Chapter 3

IN FAST RELIABLE ALGORITHMS FOR MATRICES WITH STRUCTURE, T. KAILATH

AND A. H. SAYED, EDS., CH. 3, PP. 85-102, SIAM, PA, 1999.

FAST STABLE SOLVERS FOR
STRUCTURED LINEAR
SYSTEMS

Ali H. Sayed

Shivkumar Chandrasekaran

100 March 7, 2000

Section 3.1. Introduction 101

3.1 INTRODUCTION

The derivation in Ch. 2 showed how to obtain a stable implementation of the gen-
eralized Schur algorithm for positive-definite structured matrices R and, also, how
to solve Rz = b when R is structured but still positive-definite.

We now use this stable implementaion of the Schur algorithm, and the same
notation of Ch. 2, in order to solve in a stable manner linear systems of equations
with possibly indefinite or even nonsymmetric structured coefficient matrices. In
other words, we show how to use the stability results of the positive-definite case
to derive stable solvers for the indefinite and nonsymmetric cases.

We shall focus on shift-structured coefficient matrices R, viz., those that satisfy
displacement equations of the form

R-ZRZT = GBT,

for some (G, B). In fact, we shall denote the coefficient matrix throughout this
chapter by T rather than R and write

T-27Z7 =GBT. (3.1.1)

The notation T is chosen for two reasons. First, this class of matrices includes as
a special case Toeplitz matrices (which correspond to a special choice for G and B
— see (2.3.5)). However, our results apply not only to Toeplitz coefficient matrices
but, more generally, to shift-structured matrices T (obtained for other choices of
G and B and also for multi-column G and B). Secondly, the notation 7T is also
chosen in order to avoid confusion with the notation R for the R factor in the QR
factorization of a matrix. Such QR factorizations will be repeatedly invoked in this
chapter.

The coefficient matrix T is not required to be symmetric or positive-definite. It
is only required to be a structured matrix in the sense defined by (3.1.1). It can
thus be indefinite or even nonsymmetric. Now given a linear system of equations
Tz = b, one method for solving it fast is to compute the QR factorization of the
coefficient matrix T rapidly. Several fast methods have been proposed for this
purpose [BBH86], [CKL87], [Cyb83], [Cyb87], [Swe84] (see also Sec. 1.8.3) but none
of them is numerically stable since the resulting) matrix can not be guaranteed
to be orthogonal. In [CS98], however, the authors of this chapter showed how
to circumvent this issue, and derived an algorithm that is provably both fast and
backward stable for solving Tz = b for shift-structured matrices 7' that can be
indefinite or even nonsymmetric.

The new algorithm relies on the observation that it is not really necessary to
limit ourselves to only LDU or QR factorizations of the coefficient matrix 7" in order
to solve the linear system of equations Tz = b. If other factorizations for 7' can
be obtained in a fast and stable manner, and if they are also useful for solving the
linear system of equations, then these factorizations should be pursued as well. In
fact, the new algorithm, rather than returning @, it returns two matrices A and

March 7, 2000

102 Fast Stable Solvers for Structured Linear Systems Chapter 3

@ such that A is triangular and the product A~1Q is “numerically orthogonal”; it
provides a factorization for the coefficient matrix T that is of the form

T=A(A'Q)R.

The factorization is in terms of the three matrices {A, @, R} and it is, of course,
highly nonunique - since we can always replace A by any invertible matrix. The
point, however, is that the new algorithm returns that particular A that allows us
to compensate for the fact that) is not numerically orthogonal. More importantly,
these factors are then used to solve Tz = b both fast and in a backward stable
manner.

Our derivation is based on the following idea. We already know from the dis-
cussions in Ch. 2 how to develop a numerically reliable implementation of the gen-
eralized Schur algorithm for positive-definite structured matrices. This suggests
that we should first transform a problem that involves a nonsymmetric or indefinite
structured matrix 7" to an equivalent problem that involves sign-definite matrices
only (either positive-definite or negative-definite). We achieve this by relying on a
so-called embedding technique developed in [Chu89], [KC94] (see also Ch. 1). More
specifically, we embed the square coefficient matrix T into a larger matrix of the
form

T 0 (3.1.2)

The product T7T is never formed explicitly. This definition for M is just for
explanation purposes since the algorithm itself will end up working with a generator
matrix for M and not with the entries of M, and this generator for M can be found
from a generator for T', without the need to form T7T (see Sec. 3.4 further ahead).

Now observe that the leading block of M is positive-definite and the Schur
complement of M with respect to the (1,1) block is negative-definite (and equal
to —I). The matrix M also turns out to be structured (e.g., M is shift structured
when T is quasi-Toeplitz). In this case, and with proper modifications, the stability
results of Ch. 2 can be applied.

T T
M:[TT T :|

3.2 OVERVIEW OF THE PROPOSED SOLUTION

Once the matrices {A, @, R} are obtained, they are used to solve for z efficiently
by using the expression
z=RYQTAT)A b (3.2.1)

Note that in writing this expression we used the fact that A~1Q is orthogonal and,
hence, its inverse is the transpose matrix.

