Chapter 1

INTRODUCTION AND
MOTIVATION

This monograph is concerned with certain problems in estimation and control. Broadly
speaking, in estimation theory one is confronted with the following problem: given the values
of an observable signal (often called the measurement signal) one would like to estimate (or
to predict) the values of another signal (often called the desired signal) that is not directly
observable. In control theory, one is given a certain dynamical system (the so-called plant),
and the goal is to suitably influence the behavior of the plant through a control signal, so
that the plant yields some desired performance. In many applications, these two problems
are coupled. In fact, when all that is available from the plant is observations of its output,
it turns out that, under certain conditions, we can solve the control problem via a two-
step procedure: one first uses the observed output of the plant to estimate the value of
certain unobservable signals (that are internal to the plant), and then uses these estimates
to construct the required control signals.

The solution to the problem of estimating an unobservable signal given an observable
one depends on the relationship between the two signals (i.e., on the model describing
them) and on the optimality criterion that one uses to determine the desired estimates.
Similar remarks apply to the control problem: the solutions depend on the relationship
between the control signals, the exogenous signals, and the plant (i.e., on the model) and
on the criterion used to measure the plant’s desired performance. Of course, these issues
are interrelated: one would like to choose a criterion that is compatible with the model, and
vice-versa. However, what influence the choice of model and criterion most significantly are
the underlying problem that we are actually trying to solve (be it estimation or control),
and the possibility of actually obtaining a solution to the formulated problem that is easily
implementable. In other words, physical significance and mathematical tractability.

The subject of estimation and control theory, as covered by all possible choices of signal
models and optimality criteria, is a vast, and still developing, one; moreover, its close links
with several other fields such as adaptive filtering, signal detection, matrix computation, etc.,
keep deepening. Here, with some minor exceptions, our attention will be devoted to linear
models (where the measurement and desired signals are linearly related) and to quadratic (or
quadratically-induced) deterministic and stochastic criteria. The linear models that we shall
mostly, but not exclusively, be concerned with are those that are more common in system
theory, viz., finite-dimensional linear state-space models and rational transfer matrices. The
quadratic criteria that we shall consider include the (now classical) deterministic least-
squares and stochastic least-mean-squares criteria, now often called H? criteria, as well
as the relatively more recent criteria used in H* theory, dynamic game theory, and risk-
sensitive estimation and control.
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Indeed the major premise of this book is that these apparently different estimation and
control problems, with different deterministic and stochastic criteria, can be solved in a
unified geometric framework by formulating them in certain indefinite inner-product (or
indefinite metric) spaces. These so-called Krein spaces are extensions of Hilbert spaces
where the self inner-product of any vector can be positive, negative, or zero. Although
Hilbert spaces and Krein spaces share many characteristics, they differ in special ways that
turn out to mark the differences between the standard least-mean-squares (LQG or H?)
theories and the more recent H* and game theories.

Apart from rather more transparent derivations of existing results, a major bonus of this
unified approach is that it enables us to fairly readily extend to the H* setting much of the
huge body of results and insights developed over the last three decades in the now classical
H? theories of Kalman filtering and LQG control. For example, we shall show how to extend
the now favored square-root array algorithms and the fast (Chandrasekhar-Kailath-Morf)
algorithms of Kalman filter theory to these new settings. We shall also be guided to new
results on the asymptotic behavior of H* filters and controllers, and on the existence and
properties of solutions to Riccati equations with (possibly) indefinite coefficient matrices.
Our new framework will be also used to study the implications of robust estimation for the
(vast and currently highly active) field of adaptive signal processing.

In this introductory chapter we, attempt to provide some motivations for our introduc-
tion of indefinite metric spaces by describing and comparing the solutions to several H2 and
H®° estimation problems . We shall also overview the scope and contributions of this book.
However, before doing so, it will be useful to present some very brief historical remarks.

1.1 Some Historical Remarks

The problem of least-mean-squares estimation of stochastic processes was first investigated
by Kolmogorov [Kol39], [Kol41] and Wiener [Wie49]. Wiener, in particular, must be cred-
ited with introducing the use of stochastic models and optimization criteria in estimation
and control. The assumption that the underlying processes are stationary (and implicitly
Gaussian) is crucial to the Wiener and Kolmogorov theory and it was not until the late
1950’s and early 1960’s that a logjam in effectively extending the theory to nonstationary
processes was broken by Kalman’s explicit introduction of state-space structure into the
problem [Kal60b], [KB61] and [Kal63b]; we should also mention Stratonovich’s closely re-
lated contemporary and independent emphasis on the use of Markov models [Str60]. The
new theory soon acquired the name Kalman filter theory, and since then a vast literature
on the topic has developed, see e.g., the IEEE reprint volume [Sor85].

Concurrent with the development of Kalman filter theory a closely related theory of opti-
mal control was being developed [Kal60a], [Kal64], [Pon61], [Yak62], [Pop64] and [Won68b].
As in the Kalman filter theory, the underlying assumptions of this theory were that the
plant has a known linear (and possibly time-variant) description, and that the exogenous
signals (the noises and disturbances) impinging on the feedback system are stochastic in
nature, but have known statistical properties. These assumptions turned out to be very
well suited to the problems of guidance and control of space vehicles to which the theory
was first applied. This theory is now known as linear-quadratic-Gaussian (LQG) control to
reflect the fact that the model and optimal controller are linear, that the cost function is
quadratic, and that the disturbances are assumed to be stochastic processes with jointly
Gaussian distribution.

However, in many applications of estimation and control one is faced with modeling
errors and lack of statistical information. In these cases, the aforementioned methods are
not directly applicable since the statistics and distributions of the stochastic processes are
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not known. Moreover, it is not obvious what the behavior of such estimation schemes will
be once the assumptions on the statistics and distributions are not met.

Robust control theory itself grew out of the need for designing controllers that were less
sensitive to plant modeling errors and to the lack of statistical information on the exogenous
signals: by the late 1970’s it had been observed that LQG controllers could be highly non-
robust with respect to such modeling errors. The H* approach to robust control, inspired
by the pioneering work of Zames [Zam81], was extensively studied in the 1980’s and has
since been approached by numerous authors using various interpolation-theoretic, operator-
theoretic, game-theoretic, circuit-theoretic, and system-theoretic techniques [ZF83],[FZ84],
[Doy84], [VJ84], [Fra87], [BC87], [Kim87], [Pet87], [Hel87], [FT88], [DGKF&9], [Bas89],
[Tad90], [ST90], [GGLDY0], [KLK91], [PAJ91], [LAKG92], [Sch92], [GA94], [1S94], [DHI94]
and [Fei98]. Some recent papers on H*® estimation (rather than H* control) include [KN91],
[Bas91], [ST92] and [Gri93].

The objective in H*® estimation is to come up with estimators that minimize (or in the
suboptimal case, bound) the maximum energy gain from the disturbances to the estimation
errors. This will guarantee that if the disturbances are small (in energy) then (no matter
what the disturbances are) the estimation errors will be as small as possible (in energy).
Likewise, in H* control the main idea is to construct controllers that minimize (or in
the suboptimal case, bound) the maximum gain from the exogenous signal energy to the
performance cost (typically the energy of the regulated and control signals). In either case,
the robustness of H* estimators and controllers, with respect to disturbance variation,
follows from the fact that they safeguard against the estimator and controller’s worst-case
performance and make no assumptions on the statistics or distributions of the disturbance
signals. Of course, since they make no such assumptions about the disturbances, they have
to accommodate for all conceivable disturbances, and thus may be over-conservative.

We may begin with the remark that, despite their fundamentally different objectives,
the controllers and estimators obtained in H* theory bear a striking resemblance to those
obtained in LQG and Kalman filter theory. Nevertheless, there are enough significant dif-
ferences that various ingenious methods, as mentioned above, were devised to obtain these
results; so mastering them can be quite challenging. In the words of Kimura (1997):

“It is remarkable that H® control allows such a multitude of approaches. It looks entirely
different from different viewpoints. This fact certainly implies that H>® control is quite rich
in logical structure and is versatile as an engineering tool. However, the original question of
what is the theoretical core of H® control remains unanswered. Indeed every fundamental
notion mentioned has a method of solving the H® control problem associated with it. Unfor-
tunately, however, lengthy chains of reasoning and highly technical manipulations are their
common characteristic features [Kim97] pp. v-vi.”

The theme of this monograph is that such very challenging and very different solution
methods need not be necessary; the basic LQG and Kalman filtering arguments can still be
used, provided we set up appropriate control and estimation problems with elements not in
a Hilbert space, but in an indefinite metric (so-called) Krein space. This observation has
several different ramifications that we will also explore. First, however, some motivation for
introducing indefinite metric spaces.

1.2 Some Motivation for Introducing Indefinite Metric Spaces

In this section we shall motivate the introduction of indefinite metric spaces by reviewing
some major results from finite and infinite horizon H2 and H*® state-space estimation theory.
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[In Chapters 10 and 11, we shall pose and solve more general problems formulated in an
operator-theoretic input-output (rather than state-space) framework.]

