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APPENDICES A and B

P 1. Let g(x, z) = xTCz, where x, z ∈ RM and C is a matrix. Verify that

∇z g(x, z) = xTC, ∇x g(x, z) = zTCT

P 2. Let g(z) = xTCw, where x, w ∈ RM and both are functions of a vector
z ∈ RP , i.e., x = x(z) and w = w(z), and C is a matrix that is independent
of z. Establish the chain rule

∇z g(z) = xTC (∇z w(z)) + wTCT (∇z x(z))

where, since x(z) is a vector-valued function of a vector argument, its gradient
(or Jacobian) relative to z is now defined as the M ×P matrix function whose
entries are given by:

[∇z x(z)]m,p

∆
=

∂xm

∂zn
, m = 1, 2, . . . , M, p = 1, 2, . . . , P

That is, the (m, p)−th entry is equal to the partial derivative of the m−th
entry of the vector x(z) relative to the p−th entry of z. Similarly for ∇z w(z).

P 3. Let g(z) be a real-valued differentiable function with z ∈ RM . Assume
the entries of z are functions of a scalar parameter t,

z = col{z1(t), z2(t), . . . , zM (t)}

Introduce the column vector

dz

dt

∆
= col

{
dz1(t)

dt
,

dz2(t)

dt
, . . . ,

dzM (t)

dt

}

Show that
dg

dt
= [∇z g(z)]

dz

dt

P 4. Let g(z) be a real-valued function with z ∈ RM . Let f(t) be a real-valued
function with t ∈ R. Both functions are differentiable in their arguments. Show
that

∇z f(g(z)) =

(
df(t)

dt

∣∣∣∣
t=g(z)

)
∇z g(z)

P 5. Let g(z) be a real-valued twice-differentiable function with z ∈ RM .
Define f(t) = g(z + t∆z) for t ∈ [0, 1]. Show from first principles that (D.4)
holds, namely,

df(t)

dt
= [∇z g(z + t∆z)]∆z
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Show also that
d2f(t)

dt2
= (∆z)

T
[
∇2z g(z + t∆z)

]
∆z

P 6. Compute the gradient vectors relative to z and the Hessian matrices of
the following functions for z ∈ CM×1:

(a) g(z) = zTz.

(b) g(z) = ‖2Re(z)‖2.
(c) g(z) = ‖z‖4.

P 7. Consider g(z) = ‖z‖4 + 2‖Re(z)‖2, where z ∈ CM .

(a) Determine the complex gradients ∇z g(z), ∇z∗g(z), and ∇zTg(z).

(b) Determine H(v), the real-form of the complex Hessian matrix.

(c) Determine Hc(u), the complex-form of the complex Hessian matrix.

(d) Verify that the Hessian matrices of parts (b)-(c) satisfy relation (B.26).

(e) Is g(z) convex? strictly convex? strongly-convex?

(f) Find the gradient vector and Hessian matrix when z ∈ RM .

P 8. Establish the validity of relation (B.26).

APPENDIX C

P 9. Show that definitions (C.3) and (C.4) are equivalent characterizations
of convexity when g(z) is differentiable.

P 10. Establish property (2) in Example C.2.

P 11. Let g(z) ∈ R and z ∈ CM . Show that g(z) = ‖z‖4 is strictly convex.
P 12. Show that the regularized hinge loss function (C.24) is strongly convex.

P 13. Establish (C.40) as an equivalent characterization for ν−strong con-
vexity for functions g(z) ∈ R of complex arguments z ∈ CM .

P 14. Establish property (C.43) for ν−strongly convex functions g(z) ∈ R of
complex arguments z ∈ CM .

P 15. Let z ∈ CM and consider a full-rank matrix A ∈ CN×M with N ≥ M .
Examine the convexity, strict convexity, and strong-convexity of the function
g(z) = ‖Az‖α for all values of α in the range α ∈ [1, ∞). How would your
answers change if A were nonzero but rank-deficient?
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APPENDICES D and E

P 16. Consider g(z) = ‖z‖4 + ‖2Re(z)‖2, where z ∈ CM . Let zo denote
a stationary point of g(z) and introduce z̃ = zo − z. Use the mean-value
theorem (D.19) to express the difference g(z) − g(zo) in terms of z̃. Write
down expression (D.20) for this case as well. Evaluate the integral expressions
whenever possible.

P 17. Let g(z) be a real-valued twice-differentiable function with z ∈ RM .
Use the result of Lemma D.1 to conclude that

g(zo+∆z) = g(zo)+[∇z g(zo)]∆z + (∆z)
T

(∫ 1

0

∫ 1

0

t∇2z g(zo + tr∆z)drdt

)
∆z

How would this result change if z ∈ CM?

P 18. Consider column vectors h, z ∈ RM and ρ > 0. Introduce the logistic
function:

g(z) =
ρ

2
‖z‖2 + ln

(
1 + e−hTz

)

(a) Show that g(z) is strongly-convex. Let zo denote its global minimizer.

(b) Show that, for any z, the Hessian matrix function of g(z) satisfies a Lips-
chitz condition of the form

∥∥∇2z g(z)− ∇2z g(zo)
∥∥ ≤ κ ‖zo − z‖

for some κ ≥ 0. Determine an expression for κ in terms of h.