All computations in the above expression can be done in O(n?) operations, where
n is the matrix dimension, and the algorithm turns out to be backward stable (cf. the
definitions of stability in Ch. 4) in the sense that the computed solution Z is shown
to satisfy an equation of the form

(T+T)z=b,

March 7, 2000

Section 3.3. The Generalized Schur Algorithm for Indefinite Matrices 103

where the norm of the error matrix T satisfies
ITll2 < On(e) ITIl2 + O(?),

where £ denotes machine precision.

The factorization for T' is obtained as follows. We apply 2n steps of the gen-
eralized Schur algorithm to a generator of M in (3.1.2) and obtain its computed
triangular factorization, which we partition in the form
[0 %]

0 —AT |”

RT 0
0 A

where RT and A are n x n lower triangular matrices. The computed matrices
{R,Q, A} are the quantities used in (3.2.1) to determine the computed solution Z
in a backward stable manner.

From a numerical point of view, the above steps differ in a crucial way from
the embeddings suggested in [Chu89], [KC94], and these steps turn out to mark the
difference between a numerically stable and a numerically unstable implementation.
The discussion in [Chu89] (pages 37,50,52) and [KC94] is mainly concerned with fast
procedures for the QR factorization of Toeplitz-block and block-Toeplitz matrices.
It employs an embedding of the form

(3.2.2)

T T
M:[TT T],

T I

where the identity matrix I in (3.2.2) replaces the zero matrix in our embedding
(3.1.2). The derivation in [Chu89], [KC94] suggests applying n (rather than 2n)
steps of the generalized Schur algorithm to a generator of (3.2.2) and then uses
the resulting R and Cj as the QR factors of T. However, numerical issues were
not studied in [Chu89], [KC94] and it turns out that the above procedure does
not guarantee a numerically orthogonal matrix @ and can not therefore be used to
implement a stable solver for a linear system of equations T'x = b.

For this reason, we instead proposed in [CS98] to proceed with the previous
embedding (3.1.2) since it seems difficult to obtain a stable algorithm that is solely
based on the alternative embedding (3.2.2). We also apply 2n steps (rather than just
n steps) of the generalized Schur algorithm to a generator of (3.1.2). This allows us
to incorporate a correction procedure into the algorithm (by computing A), which is
shown later to ensure backward stability when coupled with the other modifications
that we discussed in Ch. 2 for stabilizing the generalized Schur algorithm.

3.3 THE GENERALIZED SCHUR ALGORITHM FOR
INDEFINITE MATRICES

We described in Sec. 2.4 the array form of the Schur algorithm for symmetric
positive-definite structured matrices with displacement rank 2. Now, in view of

March 7, 2000

104 Fast Stable Solvers for Structured Linear Systems Chapter 3

the structure of M, we shall need to apply the algorithm to a symmetric but pos-
sibly indefinite matrix and with displacement rank larger than 2 with respect to a
strictly lower triangular F', say

M—-FMFT =GJGT, J=(,®-1,). (3.3.1)

For this reason, and for ease of reference, we include here a statement of the algo-
rithm for this particular case (this form is a special case of Alg. 1.7.1 of Ch. 1).

For displacement ranks larger than 2, we shall say that a generator matrix G
is in proper form if its first nonzero row has a single nonzero entry, say in the first
column

z 0 0 0 O
T T T T T

G=|2z z z ¢ x| (3.3.2)

or in the last column

8
8
8
8
8

G=|2% = 7 z T |, (3.3.3)

r T T T T

We note that in the statement below we are denoting the triangular factorization
of a symmetric matrix M by M = LDL”, where D is taken as a signature matrix
(rather than M = LD~'LT as in Eq. 1.6.1 of Ch. 1, where D is a diagonal matrix).

Algorithm 3.3.1 (Schur Algorithm for Indefinite Matrices) Consider a sym-
metric strongly regular matric M € R™*"™ satisfying (3.3.1).

e Input: An nxn strictly lower-triangular matriz F', an nxr generator Go = G,
and J = (I, ® —1).

e Output: A lower-triangular factor L and a signature matriz D such that M =
LDLT, where M is the solution of (3.3.1) (assumed n x n).

e Computation: Start with Go = G, Fy = F, and repeat for i =0,1,...,n — 1:

1. Let g; denote the top row of Gj;.
2. If giJgF > 0 (we refer to this case as a positive step):

o Choose a J—unitary rotation ©; that converts g; to proper form with
respect to the first column, i.e.,

9©=[z 0 0 0 0]. (3.3.4)
Let G; = G;0; (i.e., apply ©; to G;).