1.2.1 State-Space Estimation
Consider the time-variant state-space model

{ ziy1 = Fzi+ G, o i>0 (1.2.1)

yi = Hizi+vi,

where F; € C™*"™, G; € C™*™, and H; € CP*"™ are known matrices, xg, u;, and v; are
unknown quantities and y; is the measured output. We can regard v; as a measurement
noise and u; as a process noise or driving disturbance. The problem is to estimate some
arbitrary linear combination of the states, say

si = L;x;,
where L; € C7*™ is known, using the observations {yo,...y;}. Let
§z|z = ff(yObe N >yi);

denote an estimate of s; given observations {y;} from time 0 up to and including time 3,
and let

8ili = 8i — S, (1.2.2)
be the corresponding so-called filtered error.
The goal in estimation is to construct the estimates 3;; = Fy(yo,¥1,---,¥:) such that

the filtered error sequence {3;;} be “small”. A popular measure for smallness is the energy,
i
> 858 (1.2.3)
=0

The H2 Approach: Stochastic Disturbance Processes

In the H? approach it is assumed that the unknown disturbances {zo, {u;}, {v;}} are zero-
mean random variables with known second-order statistics. Here we may assume that the
second-order statistics, or variances and covariances, are given by

Zo I, 0 0
v; 0 0  Ridij

Once the initial state and disturbances are zero-mean random variables, the same will be true
of all the other quantities of interest in (1.2.1), 4.e., the state variables {z; }, the observations
{y:}, and the desired signals {s;}.

In particular, the filtered error energy (1.2.3) will also be a random variable. Therefore
the goal in H? estimation is to find a linear estimate §4; that minimizes the expected filtered
error energy, i.e., the average value of (1.2.3). The precise statement follows.

Problem 1.2.1 (H? Estimation Problem) Consider the state-space model (1.2.1) along
with the stochastic assumptions (1.2.4). Find a linear estimation strategy 5;; = F(yo, - - -,Y;)
that minimizes the expected filtered error energy, i.e.,

i

7=0
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The solution to the above problem is given by the celebrated Kalman filter [Kal60b],
[AM79], [KSH98], which we quote below.

Theorem 1.2.1 (Kalman Filter) The solution to Prob. 1.2.1 is given by

where I;|; satisfies the filtered form of the Kalman filter recursions,
Tiv1)j+1 = FjZj); + Kpj(yjer — Hjpa F32y5), &40 =0 (1.2.7)

where
Ky;=PHR,}; , R.;=R;+H;PH; (1.2.8)

and where P; satisfies the Riccati recursion,

Pjy1 = FjPiF} + G;Q;G; — F;P;H; R, ;H;P;F}, Py =TI,. (1.2.9)

The H>* Approach: Deterministic Disturbance Processes

In the H* approach it is assumed that the disturbances {zo, {u;}, {v;}} are unknown, but
nonrandom. One cannot therefore speak of expected values, or attempt to minimize the
average filtered error energy. Instead one can look at the normalized cost (assuming one
considers the filtered error energy as a cost we intend to minimize),

Zz'—O ~;|]§j|j
zgll $0+Zjo ]uJ+ZJOJ

(1.2.10)

which can also be interpreted as the energy gain from the unknown disturbances II, L ?20 and
{uj, v} to the filtered error {5;;}i_,. [Here Il is a positive definite weighting matrix.]
It is quite clear that if the ratio in (1.2.10) is small then the estimator performs well, and
vice-versa. However, the problem with this ratio is that it depends on the disturbances
{zo, {u;},{v;}}, which are not known. To overcome this problem, we can consider the
worst-case, i.e.,
i ok
sup 2j=0 5%l (1.2.11)
2o, {u; },{v;} gllo “lag + ZJ —o uju; + Z] —o UiV

which represents the worst-case energy gain from the disturbances to the filtered errors.
The goal in H* estimation is to minimize this worst-case energy gain, and the claim is
that the resulting estimators will be robust with respect to disturbance variations, since
no statistical assumptions are being made about the disturbances, and since we are safe-
guarding against the worst-case scenario. However, the resulting estimators may of course
be over-conservative.

It turns out that there are only a few cases (some of which will be described later
in Chapters 7 and 15) where the worst-case energy gain can be explicitly minimized over
F. Therefore one normally relaxes the minimization condition and considers the following
suboptimal problem.
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Problem 1.2.2 (Suboptimal H* Estimation Problem) Consider the standard state-
space model (1.2.1), and a given scalar vy > 0. Determine whether it is possible to bound
the worst-case energy gain in (1.2.11) by 71%, i.e., whether it is possible to find an estimation
strategy 8;1; = Fy(yo,---,Yy;) that achieves

sup 250 8);8ils
wo,{Uj},{vj} 1'31_[0_1370 + Z] =0 ]UJ + EJ =0 J
If this is the case, then find one such H* filter of level ;.

- < 3. (1.2.12)

Before stating the solution to the suboptimal H* problem it will be useful to examine
the structure of the problem in slightly more detail. Note that (1.2.12) implies that for all
nonzero {2o, {u;}4_g, {vj}i—o} We must have

Y081 — Lizs)* (855 — Ljm;)
zolly $0+E] 0“3“]""21 oy — Hjz;)*(y; — Hjzjs)
Note, moreover, that (1.2.13) implies that for all k < i, we must have
ko /s wln
> i—o(j15 — Ljz;)* (855 — Ljz;)
w3Tly 'm0 + Yh_g uiuy + 5o (y; — Hizs)*(y; — Hjz)

If the {y;}_, are all zero it is easy to see that the {5;;} must all be zero as well." Therefore

we need only consider the case where the {yJ} —o are a nonzero sequence, and can thus
restate Prob. 1.2.2 as follows.

<7} (1.2.13)

<} (1.2.14)

Restatement of Problem 1.2.2: Given a scalar vy > 0, then (1.2.12) is satisfied if, and
only if, there ezists a sequence {ém = Fr(yo,- - ,yj)}J’ —o such that for all complez vectors
Zo, for all causal sequences {u]} —o» and for all nonzero causal sequences {y;}* =0 the scalar
quadratic form defined by

k
Tk = gy zo + Zu;‘u]
=0
k k
+> (= Hyzy)*(y; — Hizmg) — 77> Y (8515 — Lizi)* (355 — Ljz;)
Jj=0 Jj=0
satisfies
Jer >0 forall 0<Fk<i. (1.2.15)

Note that the indefinite quadratic form Jy can be rewritten as follows:

k
Trw = mpllgtzo + ) uju; (1.2.16)
i=0

1To see why, suppose that {y;}* j=o is the zero sequence. Then if the disturbances xo and {u]} —o are
also taken to be zero, the denominator in (1.2.13) becomes zero, and hence if {5;|;} is taken as any non-
zero sequence the ratio in (1.2.13) becomes infinite. Since we would like to find an estimation strategy
that bounds the energy gain by 'y]% for all possible disturbances, we conclude that the {§j| j} must be zero

whenever the {y]} _o are so.
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S a]-12]2) [0 ] (2 ]-[2]=)

We see that the solution to the H* filtering problem is intimately related to guaranteeing
the positivity of an indefinite quadratic form. This suggests that there may be benefit in
introducing some sort of indefinite metric space into the problem. In fact, this will become
even more evident after we quote the solution to the above H* filtering problem (see [KN91],
[ST92], [HSK93b], [GLI5], [HSK96b]).

Theorem 1.2.2 (Finite Horizon H* Filter) An H™ filter of level vy exists if, and only
if, the matrices

I, 0 I

0 H,;
= =13 i\p [ HY L*
= [ 0 ¢l ] and Feg = [ 0 -3l ] + [ L; ]PJ [ B Lj] (1.217)

have the same inertia® for all 0 < j < i, where Py = IIy and P; satisfies the Riccati recursion

H;
L;

67.7

Pj+1 = Fj.PjF; -|-G_7'G(;f — Fij [ HJ* L; ] R! [ ] Pj.F;. (1218)

If this is the case, then one possible H>® estimator is given by

where & ;; satisfies the recursion,
Tjp1)j41 = Fidj 5 + Ko ji1(yj1 — Hi Fj&y)), 8411 =0 (1.2.20)
and
K, ;= P;H;(I + H;P;H;)™". (1.2.21)

Comparison of the H? and H*® Solutions

The solution of Theorem 1.2.2 looks very much like the Kalman filter solution of Theorem
1.2.1, except that the Riccati recursion (1.2.18) differs from that of the Kalman filter (1.2.9),
since:

. . . . I 0
e We have indefinite “covariance” matrices, [ 0 —~2T ] .
I

e The L; (of the quantity to be estimated) enters the Riccati recursion, (1.2.18).

e We have an additional condition, (1.2.17), that must be satisfied for the filter to
exist; in the Kalman filtering problem the L; do not appear, and the P; are positive
semidefinite, so that (1.2.17) is immediate.

The appearance of the L; means that the H* estimate of say, the first component of
the state vector z;4+1, is not the first component of the H* estimate of the whole state
vector (because in the first case L = [ 1 0 ... 0 ], and in the second case L; = I).
This is very different from the situation in the H? case, where the estimate of any linear
combination of the state is simply given by that linear combination of the state estimate.

2By the inertia of a Hermitian matrix, we mean the number of its positive, negative and zero eigenvalues.
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The facts that we have the indefinite “covariances”, and that the matrix L; enters the
solution of the H* estimation problem, are not suprising once the quadratic form is written
as in (1.2.16), where both I & (—’y?I ) and L; appear. However, what is surprising is the fact
that the solution to the deterministic H*® problem has the same Kalman-filter-like structure
of the solution (¢f. Theorem 1.2.1) of the stochastic H? problem; the only difference is that,
in the deterministic H*® problem, an additional (inertia) condition (1.2.17) is required for a
solution to exist.

The Krein Space Approach to the H* Problem

The explanation of these more surprising facts will be given in Chapters 2 and 3. We briefly
outline the approach here.

Our method of ensuring that the quadratic form (1.2.16) is strictly positive is the fol-
lowing: first, we need to guarantee that (1.2.16) has a minimum over the free variables
{zo, {u;}i_o} (otherwise the {xo, {u;}’_o} can be chosen to make (1.2.16) arbitrarily nega-
tive), and, second, we need to choose the estimates {3;;}i_y such that the value of (1.2.16)
at its minimum is strictly positive.

