FUNDAMENTALS OF ADAPTIVE FILTERING

Ali H. Sayed
Electrical Engineering Department
University of California, Los Angeles

A. H. Sayed, Fundamentals of Adaptive Filtering, Wiley, NY, 2003.

Readers are welcome to bring to the attention of the author at sayed@ee.ucla.edu any typos or suggestions for improvements. The author is thankful for all feedback.

Last updated July 2015.

ERRATA

Chapter 2

- Prob. 2.4: replace $\mathrm{E} \tilde{\boldsymbol{x}} W \tilde{\boldsymbol{x}}^{*}$ by $\mathrm{E} \tilde{\boldsymbol{x}}^{*} W \tilde{\boldsymbol{x}}$.
- Prob. 2.8: the expressions for $\bar{y}, R_{y}, R_{x y}$ and K_{o} should be replaced by:

$$
\begin{gathered}
R_{y}=\left[\begin{array}{cc}
-4 p^{2}+4 p+1 & -6 p^{2}+6 p-1 \\
-6 p^{2}+6 p-1 & -9 p^{2}+9 p
\end{array}\right], R_{x y}=\left[\begin{array}{cc}
-4 p^{2}+4 p & -6 p^{2}+6 p-1 \\
-4 p^{2}+4 p-1 & -6 p^{2}+6 p-1 / 2
\end{array}\right] \\
\bar{y}=\left[\begin{array}{c}
2 p-1 \\
\frac{3}{2}(2 p-1)
\end{array}\right], K_{o}=\frac{1}{-21 p^{2}+21 p-1}\left[\begin{array}{cc}
-12 p^{2}+12 p-1 & -6 p^{2}+6 p-1 \\
6 p^{2}-1 / 2 & -14 p^{2}+14 p-3 / 2
\end{array}\right]
\end{gathered}
$$

- Prob. 2.17: replace $\{\boldsymbol{v}, \boldsymbol{v}\}$ by $\{\boldsymbol{v}, \boldsymbol{w}\}$.
- Appendix 2.A, page 104, equation (2.A.1), remove "and $B>0$ " from the left-hand side.
- Appendix 2.C, Page 112, fourth equation on page: replace $\left(H_{i} \tilde{\boldsymbol{x}}_{i \mid i-1}+0\right.$ by $\left(H_{i} \tilde{\boldsymbol{x}}_{i \mid i-1}\right)^{*}+0$.

Chapter 3

- Prob. 3.2, part (a): replace $c^{*} z=\alpha-c^{*} w^{o}$ by $c^{*} z=\alpha-c^{*} R_{u}^{-1} R_{d u}$.
- Prob. 3.3, part (c): replace "is now given by" by "is now related to".
- Prob. 3.7, part (d): replace R_{α} by R_{z} and $\beta^{*}=b_{\mathrm{opt}}^{*}$ by $\left[\begin{array}{ll}1 & \beta^{*}\end{array}\right]=b_{\mathrm{opt}}^{*}$.
- Prob. 3.12, Fig. 3.5: the label $\boldsymbol{y}(t)$ should appear at the output of the channel $c(t)$; remove $\boldsymbol{y}(i)$.

Chapter 4

- Page 189, last sentence of Theorem 4.4.1: replace "divergent sequence" by "divergent series."
- Prob. 4.8, part (a): replace $y \geq 0$ by $0 \leq y<1$.
- Prob. 4.9, part (a): replace " <1 " by " ≤ 1 ".
- Prob. 4.10, part (a): replace $2+\epsilon / \lambda_{\max }$ by $2+2 \epsilon / \lambda_{\max }$.
- Prob. 4.15 , part (b): replace $\sigma_{d}=\mathrm{E} \boldsymbol{d}^{2}$ by $\sigma_{d}^{2}=\mathrm{E} \boldsymbol{d}^{2}$.
- Prob. 4.17: replace "constant number γ " by "positive number γ ".
- Prob. 4.21: replace the reference to Prob. 4.21 by a reference to Prob. 3.2.

Chapter 5

- Page 242, first line, replace "the equality $d_{i}=u_{i} w_{i}$ " by "the equality $d_{i}=U_{i} w_{i}$ "
- Page 245, statement of Alg. 13.2: replace $\left\|\tilde{u}_{i-j+k}\right\|^{2}$ by $\left\|\tilde{u}_{i-k+j}\right\|^{2}$ and \tilde{u}_{i-k} by \tilde{u}_{i-k}^{*}.
- Prob. 5.13, page 260, top paragraph: replace $\left\{u_{i}, u_{i-2}, u_{i-3}\right\}$ by $\left\{u_{i}, u_{i-1}, u_{i-2}\right\}$.
- Prob. 5.25 , part (b): replace " w_{i} that solves" by " w_{i} with smallest perturbation to w_{i-1} that solves".
- Prob. 5.26, part (b): replace last $|h(i)|^{4}$ in $J(w)$ by $|h(i)|^{2}$. Also replace " $h\left(i_{o}\right)=1$ " by " $h\left(i_{o}\right) \mid=1$ ".