March 7, 2000

Section 3.3. The Generalized Schur Algorithm for Indefinite Matrices 105

o The i-th column of L, denoted by l;, is obtained by appending i zero
entries to the first column of G;,

] . (3.3.5)

The i-th signature is d; = 1.

o Keep the last columns of G; unchanged and multiply the first column
by F;, where F; denotes the submatrix obtained by deleting the first i
rows and columns of F. This provides a new matrixz whose first row
is zero (since F; is strictly lower triangular) and whose last rows are
the rows of the next generator matriz G;y1, i.e.,

[G?H]:[F’Gi[(l)] G’i[o IH (3.3.6)

3. If giJgF < 0 (we refer to this case as a megative step):
o Choose a J—unitary rotation ©; that converts g; to proper form with
respect to the last column, i.e.,

9©;=[0 0 0 0 z]. (3.3.7)

Let G; = G;0; (i.e., apply ©; to G;).
¢ The i-th column of L, denoted by l;, is obtained by appending i zero
entries to the last column of G;,

(11] . (3.3.8)

The i-th signature is d; = —1.

o Keep the first columns of G; unchanged and multiply the last column
by F;. This provides a new matriz whose first row is zero (since F;
is strictly lower triangular) and whose last rows are the rows of the
next generator matrix Giy1, i-e.,

Lana)=l " o] mall]] o

4. The case g;JgF = 0 is ruled out by the strong regularity of M.

¢
Again, after n steps, the algorithm provides the triangular decomposition
n—1
M =>"dill] (3.3.10)
i=0

March 7, 2000

106 Fast Stable Solvers for Structured Linear Systems Chapter 3

at O(rn?) computational cost (see Ch. 1). Moreover, the successive matrices G;
that are obtained via the algorithm can be interpreted as follows (recall Remark 2
after Alg. 1.6.2). Let M; denote the Schur complement of M with respect to its
leading 7 X 7 submatrix, then

M; - F;M;F = G;JGT. (3.3.11)

Hence, G; constitutes a generator matrix for the 4—th Schur complement M;, which
is therefore structured. Note further that G; is also a generator matrix for the
same Schur complement M; since, due to the J—unitarity of ©;, we have G;JGT =
Gi0,J0TGT = G;JGT. We now address the main issues of this chapter.

3.4 FAST QR FACTORIZATION OF SHIFT-STRUCTURED
MATRICES

As mentioned in (3.1.1), we shall focus on matrices T € IR™™" that are shift-
structured and therefore satisfy a displacement equation of the form

T-277ZT =GBT, (3.4.1)

for some generator pair (G, B). Consider, for now, the following alternative defini-
tion of a 3n x 3n augmented matrix

-I T 0
M=|TT o T7T |. (3.4.2)
0 T 0

The matrix M is also structured (as shown below) with respect to Z, & Z,, & Z,,
where Z,, denotes the n x n lower shift triangular matrix (denoted earlier by Z —
here we include the subscript n in order to explicitly indicate the size of Z).

It can be easily verified that M — (Z,, ® Z,, ® Z,)M(Z, ® Z,, ® Z,,)T is low rank
since

—erel GBT 0

M—(Z,®Zn®Z)M(Z,®Zn®Z,)"=| BGT 0 BGT |,
0 GBT 0
wheree; =[1 0 ... 0]T is a basis vector of appropriate dimension. A gener-

ator matrix for M, with 3n rows and (2r + 1) columns, can be seen to be
1 G —G el T
6=—|B B 0|, J:[r] (3.4.3)
V26 ¢ o ~lr

That is,
M- FMFT =gJg67,

March 7, 2000

Section 3.4. Fast QR Factorization of Shift-Structured Matrices 107

where F = (Z,, ® Z,, ® Z,,) and (G, J) are as above.

The n x n leading submatrix of M is negative definite (in fact, equal to —1I).
Therefore, the first n steps of the generalized Schur algorithm applied to (F,G,J)
will be negative steps (cf. step 3 of Algorithm 3.3.1). These first n steps lead to a
generator matrix, denoted by G, (with 2n rows), for the Schur complement of M
with respect to its leading n x n leading submatrix, viz.,

M, = (Zy ® Zn)Mp(Zn ® Z,)T = G, TGE (3.4.4)
where M,, is 2n X 2n and equal to (what we denoted earlier in (3.2.2) by M)

[TTT TT].

Mo=1 "7

(3.4.5)

Clearly, M and its Schur complement M, are related via the Schur complement
relation:

I 0 0 0
M=|-TT |(-D[I -TT o]+ |0 T'T TT
0 0 T 0

Therefore, (G,,J) is a generator for M,, with respect to (Z, ® Z,), as shown by
(3.4.4).

The leading n x n submatrix of M, is now positive-definite (equal to T7T).
Therefore, the next n steps of the generalized Schur algorithm applied to (Z, &
ZnyGn, J) will be positive steps (cf. step 2 of Algorithm 3.3.1). These steps lead
to a generator matrix, denoted by Ga,, (with n rows), for the Schur complement of
M with respect to its leading 2n x 2n leading submatrix, viz.,

My, — ZTLM2TLZ;€ = G2njggn)

where M, is now n X n and equal to —1.
Again, M,, and M,, are related via a (block) Schur complementation step,
written as

TT'T TT
T 0

:M"=[122T](I)[R QT]+[8 _?], (3.4.6)

where we have denoted the first n columns of the triangular factor of M,, by
RT
o]
with R an n X n upper triangular matrix and @ an n X n matrix. The R and @

matrices are thus obtained by splitting the first n columns of the triangular factor
of M, into a leading lower triangular block followed by a full matrix Q.