In principle, both steps can be attempted algebraically, e.g., using dynamic program-
ming to obtain a recursive solution. However, the algebra becomes quite involved, which
is probably why present solutions to the H* problem generally proceed in various other
ways, as noted in Sec. 1.1. The situation is quite different in the stochastic H?> problem,
where the recursive Kalman filter solution can be obtained by using geometric arguments:
projections in the Hilbert space of random variables minimize the relevant quadratic form
(1.2.5), and recursive solutions are readily obtained by introducing the innovations process
(see Sec. 3.3.1, or most textbooks on Kalman filtering, such as [KSH9S]).

The appearance of the Kalman filter recursions in the H* solution suggests that similar
methods could be used — the problem is that in the deterministic H* problem there is
no Hilbert space (of random variables, or other abstract vectors). However, we shall show
in Sec. 2.4.2 that we can define a (partially) equivalent vector-space problem, where now
the space is not a Hilbert space but a special kind of indefinite metric space called a Krein
space, that allows us to solve our original deterministic problem. Krein spaces differ from
Hilbert spaces in certain basic ways — in particular, they can contain non-zero vectors of
zero-length (such vectors are called neutral), as well as subspaces that contain non-zero
vectors orthogonal to all vectors in the subspace (such subspaces are called degenerate, and
such vectors isotropic). A consequence of these facts is that in Krein spaces, projections
need not always exist, and even when they do, they only stationarize (and do not necessarily
minimize) a quadratic form. The projection, when it exists, can still be recursively computed
using (generalized) Kalman filter recursions, but an additional calculation (of the Hessian
matrix of the quadratic form) is required to check if the stationary point is actually a
minimum.? The inertia condition of Theorem 1.2.2 is precisely this additional condition.

Apart from the fact that Theorem 1.2.2 now has a familiar derivation, with a clear
explanation of the similarities to, and differences from, the H? solution, the link with the
Kalman filter derivations allows us to attempt to extend to the H* case several of the many
results on Kalman filters derived in the last four decades. Among these, we mention the
(square-root) array algorithms, and the fast (Chandrasekhar-Kailath-Morf) algorithms for
constant-parameter systems. We shall derive the H* versions of these results in Chapter 5,
but we note the results below in order to show the value of the Kalman filter connection.

3This is the reason for saying the Krein space problem is only partially equivalent to the deterministic
problem. In Hilbert space, there is a complete equivalence, as will be shown in Corollary 2.4.3.
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1.2.2 Array Algorithms
H? Square-Root Arrays

Recall the Kalman filter recursions of Theorem 1.2.1,
Ejp1)je1 = Fidj; + Ky (yis — Hipa Fjdy;), 211 =0. (1.2.22)

The above recursion shows that the key to propagating #;;, and thereby the desired esti-
mate, is to have the so-called gain matrices Ky ;. In Theorem 1.2.1, Ky ; is given in terms
of a certain variable, P;, that satisfies the Riccati recursion (1.2.9).

The matrix P; appearing in this Riccati recursion has the physical meaning of being
the variance of the state prediction error, ¥; = x; — Z;, where £; = #;;_; is the estimate
of x; given {yx,k < j}, and therefore has to be positive (semi-)definite. When actually
implementing (1.2.9), round-off errors can cause a loss of positive-definiteness, thus throwing
all the obtained results into doubt. For this, and other reasons (reduced dynamic range,
better conditioning, more stable algorithms, etc.) attention has moved in the Kalman
filtering community to so-called array algorithms that propagate square-root factors of P,

i.€., a matrix, le/ 2 say, such that

x A *
Py =P}*(P/*) 2 P//* P/,

The following is one such now well known result (see [MKT75], [KSH98]) which we shall
derive in Sec. 5.2.

Algorithm 1.2.1 (H? Array Algorithm - Filtered Form) The matriz, Ky ;, necessary
to obtain the state estimates in the filtered form of the conventional Kalman filter

Tjrai01 = FiZj; + Ky g1 (i — Hip Figg5), 2 11=0,

can be updated as follows

1/2 1/2 1/2
¥ Hj]l)% 95'1) = Re’jl/z (1)/2 ) (1.2.23)
0 Pj KfajRe,j lej
1/2 1/2 (2 _ 1/2
[ FiP~ GjQ; ]G)j = [ ijl 0 ] (1.2.24)

where @5-1) and 622) are any unitary matrices that triangularize the above pre-arrays. The

algorithm is initialized with PO1 2~ 1'[(1)/ 2,

Note that in the square-root array algorithm, all one needs to do is form the pre-array
in (1.2.23) and to triangularize it via a unitary transformation, i.e., a matrix © such that
©0* = 0*0 = I. [An example of a unitary matrix is a rotation.] Once this is done, the
quantities necessary to update the array, and to calculate the state estimates, can all be
found from the triangularized post-array.

H Square-Root Arrays

As shown in Theorem 1.2.2, the desired estimates 3;; = L;Z;; are found from the following
recursion for Z;;,

Tjprj1 = Fidj); + Ko ji1(yjpr — Hjpa Fjdj5), &-1-1=0. (1.2.25)
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Once more, the key to computing the state estimates is to have the gain matrices K, ;. These
now can be expressed in terms of another variable P; that satisfies the Riccati recursion
(1.2.18).

Using our observation that H* filtering is essentially Kalman filtering in an indefinite
space, it is possible to develop square-root array algorithms for the propagation of K ;, as
well. However, since the underlying space in H* estimation is indefinite, we need to make
certain adjustments. The first is that in an indefinite metric space the “covariance” (or
more precisely, Gramian) matrices, such as R;, are no longer necessarily positive definite.

Therefore we need to introduce indefinite square-roots R;/ 2, of R;, defined as follows,
R; = R*JR}",

where J is an signature matrix (a diagonal matrix with +1 and —1 on the main diagonal)
that represents the number of positive and negative eigenvalues of R;. Moreover, since the
counterpart of a rotation in a definite metric space is a hyperbolic rotation in an indefinite
metric space, we need to replace unitary transformations with J-unitary transformations
(i.e., matrices © such that ©J0* = 0*JO = J).

With these adjustments, we shall show the following result in Chapter 5.

Algorithm 1.2.2 (Central H*® Array Algorithm - Filtered Form) The H™ filtering
problem with level v¢ has a solution if, and only if, for all j =0,...,i there exist J-unitary

with J =1, ® (—1,) ® I,,) matrices, (9(-1), such that
P q j

I, O H; 1/2 1/2
P! R 0
[ 0 i ] [ L; ] i el = PP I (1.2.26)
J K;;R'Y? pY
0 P} Fiflej L)
1/2 2) _ 1/2
| P Gy e =] Pi o] (1.2.27)

with Ri{f lower block triangular, and with 6;2) unitary. The gain matriz K, ; needed to
update the estimates in the central filter recursions

Zj; = Fj18j1jo1 + K j(y; — HiFj_1%5_15-1), &-1-1 =0,

is equal to -
K, j = K, j(I+ H;P;H;)™'/?,
where K, ; is given by the first block column of Ky ; = Kf,jRi(J?, and (I + HJ-PJ-H]’-‘)I/2 is

given by the (1,1) block entry of Ri,/jz. The algorithm is initialized with Pol/2 = H(l,/2.

An interesting aspect of the above algorithm is that we do not need to explicitly check
for the existence condition (1.2.17) required of H* filters. These conditions are built into
the array algorithms themselves: if the algorithms can be performed (i.e., if the pre-arrays
can be triangularized by a J-unitary transformation) then an H* estimator of the desired
level exists, and if they cannot be performed such an estimator does not exist. [More details
will be given in Chapter 5.]

1.2.3 Fast Array Algorithms

H? Chandrasekhar-Kailath-Morf Recursions

The conventional Kalman filter and square-root array recursions both require O(n?®) oper-
ations per iteration (where n is the number of states in the state-space model). However,
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when the state-space model is time-invariant the Chandrasekhar-Kailath-Morf recursions
offer an algorithm that requires O(n?) operations per iteration [Kai73], [KMS73], [MSK74],
[MK75], [SK9%4a].

In what follows we shall assume a time-invariant state-space model of the form

{:cj+1 = Fz;+Guj, (1.2.98)

yi = Hzj+v,

and we shall assume that the driving and measurement disturbance covariances are constant,
i.e., Q=@ >0and R; = R > 0, for all j. When this is the case, it turns out that we can
write

Pj+1 - Pj = MjSMj, for all j, (1229)

where M is an n x d matrix and S is a d x d signature matrix. Thus, for time-invariant
state-space models, Pj; — P; has rank d for all j and in addition has constant inertia. In
several important cases d can be much less than n. When this is true, propagating the
smaller matrices M;, which is equivalent to propagating the Pj, can offer computational
reductions. The result is given below and will be proven in Chapter 5.

Algorithm 1.2.3 (Fast H? Array Algorithm - Filtered Form) If F is invertible, the

gain matriz Ky ; = K MR;;/ ? necessary to obtain the state estimates in the filtered form of
the conventional Kalman filter

&y = Foj 1)1 + Ky j(y; — HF%j_1_1), #_1-1=0,

can be computed using

—e,j “e,j+1

1/2 ) 1/2
[R HFNJ]Gj:[R 0 1
Kyj  FN;j i+t N1

(1.2.30)

where ©; is any J-unitary matriz (with J = I, ® S) that triangularizes the above pre-array.
The algorithm is initialized with

Reo=R+HILH*,  Kjo=I,H*RY;,
and {Ny, S} are obtained from the factorization

FY (P —Tp)F~* =g+ F'GQG*F~* = Kf0Re 0K}y — F Tl F~* = NoSN.

Note that compared to the earlier (square-root) array formulas, the size of the pre-array
in the fast array recursions has been reduced from (p+n) x (p+n+m) to (p+n) x (p+ d)
where m and p are the dimensions of the driving disturbance and output, respectively, and
where n is the number of the states. Thus the number of operations for each iteration has
been reduced from O(n?) to O(n%d), with d typically much less than n.

