be independent zero-mean unit-variance Geaumsian random
wariables,

I:a'jl == the re=ult of part {b} of Prob. 1.4 to show that the rardom warnshle w = =° (1} + :z:'zl:i',}
he= & Chi-square digtiribition with two degrees of freedom, 1.2,

1
falw) =77, w3z

(b)Y Conclude thet the random wwrisble 2 = #7(1) + #2(2) hes & Raylsigh distribution, namely,
show that
—=
falah = ze ".z, z =0

with 7 = w2 and o7 = (2 — mf2).
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Problem 1.11 (BP5K =signall Cormider noisy chesrvations ¢(i) = ¢ + v(i), where  and =i}
&re indspendent real-valued random verables, ©(i) iz & white-noi= Gers=ian random proce=s with
=ero mean and vanance <:r3:| ard ® tekes the wvalue= +1 -mth equal probebility The walue of =
iz sither +1 or —1 for all meammwemernt= {4(:)}. The whiteness s=mimphion oo ©(i) meens thet
Ewiije(it =0 for ¢ #£ 4.

ia) Show that the least-mean-squares estimate of = given N obeerwtions [4(0Y,. . .y (N - 1)} i=

fn = tanh (Z_ 'g'l:-i}ja'z)

cmmi]

(b) A=mime = takes the value 1 with probability p and the walue —1 with probebility 1—p. Show
that the least-mean-squares sehimate of ® given W obesrwtions {4(0),. . . (W — 1)} i=sgiven
by

N-1
£, = tanh |:%ln (L) + Zg(-e};cri]
= 1-r {mi]
in term= o the natural leganthm of g/(1 — g).

() A=mime the neoize iz ingead comelated. Specificelly, define » = col{=(0),w(1), ... (]}
end let F, = Eve*. Show thet the least-mean-mqueres estimete of ® given W oh=rvations
{widy,.. ., 5N — 1)} i= now given by

1
Gy =tanh |Z1ln L) +y R
2 l1-p
where ¢ = col {04, (1Y, . .., (W} and B = el {1,1,.. .1}
Problem 1,12 {Optimal recaiver) Let u= camplete the derivabion of Ex. 144 and ewlusts

El=ly).
(a) Verify thet

a
. 1
= alk g f.(y — Hmg)
o (3 sty -
where a0} = ¢, a(l) = ¢° and a2} =a(3) =pg.
(b} Introduce

a=p  a— M-l (14T b= a—Li—Tplalapli)a)
C=pq-e_%t_7"tu:'+"'“:':' d:m.e—%ﬂr!ﬂ?—rtlﬂ

Sheow that the expresion in part (a) sicplifiss to

[am}]_;[a—ﬂc—d]

a1l | T athdeotd|a-b-—ctd

Problem 1.13 {Exponentisl distribution) Suppese we cbzerve y = ¥ 4 ¢ where r and © are
independent real-walusd rendom vanables with exponentiel distributions with perameters 4 and
Aa (}.1 = ,'J.-;'J'l. That iz, the pdfsof @ and © are f=|::'.r:| =3 "= for g >0 and f‘.I:'L':I = doe— "2 for
v > {0, respectively.

(&) U=ing the fact that the pdf of the =mim of two indeperdent random warisbles iz the commolution
of the individusl pdfs, show that

A1 Aa —haw [ [z—2 0w ]
= - . - 1
-fﬁ' |:'§|'::| .}"2 _ }'1 = =

for v > Q.

ow thet the joint p rand ¢ 18 el T,y) = AidgetETONET Tz R
b} Show that the joint pdfof = and v iz fe 4(7,4) = dideel™ =1 E=320 for 2 > Qand ¢ 2 0
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¢} Show that the least-mean-squares edimete of = given ¥ =y 1=

—A
1 F) i

Al — Ao a—hIK _ g—haK

I o

Problem 1.14 (Equivalent eriteria) Show that the least-mean-squares estimator 2 = E{=|y)
sl=n minimize= E2*WE, for any Hermitian connegative-definite metrix 1) it does not even need
to be invertible. [Hini:: Introduca the sigan-decom pomition of W [cf. App. LA), zay W = FAL™, and
et b 4E Bom y.]