March 7, 2000

108 Fast Stable Solvers for Structured Linear Systems Chapter 3

By equating terms on both sides of (3.4.6) we can explicitly identify R and @
as follows:

TTT=RTR , T=QR, QQT-I=0.

These relations show that @ and R define the QR factors of the matrix 7.

In summary, the above discussion shows the following: given a shift structured
matrix T as in (3.4.1), its QR factorization can be computed efficiently by applying
2n steps of the generalized Schur algorithm to the matrices (F,G,J) defined in
(3.4.3). The factors @ and R can be obtained from the triangular factors {I;} for
t=n,n+1,...,2n - 1.

Alternatively, if a generator matrix is directly available for M,, in (3.4.5) (see
below when we discuss the Toeplitz case), then we need only apply n Schur steps to
this generator matrix and read the factors ¢ and R from the resulting n columns
of the triangular factor.

In the sequel we shall establish, for convenience of exposition, the numerical
stability of a fast solver for Tz = b that starts with a generator matrix for the
embedding (3.4.5) rather than the embedding (3.4.2). It will become clear however
that the same conclusions will hold if we instead start with a generator matrix for
the embedding (3.4.2).

The augmentation (3.4.2) was used in [Say92], [SK95b] and it is based on em-
bedding ideas originally pursued in [Chu89], [KC94] (see below on other augmenta-
tions).

3.4.1 The Toeplitz Case

In some cases it is possible to find an explicit generator matrix for M,,. This saves
the first n steps of the generalized Schur algorithm.
For example, consider the case when T is a Toeplitz matrix (which is a spe-

cial case of (3.4.1) whose first column is [to,t1,...,t,—1]7 and whose first row is
[to,t—1,---,t—nt1). Define the vectors
Co S0 Co
é T61 é TT
ITell2’
Cpn—1 Sn—1 Cn—1

It can be verified that a generator matrix for M, in (3.4.5) is the following [Chu89]
M, — (Zn @ Zn)Mn(Zn & Zn)T = gnjgz:)

where J is 5 x 5,
J = diag[1,1,-1,-1,-1],

March 7, 2000

Section 3.4. Fast QR Factorization of Shift-Structured Matrices 109

and G, is 2n x 5,

S0 0 0 0 0
81 t_1 s1 tp—1 O
G — | *nt t_nt1 Sn—1 t1 0
no Co 1 Co 0 1
C1 0 Cc1 0 0

| Cn—1 0 Cn—1 0 0 i

3.4.2 Other Augmentations

It is also possible to compute the QR factors of a structured matrix 7' satisfying
(3.4.1) by using other augmented matrices, other than (3.4.2). For example, consider
the 3n x 3n augmented matrix

-1 T 0
M=|TT o TT |, (3.4.7)
0 T I

where an identity matrix replaces the zero matrix in the (3,3) block entry of the
matrix in (3.4.2). A generator matrix for M, with 3n rows and (2r + 2) columns,
is now

1 G 0 —G €e1 I
G=—|B 0 B 0 |, j:[T]
V2 ¢ e -G 0 r41

If T is Toeplitz, as discussed above, then the rank of G can be shown to reduce to
2r = 4 [Chu89] (this is in contrast to the displacement rank 5 that follows from the
earlier embedding (3.4.2)).

After 2n steps of the generalized Schur algorithm applied to the above (G, J),
we obtain the following factorization (since now Ms,, = 0),

I 0 1 o0 1"
M=| -TT RT [_I 0] _TT RT | |
0 Q 0 I 0 Q

from which we can again read the QR factors of T' from the triangular factors {/;}
for i = n,...,2n — 1. This augmentation was suggested in [Chu89, p. 37] and
[KC94].

However, from a numerical point of view, computing the QR factors of a struc-
tured matrix 7" using the generalized Schur algorithm on the augmented matrices
M in (3.4.2) or (3.4.7) is not stable. The problem is that the computed @ matrix
is not necessarily orthogonal. This is also true for other procedures for fast QR
factorization [BBHS86], [Cyb83], [Cyb87], [Swe84].

March 7, 2000

110 Fast Stable Solvers for Structured Linear Systems Chapter 3

In the next section we show how to overcome this difficulty and develop a fast
and stable algorithm for solving linear systems of equations with shift structured
coefficient matrices T'. For this purpose, we proceed with the embedding suggested
earlier in (3.4.2) since it seems difficult to obtain a stable algorithm that is based
solely on the alternative embedding (3.4.7). The reason is that the embedding
(3.4.2) allows us to incorporate a correction procedure into the algorithm in order
to ensure stability.

We first derive a stable algorithm for a well-conditioned coefficient matrix, and
then modify it for the case when the coeflicient matrix is ill-conditioned. The
interested reader may consult at this time the summary of the final algorithm that
is provided in Sec. 3.7.

3.5 WELL-CONDITIONED COEFFICIENT MATRICES

In this section we develop a stable algorithm for the case of well-conditioned matrices
T. A definition of what we mean by a well-conditioned matrix is given further ahead
(see (3.5.9)). Essentially this refers to matrices whose condition number is less than
the reciprocal of the square-root of the machine precision. Modifications to handle
the ill-conditioned case are introduced further ahead.