H°° Chandrasekhar-Kailath-Morf Recursions

The fact that H* filtering coincides with H? filtering in an indefinite metric space allows us
to generalize the conventional Chandrasekhar-Kailath-Morf recursions to the H* setting.
The result is given below and will be proven in Chapter 5.
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Algorithm 1.2.4 (Central H* Fast Array Algorithm - Filtered Form) Let F be in-
vertible. Then the H*® filtering problem with level vy has a solution if, and only if,

(i) All leading submatrices of

I 0 I 0 H
R=|7 and Re.o= |} ] + [ ] I, [ H* L*
[ 0 =3, ] 0 { 0 =3, L |l ]

have the same inertia.

(it) For all j = 0,...,i, there exist J-unitary matrices, ©;, (where J = I, ® (—I;) ® S)

such that
1/2 H oy 1/2
e L] i e;=| feanr O ] (1.2.31)
Kijl/f FN; Kf,jRe,j+1 Nji1

with Ri,/jz and Ri,/fﬂ block lower triangular.

The algorithm is initialized with, Rep, Kpo = o [ H* L* ]R;é, and {Ny, S} are ob-
tained from the factorization

F' (P —Ig)F* =Io+ F'GQG*F* — KsoRc 0K};o— F'IliF~* = NoSN;.

The gain matriz K, ; needed to update the estimates in the central filter recursions

&j; = Fj1&j 1m0 + K j(y; — HiFj185_15-1), &-1-1 =0,

is equal to B
Ks,j = Ks,](1+ }Ij.PjI{;()fl/27

where K, ; is given by the first block column of Ky ; = Kf’jRi{]?, and (I + H;P;H})'/? is
given by the (1,1) block entry of Ri’/f.

Note that compared to the H>® square-root array formulas, the size of the pre-array
in the H* fast array recursions has been reduced from (p +¢+n) X (p+ ¢+ n+ m) to
(p+q+n)x(p+q+d) where m, p and ¢ are the dimensions of the driving disturbance,
output and states to be estimated, respectively, and where n is the number of the states.
Thus the number of operations for each iteration has been reduced from O(n?) to O(n2d)
with d typically much less than n.

As in the array case, the fast array recursions do not require explicitly checking the
inertia conditions required of H* filters — if the recursions can be carried out then an H*
estimator of the desired level exists, and if not, such an estimator does not exist.

1.2.4 Infinite Horizon Problems

The H? and H® filters of Sec. 1.2.1 are finite-horizon filters, in the sense that they guarantee
H2-optimality, or H*®-suboptimality, over the finite time-interval, 5 = 0,1,...4, for some
fixed ¢. It is also possible to consider infinite horizon problems where the time interval is
either [0, +00) (semi-infinite) or (—oo, +00) (doubly-infinite). In this case, it is reasonable
to assume that the state-space model is time-invariant, i.e.,

{ Tiy+l1 = FQI, + GU,

e~ Hoew, (1.2.32)



Section 1.2. Some Motivation for Introducing Indefinite Metric Spaces 13

and that, in the H? case, the disturbance covariances are constant, i.e., Q; = @ > 0 and
R; =R >0, for all i.

One approach for solving infinite-horizon time-invariant problems is to take the limit, as
1 — 00, of the finite-horizon solutions of Theorems 1.2.1 and 1.2.2. Further examination of
the statements of these two theorems shows that this essentially amounts to studying the
limit of P;, i.e., the solution to the Riccati recursions (1.2.9) and (1.2.18), as time progresses
to infinity. Therefore, in this approach we need to demonstrate the following two items:

(i) That P;, the solution to the Riccati recursions (1.2.9) and (1.2.18) converges to a limit,
say P.

(if) That the estimator corresponding to the Riccati variable P is indeed a solution to the
infinite-horizon H2 and H* estimation problems.

This approach can indeed be used to solve the infinite-horizon H? estimation problem.
For example, in Chapter 14, among other results, we show that under some mild (stabiliz-
ability and detectability) conditions, the solution of the Riccati recursion (1.2.9) converges
exponentially to the unique non-negative definite solution of the discrete-time algebraic
Riccati equation (DARE),

P = FPF* +GQG" — K,R.K}, (1.2.33)

with K, = FPH*R;! and R, = R+ HPH*, for all non-negative definite, and even some
indefinite, initial conditions, Fy. Once the convergence of P; is established, one can fur-
ther show that the estimator corresponding to the limiting value P is H2-optimal, thereby
establishing the following result.

Theorem 1.2.3 (Infinite-Horizon Kalman Filter) Consider the time-invariant state-
space model (1.2.32), and assume that {F,GQ"/?} is stabilizable and {F, H} is detectable.*
Then the solution to the infinite-horizon H? problem is given by

where & ;|; satisfies the recursions,

Ejr1)j+1 = Fij); + Kp(yjm — HF &), (1.2.35)
with

K;=PH*R;' , R.=R+ HPH* (1.2.36)

and where P s the unique non-negative solution to the DARE,

P =FPF* +GQG" - K,R.K}. (1.2.37)

However, in the H* case, the issue is much more difficult because R, (as defined in
(1.2.36)) is generally indefinite rather than non-negative definite. In fact, the aforementioned
approach of taking the limit of the finite-horizon solution apparently cannot be used since

4The condition that {F, GQ'/2} be stabilizable (or, equivalently, that it be controllable on and outside
the unit circle) can be replaced by the weaker assumption that {F, GQY 2} be controllable on the unit
circle. To show this, however, we have to go to a direct derivation (see Sec. 13.2.1), and not use a limiting
argument.
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the convergence of P; (item (i) above) is difficult to establish without assuming beforehand
that a solution to the infinite-horizon problem exists!

For this reason, we address infinite-horizon H* problems directly, applying the approach
discussed at the end of Sec. 1.2.1 to the quadratic form (1.2.16), but with & = cc. How-
ever, for several reasons, we first present a different and initially more general alternative
approach in which we formulate a general operator-theoretic version of both the H2 and
H® problems. By appropriately specifying the operators involved, we shall see that this
formulation applies equally to finite- and infinite-horizon, and discrete-time and continuous-
time problems. Then we show that these operator-theoretic problems can be solved by a
Wiener-Hopf type of technique. In particular, the key step is a “canonical” factorization of
a generalized covariance/spectral function. This approach is developed in Chapter 13 and
then specialized to the state-space case where, among other results, we show the following.

Theorem 1.2.4 (Infinite-Horizon H> Filter) Consider the time-invariant state-space
model (1.2.32), and assume that {F,G} is controllable on the unit circle and {F,H} is
detectable. Then an infinite-horizon H> filter of level vy exists if, and only if, there exists
a solution to the DARE

P = FPF* + GG* — K,R.K}, (1.2.38)
with
K,=FP[ H* L* |R;' and R.= F O P[ H* L*] (1.2.39)
p e (3 0 _ J2¢»‘Iq L L.
such that
(i) Fp SF- K, [ IZ ] is stable.
(ii) P> 0.
(iii) Re and [ Ly 0 ] have the same inertia
¢ 0 _’Y?Iq )

If this is the case, then one possible H>® estimator is given by

where & ;; satisfies the recursion,
'i'j+1|j+1 =F£'J|J+Ks(y]+1 —HFQA,‘JU), (1241)
where
K,=PH*(I+ HPH*)"'. (1.2.42)

Note that, compared to Theorem 1.2.3, for the H? case, there are three additional re-
quirements for the infinite-horizon H* filter of Theorem 1.2.4. In the H? case, however, all
three are automatically satisfied. Indeed, under stabilizability and detectability it can be
shown that the DARE (1.2.37) always has a unique non-negative definite solution, thereby
establishing condition (ii). Moreover, for this solution it can be shown that F, = F — K, H
is stable (note that L does not appear in the DARE (1.2.37)), and that R, = R+ HPH* is
positive and so that it has the same inertia as I, (note here that ¢ = 0), thereby establishing
conditions (i) and (iii).
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It is also interesting to compare the three conditions of Theorem 1.2.4 with the condi-
tion of Theorem 1.2.2 required for the existence of a finite-horizon H* filter. The inertia
condition (1.2.17) is clearly the finite-horizon counterpart of condition (iii). Moreover, when
(1.2.17) is satisfied, it can be shown that P; > 0, which is the finite-horizon counterpart
of condition (ii). However, condition (i) is a purely infinite-horizon condition and has no
finite-horizon counterpart.

Finally, we should also mention that the issue of convergence of the Riccati variable F;
will be taken up in Chapter 14 where conditions on the initial condition Py are given such
that the finite-horizon H? and H* filters converge to infinite-horizon ones (assuming that
the corresponding infinite-horizon solutions exist).