Chapter 6

- Page 304, the expressions for E $\boldsymbol{p}^{2}(i)$ and α_{u} should read (second terms are missing):

$$
\begin{aligned}
\mathbf{E} \boldsymbol{p}^{2}(i) & =(1-\beta)^{2} \mathbf{E}\left[\sum_{j=0}^{i} \beta^{2 j}|\boldsymbol{u}(i-j)|^{2}+\sum_{j_{1}=0}^{i} \sum_{j_{2}=0, j_{2} \neq j_{1}}^{i} \beta^{j_{1}+j_{2}}\left|\boldsymbol{u}\left(i-j_{1}\right)\right|^{2} \cdot\left|\boldsymbol{u}\left(i-j_{2}\right)\right|^{2}\right] \\
& =\gamma \sigma_{u}^{4}\left(1-\beta^{2(i+1)}\right) \frac{1-\beta}{1+\beta}+2 \sigma_{u}^{4}\left(1-\beta^{i+1}\right)\left(1-\beta^{i}\right) \frac{\beta}{1+\beta} \\
\alpha_{u} & \approx \frac{\mathbf{E}\left\|\boldsymbol{u}_{i}\right\|^{2}}{\mathrm{E} \boldsymbol{p}^{2}(i)} \rightarrow \frac{M(1+\beta)}{\sigma_{u}^{2}[\gamma(1-\beta)+2 \beta]} \text { as } i \rightarrow \infty
\end{aligned}
$$

Expression for EMSE in (6.6.14) and in Lemma 6.6.2 becomes (adjust denominator)

$$
\zeta^{\epsilon-\mathrm{pNLMS}}=\frac{\mu(1+\beta) M \sigma_{v}^{2}}{2[\gamma(1-\beta)+2 \beta]-\mu M(1+\beta)}
$$

- Page 344, part (e): replace "Use the last 5600 of the signals.." by "Use the last 5600 samples of the signals.."
- Page 350, equation (6.A.5): in the expression for $\sin ^{2}\left(\theta_{i}\right)$, replace $\left\|\tilde{\boldsymbol{w}}_{i-1}\right\|^{2}$ by $\left\|\tilde{\boldsymbol{w}}_{i}\right\|^{2}$ here and in the expression following (6.A.3) on page 349.

Chapter 7

- Page 372, expression for α_{u} after (7.6.11):

$$
\alpha_{u} \approx \frac{M(1+\beta)}{\sigma_{u}^{2}[\gamma(1-\beta)+2 \beta]}
$$

Expression for EMSE in (7.6.12) and in Lemma 7.6.2 (adjust the denominator):

$$
\zeta^{\epsilon-\mathrm{pNLMS}}=\frac{\mu M(1+\beta) \sigma_{v}^{2}+\mu^{-1} \gamma \sigma_{u}^{2}(1-\beta) \operatorname{Tr}(Q)}{2[\gamma(1-\beta)+2 \beta]-\mu M(1+\beta)}
$$

- Page 373, equation (7.7.8): replace $\mu \operatorname{Tr}\left(R_{u}\right)$ by $2 \mu \operatorname{Tr}\left(R_{u}\right)$.
- Page 387, Table 7.3, expression for EMSE of ϵ-NLMS with power normalization in the third row of the table should be replaced by the same expression shown above for page 372 .
- Prob. 7.1, part (a): replace $4 \eta_{u}^{2} \sigma_{v}^{2}$ by $4 \eta_{u}^{2} \sigma_{v}^{4}$.
- Prob. 7.3, weight vector update: replace $\boldsymbol{U}_{i} w_{i-1}$ by $\boldsymbol{U}_{i} w_{i-1-\alpha(K-1)}$.

Chapter 8

- Prob. 8.1, part (a): the expression for α should be scaled by $1 / 2$.