We start with an n X n (possibly nonsymmetric) shift structured matrix 7' with

displacement rank r,
T-2,TZF =GB, (3.5.1)

and assume we have available a generator matrix G for the 2n x 2n augmented
matrix

TTT TT
M_[T o] , (3.5.2)
that is,
M- FMFT =667, (3.5.3)

where F = (Z,, ® Z,). Note that, for ease of exposition, we have modified our
notation. While we have earlier denoted the above matrix M by M,,, its generator
by G, and have used F to denote (Z,,® Z,® Z,,), we are now dropping the subscript
n from (M,,G,) and are using F to denote the 2n x 2n matrix (Z, ® Z,).

We discussed earlier in Sec. 3.4.1 an example where we showed a particular
generator matrix G for the above M when T is Toeplitz. [We repeat that the
error analysis of later sections will still apply if we instead start with the 3n x 3n
embedding (3.4.2) and its generator matrix (3.4.3)].

We have indicated earlier (at the end of Sec. 3.4) that by applying n steps of
the generalized Schur algorithm to the matrix M in (3.5.2) we can obtain the QR
factorization of T' from the resulting n columns of the triangular factors of M. But
this procedure is not numerically stable since the resulting @) is not guaranteed to
be unitary. To fix this problem, we propose some modifications. The most relevant
modification we introduce now is to run the Schur algorithm for 2n steps on M
rather than just n steps. As suggested in Ch. 2, we also need to be careful in the

March 7, 2000

Section 3.5. Well-Conditioned Coefficient Matrices 111

application of the hyperbolic rotations. In particular, we assume that the hyperbolic
rotations are applied using one of the methods suggested in that chapter such as
mixed downdating, OD-method, or H-procedure.

The matrix T is only required to be invertible. In this case, the leading submatrix
of M in (3.5.2) is positive-definite and therefore the first n steps of the generalized
Schur algorithm will be positive steps. Hence, the hyperbolic rotations needed for
the first n steps will perform transformations of the form (3.3.4), where generators
are transformed into proper form with respect to their first column. Likewise, the
Schur complement of M with respect to its leading submatrix T7T is equal to —1I,
which is negative-definite. This means that the last n steps of the generalized Schur
algorithm will be negative steps. Hence, the hyperbolic rotations needed for the
last n steps will perform transformations of the form (3.3.7), where generators are
transformed into proper form with respect to their last column.

During a positive step (a similar discussion holds for a negative step), a gen-
erator matrix G; will be reduced to proper form by implementing the hyperbolic
transformation ©; as a sequence of orthogonal transformations followed by a 2 x 2
hyperbolic rotation (see also [SD97b]). The 2 x 2 rotation is implemented along the
lines of [CS96] or Ch. 2, e.g., via mixed-downdating [BBDH87], or the OD-method,
or the H-procedure. Details are given below.

3.5.1 Implementation of the Hyperbolic Rotation

When the generalized Schur algorithm is applied to (G, F) in (3.5.3), we proceed
through a sequence of generator matrices (G, G1,Ga,...) of decreasing number of
rows (2n,2n — 1,2n — 2,...). Let g; denote the top row of the generator matrix
G; at step ¢. In a positive step, it needs to be reduced to the form (3.3.4) via an
(Ip ® —I;)—unitary rotation ©;. We propose to perform this transformation as
follows:

1. Apply a unitary (orthogonal) rotation (e.g., Householder — see App. B) to the
first p columns of G; so as to reduce the top row of these p columns into proper
form,

unitary ©; 1
—

gi=[z z z z z z| 00 z =z z]=gn,

with a nonzero entry in the first column. Let
0,1 0
Gi1 =G [6’1 I :| (3.5.4)

denote the modified generator matrix. Its last ¢ columns coincide with those
of gz .

2. Apply another unitary (orthogonal) rotation (e.g., Householder) to the last ¢
columns of G; 1 so as to reduce the top row of these last ¢ columns into proper

March 7, 2000

112 Fast Stable Solvers for Structured Linear Systems Chapter 3

form with respect to their last column,

unitary ©; o
—

gi=[z 0 0 z z z] 000 0 z]=gpo,

with a nonzero entry in the last column. Let

I 0
Gi2o=Gi1 [0 ;s] (3.5.5)

denote the modified generator matrix. Its first p columns coincide with those
of Gi1.

3. Employ an elementary hyperbolic rotation ©;3 acting on the first and last
columns (in mixed-downdating form, or according to the OD or the H methods
of Ch. 2) in order to annihilate the nonzero entry in the last column,

hyperbolic ©; 3
—

gi2=[z 0 0 0 z] [z 0 0 0 0 0].