Problem 1.15 {(Second- and fourth-order moments=) Let & denote an Af x Af pegtive-definite
matnx and intreduce its eigenrdecompasition (of. App. 140,

Al
F= Z et

fmml

where the A are the sigenvmlues of K (&l posmitive), and the u; are the sigervectors of B The
w; are orthoncrmal, 1.2, t.:_:-'t.:.' =0forall i # j and wfu; = 1 Let A be & reandom wector with
probebility distribubion PR =wu;) = A;/Tr(®). Thsat i=, the probability that A coincdes with the
1—th eigervector of 7 1= proporfionsl to the corresponding eigermmlue.

(&) Show thet ERARY = B/Tr(F) and EARYARY = B/TrE).

(b} Show thet EA'F~'A =M/ TriF) and EAR* B RA* =1/ Tr(R).

(¢} Show that EA*A =1 and

1 Ar
Eh=—r"3% Aru;
TrI:R}J.Z_; it

Problem 1.16 {Independant and Gausian variables) Conmider two irdependent zero-mesan
rardom veriables {w, 1w }, where w 1= arow vector and 1w iz & column veckor; both are Af-dimen=ional.
The covariance matrices of w and o are defined by Ew*e = o2land Ewn®* =C. In eddition,
1= ammimed to be arcular Geussen Define a third scelar-welved verisble = e, = ww.

B [+ B Ea =a,lr .
Show that E|ea|? T

{b) Use the remilt of Lemme 1.E.3 to thow that E|je|* - [e.|* = (M + 1wl Tr(C), where the
netetion || || denctes the Fuclidean norm of ite argument, i.e., ||e|* = vo* (goce o iz & row
wectar ).

Problem 1.17 (Fowth-moment) A=sime » iz & crcular Gaussan randem row wector #ith &
diagonel covariance matrix A. Define & = ||w||”. What iz the wariance of a7

Problem 1.18 {Covariance equation) Ceormider two column vectors {w, 2} that are related via
z=w 4+ puu'id - ww)

where © iz & crcular Geie=ian random werisbls with & disgonel coveriance metrix, Ew'oe = A (2
iz & row vecter). Diorecwver, p iz & peosmitive constant and d = ww® 4 ¢, for some constant vector
@ and random =alar ¢ with eriance op. The vansbles v, 1, w} are independent of each other.
TDefine e, :ul:w“—w},aswell a=the emmor vectoms = = w” — 2z and 1w = w® — 1w, and dencte their

covanances by {Fz, Rz}, A=mime Ez = Ew =&, while all other random verisbles are zsro-mean.
(B} Verify thet 2 =@ — pu*les + ).
(b} Use the remilt of Lemma 1.B.3 to show that

FB:=Fo— uRah — uhRe + 07 (AT BaA) £ ARAY + p°a2a

() How would the remilt of part (b} change if = were real-valued Gav==ian?
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1.8

COMPUTER PROJECT

Project 1.1 {Comparing optimal and suboptimal estimators) The purpes of this project
1= to compers the perdformence of an optimel leadt-mean-=ueres egdimetor with three approcame-
ticn= for it, slong the lines dizcu=sed 10 Ex. 1.3.1. Thus conader the =thing of Frob. 1.11.

(=
(B}

Wroite & MATLABR program thet gererates & BPSK random wvarisble = that i= equal te 41
with prebebility p and to —1 with prebebibty 1 — 5

Sirmilete the estimator of part (b)) of Prob. 1.11 for different number of obeerwtions V. For
irstance, genetats obeerwtions {y(i)} and plet 25 &= s funckion of W for 1 < W < 14, with
&ll ch=rvations as=nimed genersted by the =ame value of 1 — either +1 or —1. Plot 10 for
the camee p=10.1,0.3,0.5,0.8. Ob=erve how the estimate gete closer to the true wlue of » B2
the wlue of N increase=. Do you notice any differences in behevior for the different walues of
BT

Compeare the performance of the optimsal edimate 70 *ith the averaged edimate

EPIC

for seversl waluss of N, =y, for 1 < N < 300, and for the =me wliues of p in part (B).
Does it teke many more zamples W for the aversged estimate Txy oo to provide & good result
comparsd with the optimel nonlinesr esbimate 07
Fix p=1/%, and define the nonlinesr dec=ion device:
signs] = +1 f a=d
BE= -1 e
Consder aleo the alternative (=sign-of-optimal) e=timate