1.2.5 Factorization Approach to Infinite Horizon Problems

As mentioned earlier, one direct approach to infinite-horizon H* problems is via canon-
ical factorization; the objects being factorized are certain so-called Popov functions. In
infinite-horizon H? problems, they are just power-spectral-density functions. However, it
is interesting that Krein space arguments are useful for studying the problem of canonical
spectral factorization even in this much studied case, as we shall demonstrate in this section.
Moreover, although we shall begin with the Popov function in the H? case, our end result
on canonical factorization is equally applicable to H* problems where the Popov function
under consideration is indefinite.
To this end, consider the time-invariant state-space model

{.’L‘H_l = Fx; +u;

S Z Hoto (1.2.43)

where F' is stable, {F, H} is observable® and the disturbances are zero-mean stationary
random processes with

Uj * * _ Q(sz S(Sz 0
E|:U,':|[uj vj 1]_|:S*5,'Jj Rdé O]

[Note that, for notational convenience, but without loss of generality, we are assuming G =
I.] Taking z-transforms, we can rewrite (1.2.43) as

y(2) = H(zI — F) “u(z) + v(z) = [ HGI - F)=' T ] [ u(z) ] . (1.2.44)
Recall that if an m x 1 stationary process {r;} is applied to a p x m stable linear system

with transfer matrix H(z) to yield an output process {s;}, the so-called output z-spectrum,
defined as the z-transform of the autocorrelation sequence,

Sy(z) = Z{Es;s} ;} = Z Esjs;fiz_i, (1.2.45)
is given by
Ss(z) = H(2)Sr(2)H*(27%), (1.2.46)

where S,.(2) = Z {Erjrj_;} is the z-spectrum of {r;}. Therefore, in our case, the output
z-spectrum of {y;} is given by

Sy(z)=[ H(zI-F)~* T] [ Q S] [ (z_lj_f'*)—lH*

P (1.2.47)

5Tn Chapter 13 we shall see that both these conditions can be replaced with the less restrictive condition
that {F, H} is detectable.
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Note that the matrix appearing in the center of (1.2.47) is the covariance of the disturbances
{ui,v;}, so that we have
Q S
> 0. 2.
[ & p |20 (1.2.48)
This implies that S,(e¥) > 0, which is a defining property of a power spectral density
matrix generated by a true stochastic process.

However, let us calculate the output spectrum in an alternative fashion. The steady-
state covariance of the state z;, defined by II = lim;_,o, Ex;z}, satisfies the (discrete-time)
Lyapunov equation B B

Il =FIIF* + Q. (1.2.49)

we note that the solution IT to (1.2.49) exists and is unique, since F is stable. Thus, in
steady-state, the autocorrelation function of the output process is given by

HF'TIH* + HF7'S i>0
Ry:= Eyjy;-‘fi =<{ R + HIIH* i=0
HIOF*H* + S*F*-DH* <0

Taking the z-transform of R, ; in the above expression, the output z-spectrum can be written
as

Sy(z)=[ HI-F)™' I] [ 0 FIIH* + 8 ] [ (2711 — F*)~'H*

HIIF* +S* R+ HIIH* I
(1.2.50)
Comparing (1.2.47) with (1.2.50) we see that the only difference between these two repre-
sentations of the output z-spectrum is the matrix appearing in the center of these equations.
In the case of (1.2.47) we saw that this matrix was the covariance of the disturbances {u;, v;}.
However, in (1.2.50) the center matrix

0 FIIH* + S
[ HIF* +S* R+ HIH* ] ! (1:2.51)
is indefinite. Note that S, (e?“) > 0, of course, even though the center matrix (1.2.51) is not
non-negative definite and cannot be thought of as the covariance of some random variables,

say {ugl), vz(l)}. (Indeed ugl) would need to have zero variance but nonzero cross-variance

with vgl)!) However, conditioned by the discussions of the previous sections, we can be
emboldened to broaden our domain of discourse, and instead of random variables, consider
disturbances {u;,v;} that belong to an abstract indefinite (so-called Krein) space. Then the
matrix (1.2.51) can be considered as the covariance (more precisely, Gramian) of such an
abstract disturbance {ugl), vgl)}. To show that such a step has some value, we shall use this
broadening of possibilities to explore the question of describing all center matrices that can

give rise to the same output z-spectrum.

An Equivalence Class for Input Gramians

To this end, consider the state-space model (1.2.43) but now suppose that the inputs {u;,v;}

are such that .
<HH5§]>=[§ R]% (1.2.52)

where Q = Q*, R = R* are Hermitian, but otherwise arbitrary, as is S. Note that we
have replaced the notation Eu;v} with (u;,v;) since we are now considering the {u;,v;} to
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lie in an indefinite space so that the matrix appearing in (1.2.52) may be indefinite. Now
associated with the state-space model (1.2.43) and the inputs (1.2.52), we may define the
Popov function

(271[ _ F*)le*

; (1.2.53)

S(z) £ 5,(z)= [ HEI-F)™" I] [ SQ* Ii] [

We can readily see that the Popov function is a generalization of the z-spectrum, since

Sy(2) = Z{(y;,yj—i)} - (1.2.54)

and the only difference is that now Sy(z) need not be non-negative definite on the unit
circle, |z| = 1.

Now suppose that we intend to add white and stationary disturbances {;,9;} (orthogo-
nal to the original {u;,v;}) to the state-space model (1.2.43) such that the output z-spectrum
Sy(z) remains unchanged. In other words, the output of the state-space model

{ Tip1 + Eip1 = F(xi + %) +ui + U (1.2.55)

ity = H(zi+%)+vi+0
should still have Popov function equal to Sy(z), given in (1.2.53).
The Gramian matrix of the new disturbances {u; + @;,v; + ;} is given by

RQ+Q S+8§
S*+S* R+R |’
and the new output z-spectrum by

Syrg(2)=[ H(zI-F)~' 1] [ Q+Q S+8 ] [ (2=1I — F*)~1H*

S*+S5* R+R I

Now by linearity, Sy15(z) = Sy(2) + Sz(z). Therefore if S,(z) is to be unchanged, this
implies that Sy(z), the z-spectrum of the process {y;} defined by

{ e Zﬁj‘r% : (1.2.56)
must be zero. Now a simple calculation shows that

(9i,9:) = R+ H(z;,2:,)H, (1.2.57)
so that if we define the Hermitian matrix Z = —(Z;, Z;), (note that since the variables in

(1.2.56) belong to an indefinite metric space, Z is in general indefinite) we may write
(9:,9:) = R—HZH* =0, (1.2.58)
or R = HZH*. Likewise, a similar computation for ¢ > j, shows that
(95,9;) = HF'"7 Y (F(z;,2;)H* + §) = HF*" "' (~FZH* + S). (1.2.59)

Thus choosing
S=FZH* (1.2.60)

we see that
(9i,9;) = 0. (1.2.61)
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Finally, using the state equation in (1.2.56) we may write
—-Z =-FZF* +Q. (1.2.62)

Combining (1.2.58), (1.2.60) and (1.2.62) shows that the indefinite variables {a;,?;} can
have as Gramian matrix

[ 56‘2 S ] _ [ -Z+ FZF* FZH* (1.2.63)

R HZF* HZH* |’

for some Hermitian Z (which is the negative of the state Gramian matrix of the stationary
process T;).
We summarize the discussion, and somewhat extend it, in the following lemma.

Lemma 1.2.1 (Equivalence Class for Input Gramians) .

(a) For any Hermitian Z, the output z-spectrum of the state-space model (1.2.43)

Sy(2) =[ H(zI - F)~! ]][ Q S][

(z—II _ F*)—lH*
S* R ’

I

is tnvariant under the input Gramian transformation

(1.2.64)

Q S| _.,[Q-Z+FzF* S+FZH"
S* R S*+HZF* R+ HZH*

(b) If for an observable system {F, H}, there exist input Gramians

Q1 S Q2 S
[Si" Rl] and [Ss‘ 32]

that yield the same output spectrum, i.e.,

[ HEI-F)~' I ] Qi S1 (271 — F*)~'H*

St Ry I
=[HEI-F)7' T] [ 223 fli ] [ (z_ll_f*)_lﬂ* ]

then there exists a unique Hermitian Z such that

[Ql Si ]
Sr R

| Q:2—-Z+FZF* S,+ FZH*
N S;+HZF™ Ry +HZH* |~

Proof of Lemma 1.2.1: We have already proven part (a) by our Krein space arguments
above. However, to reassure the reader, we note that one can directly show via a calculation
that (1.2.64) is true for any Hermitian matrix Z — just check (after some algebra) that
_ —Z+FZF* FZH* (27— F*)~1H*
— _ 1
0=[HEI=-B7 TT| “gzp HZHH I ’

is true for any Z = Z*.
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For part (b), note that since {Q1, R1,S1} and {Q2, R2,S2} generate the same output
z-spectrum we can write

_ S, — S 711_F* —1H*
[ HET-F) I][Qs%_?; Ri—RZ][(z 7 ]:O'

Thus, if we define the indefinite variables {@;,¥;} such that

i ] [ ly_[Q S5 _[@-@ S-8

then the state-space model

’

Zit1 = Fzi+u;

yi = Hz;+v;

must have a null output z-spectrum. Using the arguments presented before the statement
of the Lemma, this implies that

= —Z+FZF*

= HZH*
= F"I Y (—FZH*+S) fori>j

o &

where, as before, we have defined (Z;,T;) = —Z. Note that since F is stable the first of the
above equations shows that Z is unique®.
Moreover, the last equation shows that

O(-FZH* +8) =0,

where
O=[H* F*H* F*H* ...]

is the observability map. When {F, H} is observable, O is full rank and we conclude that
—FZH*+ 85 =0.
We have thus shown that there exists a unique Hermitian Z such that

Q S|1_[@Q-Q S-S ]1_[-Z+FZF* FZH*
S* R|~| S-S R —-R |~ HZF*  HZH*

from which the statement of part (b) follows.
|

Lemma 1.2.1 shows the great freedom that is obtained by allowing the disturbances
{ui,v;} to have an indefinite Gramian matrix. We were thus able to parametrize all input
Gramians that give rise to the same Popov function in terms of a Hermitian matrix Z. This
matrix has the interpretation of being the steady state Gramian of the state vector in a
state-space model that generates zero output spectrum. [The reader at this point may want
to verify that the choice Z = II in (1.2.64), where II is as in (1.2.49), relates the input
covariances in (1.2.47) and (1.2.50).]