4. The combined effect of the above steps is to reduce g; to the proper form
(3.3.4) and, hence,

= [ea1 0][I o .
s=al®% 0][0 & Jow aso

Expression (3.5.6) shows that, in infinite precision, the generator matrices G;
and G; must satisfy the fundamental requirement

GiIG! =GiIG!. (3.5.7)

Obviously, this condition cannot be guaranteed in finite precision. But, as dis-
cussed in Ch. 2 and in [CS96], with the above implementation of the transformation
(3.5.6) (as a sequence of two orthogonal transformations and a hyperbolic rotation
in mixed, OD, or H-forms), equality (3.5.7) can be guaranteed to within a “small”
error, viz.,

~ 2T =
1G:7G; — GiTGT Il < On(e) (Gl + 1Gil13) - (3.5.8)

A similar analysis holds for a negative step, where the rotation ©; is again
implemented as a sequence of two unitary rotations and one elementary hyperbolic
rotation in order to guarantee the transformation (3.3.7). We forgo the details here.

We finally remark that in the algorithm, the incoming generator matrix G; will
in fact be the computed version, which we denote by G;. This explains why in the
error analysis of the next section we replace G; by G; in the error bound (3.5.8).

Note also that we are implicitly assuming that the required hyperbolic rotation
©;,3 exists. While that can be guaranteed in infinite precision, it is possible that in
finite precision we can experience break downs.

March 7, 2000

Section 3.5. Well-Conditioned Coefficient Matrices 113

3.5.2 Avoiding Breakdown

To avoid breakdown we need to guarantee that during the first n steps of the
algorithm, the J-unitary rotations ©; are well defined. This requires that the
leading submatrices of the first n successive Schur complements remain positive-
definite; a condition that can be guaranteed by requiring T to be sufficiently well-
conditioned [CS98], viz., by requiring that

n—1
omin(T) > 20n(e) D 1G5l5 - (3.5.9)
7=0

We refer to a matrix T that satisfies the above requirement as being well-conditioned.
(The scalar multiple 2 is made explicit for convenience in later discussion.)

Now, after the first n steps of the generalized Schur algorithm applied to (F,G)
in (3.5.3), we let
RT
Q

denote the computed factors that correspond to expression (3.4.6). We further
define the matrix S,, that solves the displacement equation

Note that S, is an n X n matrix, which in infinite precision would have been equal
to the Schur complement —I (cf. (3.4.6)). We can now define

—

DT
M = R

~

Q

We showed in [CS98] that the following error bound holds.

[ﬁ @T]+[g ;n] (3.5.11)

Theorem 3.5.1 (Error Bound) The first n steps of the generalized Schur algo-
rithm applied to (F,G) in (3.5.3), for a matriz T satisfying (3.5.9), and with the
rotations ©; implemented as discussed in Sec. 3.5.1, guarantees the following error
bound on the matriz (M — M) (with M defined in (3.5.11)):

n—1
IM = M|z < One) D 11G5113- (3.5.12)
7=0

¢

The natural question then is how big can the norm of the generator matrices be?
The following remark is motivated by an observation in [SD97b] that for matrices of
the form TTT, with T Toeplitz, there is no appreciable generator growth. Indeed,

March 7, 2000

114 Fast Stable Solvers for Structured Linear Systems Chapter 3

we showed in [CS98] that a first-order bound for the sum of the norms of the
generators in (3.5.12) is given by

n—1

DONGHE < 16n(1+n?) (L + I Tll2 +IT?]l2) + O(?). (3.5.13)
=0

3.5.3 Error Analysis of the Last Steps

We now study the last n steps. Assume T satisfies the following normalization:

1
ITll2 < = (3.5.14)

which can always be guaranteed by proper scaling at the begining of the algorithm.
We showed in [CS98] that under the well-conditioned assumption (3.5.9), the matrix
Sn is guaranteed to be negative-definite and well-conditioned. In particular, its
condition number is at most 15.

Hence,we can proceed with the last n steps of the generalized Schur algorithm
applied to gn, since (]n is a generator matrix for S,:

All steps will now be negative steps. Hence, the discussion in Sec. 3.5.1 on the
implementation of the hyperbolic rotations applies. The only difference will be that
we make the generator proper with respect to its last column. In other words, the
third step of that implementation should be modified as follows:

hyperbolic ©;,
gi2=[z 0 0 0 z] —

[00 00 0 z]. (3515)
Let —AAT be the computed triangular factorization of S,. It can be shown

that
2n—1

180 — (=AAT)l2 < O Z G113, (3.5.16)

where the norm of the generators {Q,} appearing in the above error expression can
be shown to be bounded [CS98].

3.5.4 Summary

We have shown so far that if we apply 2n steps of the generalized Schur algorithm
to the matrices (F,G) in (3.5.3), with proper implementation of the J-unitary
rotations (as explained in Sec. 3.5.1), then the error in the computed factorization
of M is bounded as follows:

2n—1

< On(e) Y 11Gill3. (3.5.17)
=0

R Qg
0 —-AT

2

March 7, 2000

Section 3.6. lll-Conditioned Coefficient Matrices 115

We have also established (at least in infinite precision) that the norm of the genera-
tors is bounded. Therefore, the computed factorization is (at least asymptotically)
backward stable with respect to M.

3.5.5 Solving the Linear System of Equations

We now return to the problem of solving the linear system of equations Tz = b,
where T is a well-conditioned nonsymmetric shift structured matrix (e.g., Toeplitz,
quasi-Toeplitz, product of two Toeplitz matrices).