11"

I M e

T, =SIEn [T 4]

Iti=clear thet T4, a=mimes the walues £1, wheress the optimel estimate I dosenot. 2T,
& better eshmate than 207 The aneser in the mean-mjuare =en=s 1= of cowr=e negalive mnce
we plready know thet o i= the best egtimets. To wenfy this fart do the following. Fix the
number of cheervationz &t W = 10. Then perferm 1000 experiment=, with =ach experiment ¢
rezulting in &n optimel estimete T4t and an edimsate T4, (¢, For each estimate, the value
of T i= fixed &t either +1 or —1. Compute the =ample wanances

1239 1034

1 ... 1 A .
Toag 2 17— Fualdl Toag 2 Ix — Faeli)’
il gl
Which one iz =maller? Repest for the following (sign-of-averags) estimste:
g---::'gm = EiEI'I [i-.'\'lnu]

Thet i=, apply the dea=ion dewice to the estimate that i= cbteined from everaging.

The pregrams that sclve this preblem are the following.

1.

12

psk.m Thi=functon gereretes & BPSK =ignel r thet esmimes the value +1 with probebility
p and the walue —1 with probability 1 — g

. partB.m Thi= program generates four plot= of 24, 8=z & funchon o N, one for each walue of

r. Bach plot %l comverge te 41 or —1 depending on whether the corresponding wlie of =
iz +1eor —1. A typicel cutput of thi= pregrem iz shown in Fig. 112

. part_.m Thi= program genersbes & figure with four plote The imre shows {1, 1T Ha or tor the

four different wlue=of p and over the entire interval 1 4 W < 300, A typicel output of thiz
pregran is shown in Fig. 1.13. The dotted lines correspond to the optimel estimator, while
the =lid lines correspeond to the averaged esbimeteor. Ob=erwe how the averaged estimateor

requires meny more experiments for good perfamence.

. partD.m Thi= program estimetes the vanences of the estimetors {Zn, T oo, Bdes, Baign F-

Typical valuss are {0.0031,0.1027,0.0040,0.0040) ) respectively.
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1.A HERMITIAN AND POSITIVE-DEFINITE MATRICES

The Hermitian conjugate, 4%, of & matrx 4 i= the complex conjugete of its transpose, eg., f
1 ]
4= ; ;
[ 2447 1-— ]

1 2—3
At = " .
[J 1+_’J]

then

where 7 = —1.
Hermitian matrices. A Heroutien matrix iz & square matrix mtisfying 4* = 4, eg  if
_ 1 144
A= [ 1-5 1 ]

then

. _ 1 1449 | _
e[l 1]

=o that 4 iz Hermitian,

Spectral decomposition. Hermitien matrices can only have reef cigenvalies To =e thiz asmime
2 1= &an elgenvector of A corregponding to an eigenvalue ;) 1e., du; = Aiue. Multiplying from the
left by w! we gst

ut Auy = }.;”u.'”'z
where || - || denctes the Buclidean narm of itz argument. Now the scaler quartity on the left-hand
=mde of the abowve equality 1=real mnce it coinades with ite complex conjugate,

I:t.:!'ﬁi-u.'}' = uld'n: = uldu;

Therefore, 3: ok be real too.

Another impertant property of Heromban metncss, whoss preof requires & meors iovelwed ar-
gument, iz thet =uch matrices alway= heve a fulf =ot of crthonormal eigenvectorz That iz, if 4 i=
n % n Hermitian, then there will exist » orthenormal eigenvectorE u; =abigfving

Avi =y, lueP =1, wle;j=0forisi

In compect matrix notetion we can write thiz socalled mpectral (or medal or sigen-) decompestion

of 4 s=
A =rarr
where™’
A=disg{di, 32, . A}, F=[w w ... u,]
and I sti=fies

[ = =1 |

We =mv thet ¥ 1z a8 unitary metrix

Positive-definite matrices. Ao » x » Hermitian matrix 4 iz pegtive =oi-definite [also called
nonnegative definite) if it =ati=fies

g'As >0 for &l column vector= 1

It i= positive definite if 2*A4x = 0 except when = 0. We denote & pomitive definite metrix by
wnhng 4 > { and & pomitive =emi-definite metrix by writing 4 > 0. Aomeong the =eversl characteri-
zaticn= of pomtive-definite metrices, we note the follewmiog.