Chapter 9

- Prob. 9.3, part (b): replace "negative-definite" by "indefinite".
- Prob. 9.4: replace $1-c$ by $1-\mu c$.
- Prob. 9.15 , part (b): replace $\left\|\overline{\boldsymbol{u}}_{i}\right\|_{\bar{\Sigma}}^{2}$ by $\left\|\check{\boldsymbol{u}}_{i}\right\|_{\tilde{U} \bar{\Sigma} \check{U}^{*}}^{2}$. In the expression of part (d), remove the factor 2 .
- Prob. 9.30, part (b): expression for D should be $D=2 \mu \Lambda^{\alpha}-\mu^{2}\left(\Lambda^{\alpha}\right)^{2}$.
- Probs. 9.32 and 9.33: it is assumed in these problems that the nonstationary model is $\boldsymbol{w}_{i}^{o}=w^{o}+\boldsymbol{q}_{i}$ (i.e., it consists of random perturbations around a constant w^{o}) rather than as in item (2) of Prob. 9.31.
- Prob. 9.33: replace σ_{v}^{2} by $\sigma_{\bar{v}}^{2}$.

Chapter 10

- Prob. 10.5: the identity should read as follows: $u(i) *\left[e^{j \omega_{o} i} h(i)\right]=e^{j \omega_{o} i}\left(\left[e^{-j \omega_{o} i} u(i)\right] * h(i)\right)$.
- Prob. 10.9: first row of C should be divided by \sqrt{K} and not K.
- Prob. 10.11: replace $1 /(M-1)$ by $1 / M$.
- Last equation on page 607: rightmost term should be $e^{j \omega_{k} i}\left(\left[e^{-j \omega_{k} i} u(i)\right] * h(i)\right)$.
- Page 609: replace $R\left(z e^{j 2 \pi k / K}\right)$ and $R\left(e^{j\left(\omega+\omega_{k}\right)}\right)$ by $R\left(z e^{-j 2 \pi k / K}\right)$ and $R\left(e^{j\left(\omega-\omega_{k}\right)}\right)$. Also, $r_{k}(i)=$ $e^{j \omega_{k} i} r(i)$ and the last equation on the page should be $s_{k}^{\prime}(i) * r_{k}(i)=s_{k}^{\prime}(i) * e^{j \omega_{k} i} r(i)$.

Chapter 11

- Page 674 , footnote 8 , next to last line, replace $\mathcal{R}(y)$ by $\mathcal{R}(H)$.
- Page 682, expression for P_{z} in the middle of the page after (11.5.38): the locations of the upper and lower triangular matrices involving \widehat{w}^{b} should be exchanged.
- Page 683 , second equality in the expression for γ_{z} at the bottom of the page: same as above.
- Prob. 11.6 , replace $\left\|d_{i}-U_{i} w_{i-1}\right\|^{2}$ by $\left\|d_{i}-U_{i} w_{i}\right\|^{2}$.
- Prob. 11.13, part (a): replace (11.5.1) by (11.5.7). Also, replace " $\widehat{w}="$ by " $w_{s}=$ ".
- Prob. 11.16, part (a): replace " $\widehat{w}=$ " by " $w_{s}=$ " and remove third line of [01] on the right.
- Eq. (11.9.11): replace $+b_{2}(i)$ by $-b_{2}(i)$.
- Prob. 11.28, part (b): ignore the correlations between $\left\{s_{1}, s_{2}\right\}$ and their shifted versions.

Chapter 12

- Page 741, right above (12.4.1): replace $(N-1) \times M$ by $N \times M$.
- Prob. 12.3: replace $P_{-1}=\Pi$ by $P_{-1}=\Pi^{-1}$.
- Prob. 12.5, part (a): w should multiply $\operatorname{col}\left\{R_{N-1}, u_{N}\right\}$ on the right-hand side.
- Prob. 12.8, part (a): remove the $*$ from the second U_{N} in recursion for P_{N}. In part (c), $w_{-1}=\bar{w}$.

Chapter 13

- Page 779, first sentence in Lemma 13.3.1: replace "Given" by "Consider".
- Page 810 , second paragraph: replace z_{o} by $z(0)$.
- Prob. 13.10, part (a): replace f^{2} by a^{2}.

Chapter 14

- Page 822: in the second and third equations after (14.1.13), the quantities C and D should be replaced by D and E, respectively.
- Alg. 14.6 .1 and Prob. 14.5: replace ξ by ζ. Also, in Alg. 14.6.1, $\gamma_{M}^{-1}(i)=\zeta_{M}^{f}(i) \zeta_{M}^{-b}(i) / \lambda^{M}$.
- Prob. 14.10: it is assumed that $u_{i} \Psi=u_{i-1}$.
- Prob. 14.11, downdating step: replace $g_{i-1}^{L} \gamma_{L}^{-1 / 2}(i-1)$ by $-g_{i-1}^{L} \gamma_{L}^{-1 / 2}(i-1)$.
- Prob. 14.14, part (a): 2nd column of pre-array should read as follows:

$$
\left[\begin{array}{ccccc}
{\left[\begin{array}{ccc}
u^{(1)}(i) & u_{i-1}^{(1)} & \ldots \\
\bar{L}_{i-1}^{(N)} & u^{(i)} & u_{i-1}^{(N)}
\end{array}\right] \bar{L}_{i-1}}
\end{array}\right], \quad \text { where } \bar{L}_{i-1}=\operatorname{diag}\left\{\bar{L}_{i-1}^{(1)}, \ldots, \bar{L}_{i-1}^{(N)}\right\}
$$