We showed in [CS98] that A~1Q is numerically orthogonal, viz.,

2n—1

(AT QAR 1l < Oale) Y IGiIP,
=0

and that
2n—1

IT - QRll2 < Oa(e) Y 11Gill3-
1=0

This shows that we can compute z by solving the nearby linear system
AAT'QRz =b,

in O(n?) flops by exploiting the fact that A—!Q is numerically orthogonal and A is
triangular as follows: L
z = RYQTATT) A . (3.5.18)

The fact that this scheme for computing z is backward stable will be established in
the next section (see remark after expression (3.6.6)).

3.6 ILL-CONDITIONED COEFFICIENT MATRICES

We now consider modifications to the algorithm when the inequality (3.5.9) is not
satisfied by T'. This essentially means that the condition number of T is larger than
the square root of the reciprocal of the machine precision. We will refer to such
matrices T as being ill-conditioned.

There are several potential numerical problems now, all of which have to be
eliminated. First, the (1,1)-block of M can fail to factorize as it is not sufficiently
positive-definite. Second, even if the first n steps of the Schur algorithm are com-
pleted successfully, the Schur complement S, of the (2,2)-block may no longer be
negative-definite making the algorithm unstable. Third, the matrix A may no longer
be well-conditioned, in which case it is not clear how one can solve the linear system
Tz = b in a stable manner. We now show how these problems can be resolved.

To resolve the first two problems we add small multiples of the identity matrix
to the (1,1) and (2,2) blocks of M, separately:

_[T"T+al T

M = s a1 | (3.6.1)

March 7, 2000

116 Fast Stable Solvers for Structured Linear Systems Chapter 3

where o and (3 are positive numbers that will be specified later (we continue to
use M for the new matrix in (3.6.1) for convenience of notation.) This leads to an
increase in the displacement rank of M. For Toeplitz matrices the rank increases
only by one and the new generators are given as follows:

M = (Zn ® Z))M(Zn & Z,)T = GTGT , (3.6.2)
where J is 6 x 6,
J = diag[1,1,1, -1, -1, 1], (3.6.3)
and G is 2n x 6,
[Ja o 0 0 0 0

. 0 sp1 tpy1 Sp1 01 0

g - 0 Co 1 Co 0 m) (364)
0 C1 0 C1 0 0
0 Cn—1 0 Cp—1 0 0

Had we instead started with the embedding (3.4.2) for more general shift structured
matrices, we would then modify the generators as explained further ahead in the
remark.
For suitably chosen a and [(see statement of the algorithm in Sec. 3.7), it can
be shown that in this case [CS98]
RT 0 [R QT]
Q A
where the norm of the generators is again bounded. Hence, we also obtain a back-
ward stable factorization of M. R
Since A is no longer provably well-conditioned, we can not argue that A~1Q
is numerically orthogonal. For this reason, we now discuss how to solve the linear
system of equations Tz = b in the ill-conditioned case.

M- 0 —AT

‘ 2n—1

< a+B+ On(e) Y. Gill3,
2 =0

3.6.1 Solving the Linear System of Equations

Note that if = solves Tx = b then it also satisfies

e L]

Using the above backward stable factorization for M we can solve the above linear
system of equations to get

(7 5] -m[2]-[2]. oo

March 7, 2000

Section 3.7. Summary of the Algorithm 117

where the error matrix M satisfies

2n—1

- N RT 0
I¥lls < a+ B + On(e) 3 IGIE + Onfe) ‘ 5 A]
=0 2
Note that 7 is computed by the expression
RIQTA-TA 1, (3.6.6)

which is identical to the earlier formula (3.5.18) we obtained by assuming A‘lé is
numerically orthogonal! Therefore, the subsequent error bound holds equally well
for the well-conditioned case. It can be shown that the computed solution 7 satisfies

(T+T)g=b,
where the norm of the error matrix is bounded by

IT]ls < 2(a+B) +0n(E)1+|T|l2] +0(e?) < On(e) |IT|l2+0(?) . (3.6.7)

3.6.2 Conditions on the Coefficient Matrix

For ease of reference, we list here the conditions imposed on the coefficient matrix
T in order to guarantee a fast backward stable solver of Tz = b:

1. ||T||2 is suitably normalized to guarantee ||T||2 = 1 (cf. (3.5.14)).

2. The condition number of T should essentially be less than the reciprocal of
the machine precision.

Remark. Had we instead started with the embedding (3.4.2), we first perform n steps

of the generalized Schur algorithm to get a generator matrix G, for the computed version
of the 2n x 2n embedding (3.4.5). We then add two columns to G, as follows:

Va 0
0 0
0 VB
gn+1 ’
0 0
0 0

where the entry 1/ occurs in the n-th row of the last column. The new first column has
a positive signature and the new last column has a negative signature.