" Tha notation disg{a_ b} demobas a disgonal mattiz with diagonal ambties a and &
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Lemma 1.A.1 (Eigervalues of positive-definite matrices) Annxn Hermitian matrix
A is positive-definite if, and anly if, all its eigenvalues are positive:

Ax0 = {A =0}

Proof: Lat A = (FAL* danches the zpacttal dacomposition of A, Lat also u; b the i —th columb of £F
with &y tha cottemponding = ganvaliia,

Auy = dug. ||-r.|.=-||'2 =1
If wa mulkiply thiz squality from the laft by w! wa gat
u:;—iu:' = .:'l.:' "'r.l.:'"'2 = l:' =0

whats tha laxt insquality follows from the fact that x* Ax = 0 for amy hobh-ato veckat x. Thatefors, A =0
implime 3y = 0. Convetzey, axxtime b = 0 and mulkply the squality A = FFAR* by any hoh-mto vmchor x
and itz conjugats ttanspoza, om Hyht and l=ft, to g
xtAx =x*UAL 'Y
MNowar define tha maktiz
AN 2 disg {0 a
and tha vackor y = AV *s. Tha vachat v iz hoh-ato sinca IF and AY? arm hobsingtilat mabtices and,

thatdora, tha product AL?U* canpok map a hon-ato vecbor x ko 0. Than tha abowa equaliby becomes
x* A = "!,l"'2 > 0, which establizhes that A = 0.

v

In & =mmilar win, we can show that

[4z0 = 320

Note firther that =mnce
det 4 = [det I} [det A) I{d.e{:U’}

and
det Fdetf7* =1

we find that
det 4 = detd =[] 3

cml

Therefors, the determinant of & positive-definite matrix i= positie,

| 450 = det 4 >0 |

Raykeizh-Ritz characterzation of eigenvalues. I 4 iz an n xn Hermitian metrix, then it held=
thet for all wectors

[ manllfll % 7* A7 < DrmealF |

a= well ax

N e " o
mh—l:u:‘.g gy min T

A = nmt(I AI)

=yl TrT

whers { Ay, Ame: § denote the =mellest and largest cigenwmlie= of 4. The ratio % d1 /147 iz called
the Raylaigh-Ritz rahio
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e =mimple proof of these claims follows by invoking the spectral decompemition 4 = FAL
where U iz unitery and A hes resl entries Thuslet ¢ = U1 for any vector . Then

2'4x = TUAU'T = ¢'Ay = 3 Melulk)]
=1

with the {g(k}} denoting the indiwidusl ectrie= of . Now =snoce the =quared terms {|-g'|:l}|'z} are

nonnegative, we get

hn YRR £ 3 A £ A 3 el

= k1 fom1
or, equivalently, . . .
Duan[[5]]° = AT S D8]

U=ing the fact that @7 iz unitery and, bence,

Il = o'y = 2F¥°x =|lall”
-

we conclude that
S| e £ e

The lower ard upper bound= are achieved when 1 1= chosen &= the aigervector corresponding to
Ay oF t0 dman, TeEpectively.
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1.8 GAUSS5IAN RANDOM VECTORS

Geumsman rendom verisbles pley an importent rele in many stustions, espedally when we desl
with the =um of & lerge number of rendom veneblse. In thi= ce=e, & fundementel remit in prob-
sbility theory, known as the coninel fomid ffearem, states thet under condibions often resmmneble
in spplication=, the probebility den=ity function (pdf) of the =um of irdependent random wmrisbles
spproaches that of & Geu=san rendom vansble. Specfically, if {x(¢),i = 1,2,..., N} are indepen-
dent real-valued Geu=dan randem verisbles with mean (i) and wwriance o2 (i) each, then the pdf

of the normalized warishble "
2 [=(i) - (3]

Y
v =
L
2= 2(i)
i=1
epproaches that of & Gaumsan distnibubion with z=re mean and vnit vaneancs, i.e.,
folu) = ¥ ae N oo
imw
or, equivalently,
. 1 =
= i L
!\:!-];mmpl:yﬂa}_ ﬁf—me dy

It i= for thi= reason that whenever we =sy “GeumsEaen noi=e” in practics, the term e==ntially refer=
to the combined effect of many independent disturbances.