61n fact, we only require that F' have no two eigenvalues {)\;, Aj} such that 1 — )\i/\;f = 0 for the solution
to the Lyapunov equation Z = FZF* 4+ Q to be unique.
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Factorization of the Popov Function and Relations to the DARE

A major application of the degree of freedom available via the Hermitian matrix Z, is to
choose Z such that the center matrix in the Popov function drops rank. In particular, let
Z = P be a Hermitian choice that makes the (n + p) x (n + p) center matrix have rank p,
1.€e.,

Q—-P+FPF* S+ FPH* ] _ [ K,

S* + HPF* R+ HPH* 7 ]Re[K,, I], (1.2.65)

where K, and R, are are n x p and p X p matrices, respectively. [Note that, since the Popov
function Sy (z) is a p x p transfer matrix, we cannot, in general, hope to reduce the rank
beyond p.]

Now making the rank of the center matrix equal to p is of significance, since it leads to
the following factorization of the Popov function

Sy(2) = [H(I - F) 'K, +I| R, [H(z"*I - F) 'K, +1]". (1.2.66)

We refer to the above as a factorization of the Popov function since the three factors H(zI —
F) 'K, +1I, R, and K}(z 'I — F*)"'H* + I are all p x p matrices. In particular, when
the transfer matrix H(2I — F) 1K, + I has a causal and bounded inverse, i.e., when

[+ H(zI-F)'K,)” =I—-H(z2I - F + K,H) 'K, (1.2.67)

is analytic for all |z| > 1, the above factorization is known as the canonical factorization
of the Popov function. As we shall see in Chapter 10, the canonical factorization is a key
element in both H2 and H*® estimation and control and will be the route we take to obtain
infinite horizon results. In the H? case, S,(z) is positive definite on the unit circle, which
implies that R, > 0. In the H*® case, Sy (%) is indefinite, which implies that R, is indefinite.
Thus, assuming that R, is Hermitian and has the same inertia as the signature matrix J,

we may write R, = R};/ 2JRZ/ 2, and hence

Sy(2) = [H(zT = F) 'K,RY? + RY?| T [H(z 1 - F) 'K,RY? + B2 . (1.2.68)

The above factorization is referred to as a “J-spectral factorization”.

At this point it is also possible to point out the connection between factorizations of the
Popov function and solutions of discrete-time algebraic Riccati equations. To this end, note
that we can rewrite (1.2.65) as

Q- P+FPF* = K,R.K;
S+FPH* = K,R. (1.2.69)
R+HPH* = R,

When R, is invertible, we have K, = (FPH* + S)R_ ', and that P satisfies the DARE
P=FPF* + Q- K,R.K. (1.2.70)

What we have therefore shown is that if P is a Hermitian solution to the above DARE then
the center matrix in (1.2.65) drops rank and a factorization of the Popov function is obtained.
Moreover, in view of (1.2.67), if the Hermitian solution P is such that F'— K, H is stable (i.e.,
has all its eigenvalues strictly inside the unit circle), then the corresponding factorization
is canonical. In fact, this connection will allow us to treat the positive (semi-)definite and
indefinite cases in a unified fashion in Chapter 13, and to obtain general existence results
for solutions of Riccati equations in the (possibly) indefinite case.
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A Digression: The KYP Lemma

The results of Lemma 1.2.1 are independent of whether or not {y;} is a true stochastic
process, i.e., whether or not its z-spectrum, Sy(z), is nonnegative on the unit circle. When
in fact that is true, we have a further strong result: the KYP Lemma.

Theorem 1.2.5 (KYP Lemma) Consider the observable pair {F, H}. Then the following
two statements are equivalent:

(i) Sy(z) >0 for all z = €’ ¢ X\(F)", where

S* R

Sy(z) = [ H(zI — F)! I][Q SH(zu_f*)lH*]‘

(i) There exists a Hermitian Z such that

[Q—Z+FZF* S+ FZH*

S*+HZF* R+ HZH" ] 2 0. (1.2.71)

The point is the following. Recall that in view of Lemma 1.2.1, we may write, for any
Hermitian Z,
_ et Q—-Z+FZF* S+ FZH* (27 — F*)~1H*
Sy(z) = [ H(zl = F) I][ S*+ HZF* R+ HZH* I

Thus, Theorem 1.2.5 states that Sy(z) is a true z-spectral density function (i.e., it is non-
negative definite on the unit circle) if, and only if, there exists true stochastic inputs with
nonnegative definite covariance

Q-Z+FZF* S+ FZH* >0
S*+ HZF* R+HZH* | =7

that generate it! This has special significance for the problem of stochastic realization since
it states that any nonnegative definite rational z-spectral density function can be realized
by a finite-dimensional state-space model driven by true stochastic processes. The Theorem
also gives a recipe as to how to find this realization via feasible solutions of the linear matriz
inequality (LMI), (1.2.71).

In Appendix 3.A we shall show how it is possible to use simple Krein space geometry
ideas to give a further interpretation, as well as a proof, of a time-variant counterpart of the
KYP lemma.

1.2.6 H? and H* Control Problems

The methods described so far can also be used to study control problems with quadratic
(or quadratically-induced) cost functions. Here we briefly indicate why this is true. Our
approach is further elaborated in Chapter 8 and is based on the fact that the H? and H*®
(full-information) control problems are dual, in a precise sense, to H? and H* estimation
problems. Therefore the control solutions can essentially be written down by inspection.

7)\(F) denotes the spectrum, or set of eigenvalues, of the matrix F'.
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Full Information Control

We begin by introducing the full information control problem for the time-variant state-
space model
Tiy1 = Fix; + Glﬁiwi + Gz,iui, 0<i<N (1272)

where F; € C™*", G1,; € C™"*™  and Ga; € C™*™2 are known matrices, w; is an exogenous
input and w; is the control input. The {w;} may be interpreted as process noise or driving
disturbance. Moreover, suppose we are given a linear combination of the states,

S; = L,-:L‘,-, (1273)

where L; € C7*™ is known, that we intend to regulate using the control signal u;. In the
full-information control problem it is assumed that the control signal at time ¢ has access to
all the exogenous inputs up to time ¢, i.e., the initial condition o and the inputs {w;,j < i}.
In other words, we may write

u; = F(zo,wo, - - ., w;). (1.2.74)

In control, the goal is to “cost-effectively” keep the regulated signal {s;} small. By this we
mean that we intend to keep {u;} and {s;} simultaneously “small”. A popular measure for
smallness is the quadratic cost function,

N N
Z u; Qfui + Z 8; Risi + a1 PRy TN 11, (1.2.75)
Jj=0 Jj=0

where Q° > 0, R° > 0, and Pg,; > 0 are given. Note that we have introduced a penalty
term for the final state zn 41, since we may want to keep it small as well.

The H2 Approach: Stochastic Disturbance Processes

As mentioned earlier, in the H? approach it is assumed that the unknown disturbances are
zero-mean random variables with known second-order statistics. Here the disturbances are
{zo, {w;}}, whose second-order statistics, or variances and covariances, are given by

v [ o ] [a5 wj]= [ o Qgsz.j ] : (1.2.76)

Once the initial state and disturbances are zero-mean random variables, the same will be
true of all the other quantities of interest in (1.2.72), i.e., the state variables {z;}, the
regulated signals {s;}, and the control inputs {u;}.

In particular, the quadratic cost (1.2.75) will also be a random variable. Therefore the
goal in H? control is to find a linear control strategy u; = F(xo, wo,. .., w;) that minimizes
the expected quadratic cost, i.e., the average value of (1.2.75). The precise statement follows.

Problem 1.2.3 (Full-Information H?> Control Problem) Consider the standard state-
space model (1.2.72) along with the stochastic assumptions (1.2.76). Find o linear full-

information control strategy u; = F(xo,wo, ..., w;) that minimizes the expected quadratic
cost, i.e.,
N N
min B > ouiQbui+ Y siRisi + Ty PRyan | - (1.2.77)

Jj=0 J=0
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The solution to the above problem is well-known [Kal60a], [AMT71], [KS72], and is quoted
below.

Theorem 1.2.6 (Full-Information H?> Controller) The solution to Prob. 1.2.3 is given

by
uj = =K (Fjzj + Gijw;), j=0,1,...N, (1.2.78)

with
Kj= PGy R 5 and  Rg; = Q5+ G5 PG, (1.2.79)

and where P§ satisfies the backwards Riccati recursion,

P{ = F{P{ F; + LIRSL; — Ff P{Ga R, G3 ;PiFy, Py (1.2.80)

The H* Approach: Deterministic Disturbance Processes

As menioned earlier, in the H® approach it is assumed that the disturbances {zq, {w;}}
are nonrandom. One cannot therefore speak of expected values, or attempt to minimize the
average quadratic cost. Instead one can look at the normalized cost,

N
2j=o¥; uJ+Z—0 siRSsj + N 1 PRiitNt
*
zollo™ 33'0+Zj:0 ij wj

, (1.2.81)

which can also be interpreted as the energy gain from the disturbances, II; Y 2:1:0 and
{Qj_l/Quj }i_g, to the control signal, {Q;*/zuj }i_o, the regulated signal, {R;*msj }izo, and
the final cost Plc\,*ﬁxNH. [Here IIy and Q; are positive definite weighting matrices.] It
is quite clear that if the ratio in (1.2.10) is small then the controller performs well, and

vice-versa. However, the problem with this ratio is that it depends on the disturbances
{z0,{w;}}. To overcome this deficiency, we can consider the worst-case, i.e.,

N
u + *Rcs + N PSS xN
sup Z] =0 ] J E] =0 ] J N+1f N+1 +1 , (1.2.82)

zo,{w;} zollo $0+Ej:0 ;QJ wj

which represents the worst-case gain from the disturbance energy to the quadratic cost.
The goal in H* control is to minimize this worst-case gain, and the claim is that the
resulting controllers will be robust with respect to disturbance variations, since no statistical
assumptions are being made about the disturbances. However, the resulting controllers may
of course be over-conservative.