3.7 SUMMARY OF THE ALGORITHM

For convenience we summarize the algorithm here for the case of nonsymmetric
Toeplitz systems. We hasten to add though that the algorithm also applies to more

March 7, 2000

118 Fast Stable Solvers for Structured Linear Systems Chapter 3

general shift structured matrices T (other than Toeplitz, such as quasi-Toeplitz or
with higher displacement ranks, as demonstrated by the analysis in the earlier sec-
tions). The only difference will be in the initial generator matrix G and signature
matrix J for M in (3.6.1) and (3.6.2). The algorithm will also be essentially the
same, apart from an additional n Schur steps, if we instead employ the embedding
(3.4.2).

Input: A nonsymmetric Toeplitz matrix 7 € IR™™" and column vector b € R™*.
The entries of the first column of T are denoted by [to,t1,...,t, 1]T, while the
entries of the first row of T are denoted by [to,t 1,--.,t nt1]-

Output: A backward stable solution of Tz = b.

Algorithm:

e Normalize T and b. Since the Frobenius norm of T is less than

we can normalize T by setting ¢; to be t;/(57) for all 4. Similarly, divide
the entries of b by 5y. In the sequel, 7" and b will refer to these normalized
quantities.

o Define the vectors

Co S0 Co
T61

| Tellz’

Cn—1 Sn—1 Cn—1

e Construct the 6 x 6 signature matrix J = diag[1,1,1,—1,—1,—1], and the
2n x 6 generator matrix G,

" Ja s 0 0 0 0]
0 S$1 t_1 81 th_1 0
G- 0 sp—1 topnt1 Sno1 U 0
- 0 Co 1 Co 0 1+ ,6 ’
0 C1 0 C1 0 0
| 0 Cn—1 0 Cn—1 0 0 i

where the small positive numbers a and 3 are chosen as follows (by experi-
mental tuning):
a=n'e|GI} , B=4@2n)"/

March 7, 2000

Section 3.7. Summary of the Algorithm 119

(If T is well-conditioned (say x(T) < 1/4/¢) then we can set § = 0 = a,
delete the first columns of G and J, which then become 2n x 5 and 5 x 5,
respectively).

e Apply n steps of the generalized Schur algorithm starting with Go = G and
F =(Z,® Z,), and ending with G, and F = Z,. These are positive steps
according to the description of Algorithm 3.3.1 (step 2), where the successive
generators are reduced to proper form relative to their first column. Note
that this must be performed with care for numerical stability as explained in
Sec. 3.5.1.

e Apply n more steps of the generalized Schur algorithm starting with G,,. These
are negative steps according to the description of Algorithm 3.3.1 (step 3),
where the successive generators are reduced to proper form relative to their
last column. This has also to be performed with care as explained prior to
equation (3.5.15).

e Fach of the above 2n steps provides a column of the triangular factorization of
the matrix M in (3.6.1), as described in Algorithm 3.3.1 (steps 2 and 3). The
triangular factor of M is then partitioned to yield the matrices {R, @, A},

RT o
Q A’

where R is upper triangular and A is lower triangular.
e The solution 7 is obtained by evaluating the quantity
RIQTATA 1p,

via a sequence of back-substitutions and matrix-vector multiplications. The
computed solution is backward stable. It satisfies (T' + T)Z = b, where the
norm of the error matrix is bounded by (3.6.7).

Operation Count

The major computational cost is due to the application of the successive steps of
the generalized Schur algorithm. The overhead operations that are required for the
normalization of T, and for the determination of the generator matrix G, amount
at most to O(nlogn) flops. Table 3.1 shows the number of flops needed at each
step of the algorithm [¢ denotes the iteration number and it runs from ¢ = 2n down
to ¢ = 1]. The operation count given below assumes that, for each iteration, two
Householder transformations are used to implement the reduction to proper form
of Sec. 3.5.1, combined with an elementary hyperbolic rotation in OD form.

The specific costs of the algorithm for the special case of Toeplitz matrices are
the following:

March 7, 2000

120 Fast Stable Solvers for Structured Linear Systems

1. For well-conditioned Toeplitz matrix, the cost is O(59n? + n(24logn + 128))

operations.

2. For ill-conditioned Toeplitz matrix, the cost is O(67n? + n(24logn + 139))

operations.

Table 3.1. Complexity analysis of the fast algorithm.

During each iteration of the algorithm

Count in flops

Compute two Householder transformations

3r

Apply the Householder transformations

T

Compute the hyperbolic transformation

Apply the hyperbolic transformation using OD

Shift columns

Total for s = 2n — 1 down to 0

14 + 8r)n% + 10nr + 21n
2

Cost of 3 back-substitution steps

o e | R =
-

n

Cost of matrix-vector multiplication

2n?

Startup costs

n(24logn + r + 52)

Total cost of the algorithm

(19 + 8r)n2+
n(24logn + 117 4 73)

Acknowledgment

The authors wish to thank Prof. Thomas Kailath for comments and feedback on an earlier
draft of this chapter. They also wish to gratefully acknowledge the support of the National
Science Foundation; the work of A. H. Sayed was partially supported by the Awards MIP-
9796147 and CCR-9732376, and the work of S. Chandrasekaran was partially supported

by the Award CCR-9734290.

March 7, 2000

Chapter 3