In thi= apperdix #e shell describe the genersl form of the pdf of & wector Gau==an random
warable. Howewer, a=s the dizscu=mon will show, we need to dishinguish between two cass depending
on whether the randem wenable i= real or complex. In the complex ca=e, the rendom warisble will
need tosetisfr & certain arewlariy sesnmption 1o order for the given form of the pdf to be wmlid.

Real-Waloed Gaussian Random Variables

We =tart with the real case. Thu= conzmder & p %X 1 random vector ® with mesen T and covariance
matnx

Fe = El::z: — f'jll:m — i':lT
e=mimed norsingular. We =y that ¢ has 8 Geurssian digrnibution if it pdf hes the form

1 1
f=lz) = T vastEn exp

in terme of the determinant of F.. Of cour=, when p = 1, the sbove expression reduces to the pdf
conzidered in the text in (1.1.2) with F= replaced by o2.

Now con=mder & svond g x 1 Gan=san random vector o with mean § aod covarance matrix

Fy=E{y -gilv -

[-it=—aTrs =21} {1E.1)

=0 thet its pdf 1= @ven by

1 1
SR AR,
Iet Foyp denote the crom-covanance matrix between @ and o, 12,

Foy=E(z—2)lv—g)
We then =ay that the randem variablez {r, ¥} have & joint Geim=ian didribution if their jeint pdf

ha=the form

expl—3le—#TR7 e8]

fulw) =

i

IS e RS L e

} (1B.2)

L=]1

! 1
fealz,ul= Wuﬁ
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in terms of the covariance metnx & of col{z, ¥}, namely,

- 1 T
R=E{|®|-|* ) Tl ) = | B B
v g v ¥ fz, By
It can be =een from (1.5.2) thet the joint pdf of { =, ¥} 1= completely determined by the mean, conari-
ances, and cross-covariance of {F, ¥}, Le., by the first and =econd-order moments [T, §, Bz, Fy, Fzy -

Complex-Valued Random Wariables and Circularity

Let 1= now examine the came of complex-walued random vectors, We conmder again two real random
wvectors {7, ¢}, both amumed of =ize p % 1, with joint pdf given by (f. (1.5.2)):

L]

foleg) = (;}P 11;_:;- Exp{-%[ (x-2)7 -5y ]“"[ s ” (153

i

Iet 2 = = + jp, where 3 = v -1, dencte & complex-welied random wvanable defined 1o terms of
{z,y}. It= mean i= =momply

=EBEz=T+3§
while 1t coveriance matrix 1=

F. 2 E{z— Dz -5 =(Fz + By) + 3 By — Foy) (1E.4)

which, a= shown sbove, can be expressd in terms of the covanances and aos-covariarce of {2, ¥}

We =shall =ay that the complex warisble z hes & Geussan distnbution if it=reel and imeginersy
partz {r,y} are jointly Gmmkan. Since z = & function of {z,y}, ite pdf i= characterized by the
joirt pdf of {7, ¥} &= in (1.B.3), ie, in term= of (1,7, Bz, Fy,Azy}. However, we would like to
express the pdf of z in term= of itz own terms firgt and second-order moments, ie, in terms of
{z,5,F.}. Ittum=out thet thi= i= not alwey= possble. Thizis becaime knowledge of {3, 7. ] slons
iz not enough recover the momernts {I,§,F.,F,, F.,}. Liore information iz needed in the form of
& arculerity condition.

To == this, amiime we only koow {3,F:}. Then thiz infametion i= enough to recowr {1,5)
mnce 3 = T 4+ 3§. However, the information 1= not encugh to determine the required covariance
mstrices {F., F,, F.,} Thiz iz becaims, a2 we sz from (1.B.4), koowledge o F. sllows us to
recover the values of (F, 4+ F,) and (K, — F_,) via

p=
Ro+ R, = Re(R.),  Ryz— Ry = Im[R.} (1B.5)
Thiz irfermation i= not suficent to determine the individuel covariances (Fx, By, Fzy).