As with H* estimation, there are only a few cases where the worst-case energy gain can
be explicitly minimized over F. Therefore one normally relaxes the minimization condition
and considers the following suboptimal problem.

Problem 1.2.4 (Suboptimal Full-Information H*® Control) Consider the state-space
model (1.2.72), and a given scalar v > 0. Determine whether it is possible to bound the
worst-case energy gain in (1.2.82) by 72, i.e., whether it is possible to find a full-information

control strategy u; = F(xo,wo,...,w;) that achieves
N s*
u + Rcs + 2 P Nyt
sup EJ —o u; Qju; Z, =0 5;11j5j N+1ENp1ZN+ <2 (1.2.83)
zo,{w;} ()HO 370+Zj:0 ;Q] wj

If this is the case, then find one such full-information H>® controller of level
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Following an argument similar to what was presented in Sec. 1.2.1, it is possible to
show that the solution to the full-information H* control problem is intimately related to
guaranteeing the positivity of an indefinite quadratic form. However, we shall not repeat
the details here and shall defer this discusion to Chapter 9. Instead let us quote the solution
(see also [BB95], [GL95], [ZDG96]).

Theorem 1.2.7 (Suboptimal Full Information H> Controller) A solution to Prob-
lem 1.2.4 exists if, and only if,

(i) My" —~y2P§ >0

(i) The matrices

|: I 0 :| and Rc = |: Qf +G§,if)ic+1G2vi ) G;,iPiC-I—IGlai :|
U o 1l Gei = QF + G P, G

have the same inertia for all i = 0,1,..., N, where P{ satisfies the backwards Riccati
TECUTsion,

*
G,
*

1,i

P = R Rt LIREL=F P [ Gas G J(RED™ | G2t | Prari (20

initialized with Py, . If this is the case, then one possible full-information H> con-
troller is given by
U; = —K;*(Fi:ci + Gl,iwi). (1.2.85)

where

K]c = Pic_’_leyi(RGc,i)_l and RGC’i = Qf + G;,ipic_f_le’i. (1286)

Duality to Estimation

Comparing the results of Theorems 1.2.1 and 1.2.6 on H? estimation and control, and
Theorems 1.2.2 and 1.2.7 on H* estimation and control, demonstrates the duality between
the solutions to H? and H* estimation and control problems. Indeed, if in Theorem 1.2.1,
we make the transformations

Fi—=F', G —~L;, Hi—>G;,, Q; > Rj, Rj = Qj

and reverse forwards-time to backwards-time, then the Riccati recursion (1.2.9) for P; is
transformed to the Riccati recursion (1.2.80) for Pf. Moreover, under these transformations,
the gain matrix Ky; (of the estimation solution) becomes the negative conjugate transpose
of the gain matrix —K¢ (of the control solution). Finally, the reader may note that a
similar transformation relates the Riccati recursions, the conditions for existence, and the
gain matrices, of the solutions of Theorems 1.2.2 and 1.2.7.

In view of the above duality in the solutions, it may be expected that the original
problems themselves should be dual in some sense, and, in fact, in Chapters 8 and 11 we
shall see that this is the case. In particular, in Chapter 8 we show that the duality between
estimation and control problems can be explained in terms of the concepts of dual bases and
dual spaces for (definite- and indefinite-metric) linear spaces; once we show this duality, the
solution to the control problem can be directly written down knowing the solution to the
estimation problem, as will be done in Chapter 9.
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Measurement Feedback Control

In the full information control problem it is assumed that the control signal u; has access to
the initial condition z¢ and the past and current values of the exogenous inputs {w;,j < i}.
A more realistic control problem is one for which the control signal u; has access to past
and current values of a certain observations (or measurement) signal,

yi = Hizi +v;, (1.2.87)

i.e., u; has access to {y;,j < i}, where {v;} is an unknown additive disturbance. Such a
control problem is referred to as a measurement feedback control problem.

If we further assume that the additive disturbance {v;} is a zero-mean random process
with known second-order statistics,

Zo I, 0 0
Elw [[2z5 wj vf]=] 0 Qidy 0 , (1.2.88)
(o 0 0 Rzéu
we can study the H? measurement feedback control problem that attempts to choose u; =
F(yo,---,y;) so as to minimize the expected quadratic cost,
N N
mfin E ZO u Qiu; + ZO s;Risi + N 1 PRy TN - (1.2.89)
j= j=

Likewise, if assume {v;} is nonrandom, we can consider the H* measurement feedback
control problem that attempts to choose u; = F(yo,.-.,y;) so as to bound the worst-case
energy gain,

N *\Cp, . N  _«pc.. * ¢
Dimo Wi Q5u; + 350 SjRSs; + 1 PRy 9

sup <. (1.2.90)

-1 i -1 i -1
wofwivi} Mo o + Y i _qwiQT wi+ > i viRT v;
J J v J J7

An interesting feature of both the H? and H*® measurement feedback control problems
is that they can be solved via a two-step procedure known as the separation principle: we
first solve a full information control problem, assuming the states of the system are known,
and then use the observations sequence {y;} to estimate the unknown states. The desired
control signal is then based on our estimates of the state, rather than on the inaccessible
state itself. In this manner the measurement feedback control problem is separated into a full
information control problem and an estimation problem. [Further details of the separation
principle will be given in Chapters 9 and 11.]

1.3 Outline of the Contents

For ease of reference, we now briefly review the material in the succeeding chapters. We also
note that browsing through the opening paragraphs of each chapter will provide additional
perspective on the scope and contributions of this monograph.

Chapter 2: Linear Estimation in Krein Spaces

Chapters 2 and 3 present a self-contained theory for linear estimation in Krein spaces.
Chapter 2 begins with a brief introduction to Krein spaces, and then proceeds to study Krein
spaces and to compare their geometrical properties (such as the existence of projections
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onto linear subspaces) with the corresponding geometrical properties of Hilbert (or definite
metric) spaces. An important consequence is the relation between Krein space projections
and the computation of stationary points of certain indefinite quadratic forms. In particular,
while Hilbert space projections always minimize definite quadratic forms, it is shown that
Krein space projections achieve (stochastic or deterministic) minima if, and only if, certain
additional conditions are met. We shall see that it is these special ways in which Hilbert
and Krein speces differ that will mark out the differences between the conventional H2 and
more recent H* theories.

Chapters 3: State-Space Models in Krein Space

Here the results of Chapters 2 are specialized to state-space models, or, more specifically,
to linear state-space models driven by inputs that lie in a Krein space. This then leads
to the centerpiece of the ensuing theory, viz., a Krein space generalization of the classical
Kalman filter, obtained using the innovations approach. Then, by noting a certain so-
called partial equivalence between stochastic and deterministic problems, we show that
this Krein space Kalman filter allows one to recursively compute the stationary point of
certain indefinite quadratic forms, or, equivalently, to recursively compute the canonical
factorization of certain indefinite Gramians (or transfer operators). This is the reason that
Kalman filter theory plays such an important role in the solution of problems in H? and
H* estimation and control, quadratic game theory, risk-sensitive optimization and adaptive
filtering.

The results presented in Chapters 2 and 3 will be repeatedly used throughout the re-
maining chapters.

Chapter 4: Finite-Horizon H* Filtering

In this chapter, we apply the results of Chapters 2 and 3 to solve the H* a posteriori and a
priori filtering, as well as the smoothing, estimation problems and parametrize all possible
solutions. Although most of the results on H* filtering, apart from, say, certain equivalent
conditions for the existence of solutions, are not new, the approach and the derivations are.
The new approach is also used to solve the l-step ahead H* prediction problem, which
seems not to have been considered before.

Chapter 5: Array Algorithms

A major bonus of our approach to quadratic estimation and control problems is that, apart
from rather more transparent derivations of existing results, it shows a way to apply to
the H* (and various other) settings many of the results developed for Kalman filtering
and LQG control over the last three decades. Chapter 5 is the first time that we truly de-
liver on this claim by developing square-root array and Chandrasekhar-Kailath-Morf array
algorithms for H*® filtering problems.® The H* square-root array algorithms involve prop-
agating the indefinite square-roots of the quantities of interest and have the property that
the appropriate inertia of these quantities is preserved. For systems that are constant, or
whose time-variation is structured in a certain way, the Chandrasekhar-Kailath-Morf array
algorithms allow a reduction in the computational effort per iteration from O(n?) to O(n?),
where n is the number of states. The H* square-root and Chandrasekhar-Kailath-Morf ar-
ray algorithms both have the interesting feature that one does not need to explicitly check
for the inertia conditions required for the existence of H* filters. These conditions are built

8Tn the H? case, these algorithms are known to have many useful features (see [KSH98]). They seem to
be difficult to obtain via the earlier approaches to the H*® problems.
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into the algorithms themselves so that an H* estimator of the desired level exists if, and
only if, the algorithms can be executed. However, it remains to be studied how the favorable
numerical performance of the array algorithms in the H? case can be carried over to H™®
problems.

Chapter 6: Several Related Problems

Here we present applications of the Krein space estimation theory of Chapters 2 and 3
to risk-sensitive filtering, quadratic game-theoretic filtering, and finite-memory adaptive
filtering, and some other problems. The point is that all these problems can be cast into the
problem of calculating the stationary point of a certain indefinite quadratic form. Therefore,
by considering the appropriate state space models and error Gramians, we can use Krein
space estimation theory to calculate these stationary points and to study their properties.
Although many of the connections between H*, risk-sensitive and quadratic game-theoretic
estimation and control are known in the literature, the material of this chapter sheds further
light on these connections and provides a new perspective on these problems.