- Prob. 14.15: definitions should read as follows:

$$
\begin{aligned}
& u_{i}^{(3)}=\left[\begin{array}{lll}
u(i) u(i-1) & \ldots & u(i-M+2) u(i-M+1)
\end{array}\right] \\
& u_{i}^{(4)}=\left[\begin{array}{lll}
u(i) u(i-2) & \ldots & u(i-M+3) u(i-M+1)
\end{array}\right], \quad u_{i}^{(M+2)}=[u(i) u(i-M+1)] \\
& w^{o(3)}=\left[\begin{array}{lll}
w^{o}(0,1) & \ldots & w^{o}(M-2, M-1)
\end{array}\right] \\
& w^{o(4)}=\left[\begin{array}{lll}
w^{o}(0,2) & \ldots & w^{o}(M-3, M-1)
\end{array}\right], \quad w^{o(M+2)}=\left[w^{o}(0, M-1)\right]
\end{aligned}
$$

Chapter 15

- Page 881, equation (15.3.4), replace $\lambda^{i} w^{\bar{b} *} \Pi_{2} w^{\bar{b}}$ by $\lambda^{i} w_{2}^{\bar{b} *} \Pi_{2} w_{2}^{\bar{b}}$.
- Page 898, Figure 15.6: the time index for the reflection coefficients in the figure should be $(i-1)$ instead of (i).
- Page 914 , second equation: replace $\bar{f}_{M}(i)$ by $\bar{b}_{M}(i)$.
- Page 915, Algorithm 15.12.1, step 1: add the initial condition $\zeta_{m}^{b / 2}(-2)=\sqrt{\eta^{-1} \lambda^{-m-3}}$.
- Prob. 15.4: replace $\zeta_{m}^{b / 2}(i-1)$ by $\zeta_{m}^{b}(i-1)$ in expression for ρ.
- Prob. 15.5: add under initial conditions $c_{m}^{b}(-1)=1, s_{m}^{b}(-1)=0, b_{m}^{\prime}(-1)=0$.
- Prob. 15.9: in the state estimator equations of parts (a), (b), and (c), a factor of $\lambda^{1 / 2}$ should multiply $p^{\bar{b}}(i+1 \mid i), p^{f}(i+1 \mid i)$, and $p(i+1 \mid i)$.

Chapter 16

- Eq. (16.4.24): replace $u(i, M)$ by $u(i-1, M-1)$.
- Prob. 16.6: a matrix Ψ should multiply the first two terms on the right-hand side from the left.
- Prob. 16.7: the reference is to Prob. 14.2. Also, replace $\beta_{M}(i)$ by $\breve{\beta}_{M}(i)$.
- Prob. 16.12: replace ξ_{M}^{l} by $\xi_{M}^{l}(i)$. Also, in part (b), replace a by $|a|$.
- Prob. 16.16: replace $\mathcal{V}_{k}(z)$ inside the sum by $\mathcal{V}_{m}(z)$.

Chapter 17

- Eq. (17.2.18): replace P_{N} by P_{N-1}.
- Prob. 17.3, recursion for w_{i} : replace α by α^{-1}.
- Prob. 17.5, part (a): remove ϵ from the denominator.
- Prob. 17.13, part (d): replace $\left\|u_{i}\right\|^{2}>\epsilon>0$ by $\left\|u_{i}\right\|^{-2}>\epsilon>0$. Also, replace $w_{i} \rightarrow w$ by $w_{i} \rightarrow w^{o}$.
- Prob. 17.14, part (c), rephrase as follows: "Follow arguments similar to part (d) of Prob. 17.13 to conclude that $w_{i} \rightarrow w^{o}$.
- Prob. 17.15, part (b): replace μ by $\mu(i)$ inside the boxed expression.
- Prob. 17.21, part (b): min should be max.
- Prob. 17.22: in the definition of $J(w)$, remove the right-most equality that involves $v(i)$.
- Prob. 17.24, part (c), m should be M.