In erder to be able to uniquely recover {Fx, Fy, Fxy} fTom F., it iz generslly s=sumed that the
random varieble z mtisfies 8 =o-called crroulanty cordition. This mears thet = should =abdy

| Elz— 3z - E}T =4 | [circularity condition)

with the transpomtion symbel T ueed insbeed of Hernutien conugetion knowledge of F- and this
crculanty condition are enough to recover Bz, By, Fzy} from R.. Indesd, iming the fack that

E{z—-3){z-3 = (R. - R)+iF.+F,)

we find thet, in view of the drcularity sassumption, it must held thet Fz = Fy and By = — B
Consequently, combining with I:I.B. 5}, we can zolve for [}?:,Fh}?:,} to g=t

1 1
F. = Ry = ¢ Rel F.} and Boy = —Rpe = -2 Im(F.Y (1.B.8)

in term= of the real and imeginery pearts of F.. It follow=s thet the coverance metnx of col{z,u}
can be recovered from K. as
RelR.) —Imi(F.}

1 -
F=3| m{r.Y  RelR.}
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Actually, it al=o follows thet & =hould hewve the symmetry srocture

— Fe Foy
R = [ _F., F. ] 1B.7)
with the =me mebrix F. sppesring on the disgonal, and with Fo, srd its negetive sppearioe st
the off-disgonal locebions. Obserwe further that when = happens to be scalar-wvalued, then Rz,
becomes & scalar, =6y 0zy, and the conditien Fry = —Fpx can only held of oz, = 0. That 1=, the
real and imaginary partsof = will need to be independent in the scelar came.

Using the result (1.B.7), we can now venfy that the wiot pdf o {7, ¢} in(1.5.3) can be rewritten
in term= of {5, F.} a==hown belos — compare with (1.B.1) in the real came. Ob=rve in particular
that the factors of 2, a=well a=z the square-roots, dizappesr from the pdf expresmion in the complex
cams.

Lemama 1.B.1 {Circular Gaussian random uariahles) The pdf of a complex-valued cir-
cular [or spherically invariant)] Gaussian randem variable z of dimension p & given by

1 1
T rrdet B

Exp{_t_._srn;*t:—:'h} {1B.8)

Proof: Usdng (LE.7] w= g=t
dat Bt = det(Rz) - dat{Rz + Pz p AT Fzy)
Likerwiza, tzing the sxptemsioh R = 2[Rz — jfzy] wa obbain
HaR]? = d=t(R.])-d=t{RT]
= 9P dt|Ra(f — JRT Fay)] - deb{R= — AL
But BI, = Ry = —Razy abd, for mabtices A and B of compabibls dinausions, det(AE) = det(BA). Haaes,
[A=tF.]* = 277 det A deb[(Fe 4 iRy ) — iFZ LAy
= ¥PFdeb(F) - deb(F, + ., A R,

Wa conclida that det ft = ¥—2F(dat . )?. Finally, soma algsbta will zhow that the acponsnt= in (1.E. %] and
(1.E.B] ateidankical

&

Figure 1.14 plots the pdf of & =ralar sero-mean complex-valued and crculer- Geussan random

warnable z n=ang

Le., ot = cr':. =1 and oy =1 =0 that o =12 Therefore, 1o thiz example, the resal and 1meaginery
parts of = mre independent Geussan randorm vanables with identical wanarces
When (1.B.8) heldz, we can check that uncorrelated jointly Gaiesian randeom vwarisbles will al=s

be irdependent; this i= ope of the main reemone for the essumption of drculanty.

Two Fourth-Onder Moment Results

We establish below two tmeful remilts concerning the evaluation of fourth-order moments of Gaus
=ian rendom verisblez in both ce== of resl and complex-welued date. Although the= result=
will only be umd later in Sec. 6.5 when we study the mean-=quare performence of adaptive filters,
we list them here becauss their prooferelate to the carlier disrusmons an Geue=man random variables.