Chapter 7: H*-Optimality of the LMS Algorithm

Chapter 7 uses the connection between adaptive filtering and state-space estimation to
study adaptive filtering with an H* criterion. In particular, it is shown that the celebrated
LMS (least-mean-squares) adaptive algorithm is H*-optimal. The LMS algorithm has been
long regarded as an approzimate solution to either a stochastic or a deterministic least-
squares problem, and it essentially amounts to updating the weight vector estimates along
the direction of the instantaneous gradient of a quadratic cost function. In this chapter it
is shown that LMS can be regarded as the exact solution to a minimization problem in its
own right. Namely, it is established that it is a minimax filter: it minimizes the maximum
energy gain from the disturbances to the prediction errors, while the closely related so-called
normalized LMS algorithm minimizes the maximum energy gain from the disturbances to
the filtered errors. Moreover, the results of Chapter 6 show that they also minimize a certain
exponential cost function and are thus also risk-sensitive optimal. The various implications
of these results are also discussed, and it is shown how they provide theoretical justification
for the widely observed excellent robustness properties of the LMS filter.

In order to compare the robustness of other adaptive filtering algorithms with the (H*-
optimal) LMS and normalized LMS algorithms, Appendix 7.B examines the robustness of
least-squares-based adaptive filters, such as the RLS algorithm, from the H* point of view.
The basic result is the derivation of certain upper and lower bounds for the H* norm of the
RLS algorithm (and in fact, more generally, of the Kalman filter) with respect to prediction
and filtered errors. The main conclusion is that, unlike LMS and normalized LMS which
do not allow for any amplification of the disturbances, the RLS algorithm does allow for
such amplification. This fact can be especially pronounced in the prediction error case.
Moreover, it is also shown that the H* norm for RLS is data-dependent, whereas for LMS
and normalized LMS it is not so because the H*® norm is simply unity.

Chapter 8: Duality

Kalman (1960) was the first to point out that the solutions of the quadratic regulator control
problem and the linear least-mean-squares estimation problem for state-space models can be
regarded as being “dual” in a certain sense. However, few textbooks explore the underlying
reasons for this duality, or note that we can have dualities between different estimation
problems (or different control problems). In this chapter, we introduce the concept of
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duality through the geometrical notion of dual bases for linear spaces spanned by a set of
nonorthogonal basis vectors. We also study the consequences of duality when the underlying
spaces have state-space structure, and show that the dual bases inherit a form of state-space
structure. In particular, depending on the choice of the original basis, we show that the dual
bases can have backwards-time, forwards-time, or mixed, so-called complementary state-
space models. [The backwards-time complementary model, for example, is closely related
to the adjoint system.] We also discuss some of the applications of duality to smoothing
problems. The main application of the dual approach to quadratic problems, however, is in
control, which is the subject of the next chapter.

Chapter 9: Finite-Horizon Control Problems

Chapter 9 is devoted to finite-horizon H? and H* control problems. The main building block
in our study is the indefinite LQR (linear-quadratic-regulator) problem, whose solution is
most naturally obtained by appealing to the duality of Chapter 8. Using the solution to the
indefinite LQR problem we then solve the finite-horizon full-information and measurement-
feedback H2 and H* control problems. The full-information control problem is recognized
to be the dual of the estimation problem studied in Chapter 4, whereas the solution to the
measurement-feedback problem requires a certain a two-step procedure which effectively
separates the problem into a full-information control problem and an estimation problem.

Chapter 10: Input-Output Aproach to H? and H® Estimation

The various estimation and control problems solved in the previous chapters are all finite-
horizon problems. To extend these solutions to the infinite-horizon case, it would appear
that we must resort to one of the following two strategies: (i), develop a theory for linear
estimation in Krein spaces with an infinite number of observations, along the lines of Chap-
ters 2 and 3, and then use the same type of geometric arguments as in Chapters 4-9 to
obtain the infinite-horizon solutions, or (ii), study the limiting behavior of the finite-horizon
solutions as time progresses to infinity, and thereby obtain the infinite-horizon solutions.

Although the first approach is interesting, it becomes somewhat complicated because
of the infinite-dimensional Krein spaces that arise, and the crucial questions of existence,
boundedness, and stability that come with them. The second approach, as mentioned earlier
in Sec. 1.2.4, runs into problems, since to establish the convergence of the finite-horizon H*
solutions we need to first assume the existence of an infinite-horizon solution.

Therefore, to solve the infinite-horizon problem, a fresh outlook seems helpful, and so
in Chapters 10 and 11 we take a more fundamental input-output approach to estimation
and control. This approach has the benefit that it allows the structure and properties of
the H? and H* solutions (such as the parametrization of all solutions, the separation prin-
ciples, the maximum entropy properties, etc.) to be revealed and understood in their most
transparent form, and without specifying the finite/infinite-horizon, time-variant/invariant,
finite/infinite-dimensional, or even discrete-time/continuous-time nature of the problem.
[These properties are at times obscured by the fine details that occur in specific problems.]
In this framework the solutions to H? and H® problems are obtained from the canonical
factorization of certain (possibly indefinite) transfer operators. This serves as yet another
illustration of the unification of H? and H* problems achieved via considering indefinite
metric spaces. It also motivates us to further consider state-space structure which enables
the required canonical factorizations to be explicitly found.
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Chapter 11: Input-Output Aproach to H? and H® Control

While Chapter 10 studies the estimation problem at the general input-output level of transfer
operators, Chapter 11 is concerned with control problems. The various H? and H®, full-
information and measurement-feedback, problems, along with their respective stochastic
and deterministic interpretations, and noncausal and causal (optimal and and suboptimal)
solutions are described. As mentioned earlier, the solutions are described at the level of
transfer operators and require certain canonical factorizations.

Chapter 12: The Discrete-Time Algebraic Riccati Equation

Chapter 13 studies the celebrated discrete-time algebraic Riccati equation (DARE) which
arises in an impressive range of applications in state-space systems and control theory. The
main reason is that solutions to the DARE allow one to perform the canonical factorization
of certain Popov functions, which is also a required step in the solution of infinite horizon
H? and H*® solutions.

Although a great deal is known about the Riccati equation when the coefficient matrices
are positive semi-definite, much less is known when these coefficients are indefinite matrices.
In this chapter the DARE is considered in the full generality of this, so-called, indefinite case
and the results are then particularized to some important special cases. In addition to the
aforementioned H? and H* cases, these include the KYP, bounded-real, and positive real
lemmas, as well as the celebrated Nehari problem. The main result is that solutions to
the DARE, or more precisely a system of algebraic Riccati equations (SDARE), exists if, and
only if, a certain proper factorization of the Popov function exists. Additional conditions are
then given under which the solution to the DARE becomes stabilizing, Hermitian, positive
semi-definite, etc. We also relate the solutions of the DARE to a so-called symplectic matrix,
and show that the wellknown invariant subspace method can be used to compute solutions
of the DARE in the indefinite case as well.

Chapter 13: Infinite Horizon Results for State-Space Models

The results of Chapters 10 and 12 are used to study the infinite horizon H? and H* esti-
mation and control problems for time-invariant state-space models. This is the case most
studied in the literature, and so in this chapter we make a more detailed comparison with
earlier results and approaches.

Chapter 14: Asymptotic Behavior

Our solution to the infinite-horizon H? and H* estimation and control problems were ob-
tained by studying the infinite-horizon problem directly, rather than by studying the limiting
behavior of the finite-horizon solution. Therefore, the question of the asymptotic behavior
of the finite-horizon H? and H* solutions remains, which is the subject of this chapter.
Assuming a time-invariant state-space structure, the main objective is to find conditions
under which, for a given initial condition, the solution to the Riccati recursion converges to
a solution of the associated DARE. The main result states that if a stabilizing solution to the
DARE exists, and if a certain sequence of matrices is uniformly nonsingular, then the Riccati
recursion converges (exponentially) to the unique stabilizing solution. In the general case,
the aforementioned nonsingularity conditions need to be recursively checked. However, in
some special cases they can be reduced to more simple and more explicit requirements on
the initial condition. In particular, when the coefficient matrices of the Riccati recursion are
positive semi-definite, as is the case in H? problems, we can guarantee the convergence of the
Riccati recursion for all positive semi-definite, and even some indefinite, initial conditions.



30 Introduction and Motivation Chapter 1

Moreover, in the case frequently encountered in H* filtering and control, we can guarantee
convergence for all positive semi-definite initial conditions that are less than or equal to a
certain positive semi-definite matrix.

Chapter 15: Optimal H*> Solutions

Most of the results in the earlier chapters are devoted to the study of so-called suboptimal
H®° problems, on the ground that optimal solutions were known only in a handful of cases.
However, this is perhaps too pessimistic a conclusion. In Chapter 7 we presented optimal
H* solutions for the adaptive filtering problem. In Chapter 15 we show that optimal H*
solutions can also be obtained for several other interesting problems, including equalization,
full-information and measurement-feedback tracking, filtering signals in additive noise, and
one-step-ahead prediction. For more general H* estimation and control problems, we obtain
a formula for the optimal H*® norm. While this formula does not always lead to simple
frequency-domain characterizations, it does give considerable insight into the “structure”
of estimation and control problems, and, in particular, to the questions of “worst-case
complete estimability” and “worst-case non-estimability”, viz., the questions of whether a
given estimation or control problem is “easy” or “difficult” to solve.

Chapter 16: Final Remarks

The results presented in the earlier chapters were almost all exclusively devoted to discrete-
time systems. In this chapter we very briefly outline how these results can be generalized to
continuous-time systems, bearing in mind that a more detailed analysis requires another oc-
casion. As a general principle, we note that the input-output operator-theoretic approaches
of Chapters 10 and 11 do not differ substantially in the discrete-time and continuous-time
cases, whereas the state-space approaches (as in Chapters 3, 4 and 9) do exhibit certain
differences. Finally, we comment on some possible directions for further work and re-
search.