Lemma 1.B.2 {Fourth-moment of real Gaussian variables) Let = be a real-ualued
Gaussian random column wvector with zero-mean and a diagonal covariance matrix, say
Ezz' =A. Then for any sym metric matrix W of compatible dimensions it holds that

E .[ rr We ET} = ATr[WAY +24W A {1E.9)
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Flgure 1.14d. A typical plot of tha probakbdlity d sh=ity- fubckon of & zato-masn
scalar and dfctilar-Gadissian tandom vatiabla,

Proof: Tha atgumant iz bazad ob tha fact that uncortalabed Gazziab tandom variables ata alzo inde
pandant, so that if w(7) iz the t-th alamant of @, than ={1) iz indepandant of 23] for 1 £ 7. Now lab 5 dancbs
tha demit ] maktbix, ia.,

5=E {mT H-’mmT}

and lat 5:; danoba itz (1. j]-th daneat. Asxiime also that @ is L{-dimahsional. Than

S“J‘ =E {mftjmfjj (Z_ E_ :Efvn]l{"mn:nfnj)}

me= p=]

The tight-hand =ids iz hoh-sto obly whah thets are bwo padts of sgal indices {f = j.mm=r}or {t =m. j =
rlaor {1t =n j =r}. Amumefitat that{ = j (which cortesponds b0 tha disgonal alamants of 5. Than the
axpeactation i= hoh-ato obly fot e =7, ia,

Al=1 Arl=-1
Su=E {m“ @ 3 u—'mmm“fm]} = 3 WanE {2 [’ (m]] = A ar{wd] + oupad
m=i] [ |

whats wem tzad the fact that fot a -mto-mash real zcalat-valiisd Gap=xian tandom vatiable m we haxve Eol =
S{Em'z]'z = Jol, whata o2 danobes the vatiancs of o, &2 = En? . Wa are also denoking the diagonal anbties
of Ay

Faot tha off diagonal alamantz of 5 (ia., for © # j), wa miizt haveagithat i =w, j =, ot i=1m, j = m,
=0 thak

Sy = E {m(i)z() {=Wae(5)) ] + E {2 @) (=) Wi () ]

|[.u-',-J- + u-'_;,-) E { =212 j]} = |[_H-'=-J- + u-'J-,-) Ao

Using tha fack that W i= symmetric, o that W5 = Wy, and collacking the sxprassions fot 5y, in both cases
of i=j and i # j, inbo mattiz form we geb tha demitad el (1.5 .9).

@

The equivalent remilt for complex-velued drcular Geus=man rardom vweriebles 1= the follosing.
The odly difference iz an sdditionsl factor of 2 in (1.5.9)
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Lemma 1.B.3 (Fourth-moment of complex Gaussian wariables) Let z be a circular
complex-valued Gaussian random column wector with zero-mean and a diagonal covariance
matrix, say Ezz* = A. Then fer any Hermitian matrix W of compatible dimensiens it holds
that

E-[zz'ﬁ"zz'} = J‘LTrfI-i"J‘L} 4+ ATFA (1.E.14%

Proof: The amgtimant iz the zame a= in the ptoof of the previctz lamme,, with the main diffetehos being
tha fact that tha fourth-otd s momant of & -=to-mash comepler acal ar-aliad citciilar tandom vadiabla @, of
vatianca &2 = E|af?, iz givan by E |a[* = ¥E |a[?]” = 22 Indasd, zsincain thiz casa

.5':'_.; =E {:fi]z"fj] (E_ E_ =* f‘rnj“"mnzfﬂ])}

me=( p=]

armfind that for 1 = ; wem hasa

Ar—1 Al—1
Su=E {|z|,’i:||'2 Y. Wam|z(r) F} = ¥ WanE |2 |20m)?] = MTr{WA) 4 W2ad
. =]

=]
Llotecovet, for © 2 5,
E {={i)=' (=" ((Wey=()]] +E (== (=" ()W ()] ]
E {l=@)PWyl=7] + 0= uWya;

S

Tha zato in tha zacond aqualiby follows from the citctlatity a=tmpbion ob =, bamdy, E =z’ = 0, which
gl atanbmems
Ex?f) =0 fxrall <