P 19. Problems 19–21 are motivated by useful properties from [190][Ch. 1].
Consider a convex function g(z) ∈ R with a gradient vector that satisfies the
Lipschitz condition (E.21) with z ∈ RM . Let zo denote the location of a global
minimum for g(z) and define z̃ = zo − z. Show that:

(∇z g(z)) z̃ ≤ −(1/δ) ‖∇z g(z)‖2

Provide one interpretation for this result.

P 20. Consider a ν−strongly convex function g(z) ∈ R with z ∈ RM . Let zo

denote its unique global minimum. Show that

g(z)− g(zo) ≤ (1/2ν) ‖∇z g(z)‖2

How does this result relate to expression (E.17).
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P 21. Let g(z) be a real-valued twice-differentiable function with z ∈ RM .
Refer to the mean-value theorem (D.8).

(a) Assume the gradient of g(z) is δ−Lipschitz continuous in the interval
z ∈ [zo, zo +∆z] so that

‖∇z g(zo + t∆z)− ∇z g(zo)‖ ≤ δ · t · ‖∆z‖

for any t ∈ [0, 1]. Show that

‖g(zo +∆z)− g(zo)− [∇z g(zo)]∆z‖ ≤ δ

2
‖∆z‖2

(b) Assume instead that the Hessian matrix of g(z) is δ−Lipschitz continuous
in the interval z ∈ [zo, zo +∆z], i.e.,

‖∇2z g(zo + t∆z)− ∇2z g(zo)‖ ≤ δ · t · ‖∆z‖

for any t ∈ [0, 1]. Show that

∥∥∥∥g(zo +∆z)− g(zo)− [∇z g(zo)]∆z − 1

2
(∆z)

T
[
∇2z g(zo)

]
∆z

∥∥∥∥ ≤ δ

6
‖∆z‖3

APPENDICES F and G

P 22. Establish the validity of the third property in Table F.2.

P 23. Establish the singular value property (8) for Kronecker products from
Table F.1.

P 24. Consider matrices A, B, C, and D of compatible dimensions. Show that

Tr(ATBCDT) = (vec(A))
T
(D ⊗ B)vec(C)

P 25. Show that Tr(A ⊗ B) = Tr(A)Tr(B).

P 26. Verify that when B is Hermitian, it also holds that Tr(AB) =
[vec(B)]

∗
vec(A).

P 27. Show that, for any matrix norm, |Tr(A)| ≤ c · ‖A‖ for some constant c.

P 28. Establish the validity of (F.5), namely, that the 2−induced norm of a
matrix is equal to its maximum singular value.
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P 29. Let all eigenvalues of A ∈ CN×N have negative real parts. The matrix
A is not necessarily Hermitian and, therefore, its eigenvalues can be complex.
Find a condition on µ > 0 to ensure that the matrix IN + µA is stable.

P 30. For every matrix A, any matrix norm, and any ǫ > 0, show that it
holds:

‖An‖ ≤ c(ρ(A) + ǫ)n

P 31. For any matrix norm, show that the spectral radius of a matrix A
satisfies

ρ(A) = lim
n→∞

‖An‖1/n

P 32. Assume A is a stable square matrix and define the series

X
∆
=

∞∑

n=0

An

(a) Show that the series converges.

(b) Show that X = (I − A)−1.

P 33. Assume B is a stable square matrix and define the series

X
∆
=

∞∑

n=0

[B∗]
n

Bn

Show that the series converges to the unique solution of the Lyapunov equation
X − B∗XB = I.

P 34. Establish Jensen’s inequality for both cases of (F.26) and (F.29).

P 35. Establish both parts of Lemma F.5.

P 36. Establish Lemma F.6.

P 37. Derive the logit expression (G.6) from (G.5).

CHAPTER 2

P 38. Consider the gradient-descent recursion (2.40) where the step-size se-
quence is selected as

µ(i) =
τ

(i+ 1)q
,

1

2
< q ≤ 1, τ > 0

(a) Verify that the step-size sequence satisfies conditions (2.38).

(b) Determine the rate of convergence of ‖w̃i‖2 to zero.
(c) For a fixed τ , which value of q in the range 0.5 < q ≤ 1 results in the
fastest convergence rate?
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P 39. Consider the regularized logistic risk (2.9). Prove that

(a) ‖wo‖ ≤ E‖h‖/ρ.

(b) ‖wo‖2 ≤ Tr(Rh)/ρ2.

P 40. Problems 40–44 are motivated by useful results from [190][Chs. 1,3].
Let J(w) be a real-valued differentiable cost function whose gradient vector
satisfies the Lipschitz condition (2.17). The cost J(w) is not assumed be con-
vex. Instead, we assume that it is lower-bounded, namely, J(w) ≥ L for all w
and for some finite value L. Consider the gradient-descent algorithm (2.21).
Show that if the step-size µ satisfies µ < 2/δ, then the sequence of iterates
{wi} satisfy the following two properties:

(a) J(wi) ≤ J(wi−1).

(b) limi→∞ ∇wJ(wi) = 0.

P 41. Let J(w) be a real-valued cost function that satisfies the conditions
stated in Assumption 2.1. Consider the gradient-descent algorithm (2.21).
Establish the following result:

J(wi)− J(wo) ≤ α1 (J(wi−1)− J(wo))

where α1 = 1 − 2µν + µ2νδ. Use this result to establish that w̃i converges
to zero for all µ < 2/δ at a geometric rate determined by α1. Compare this
result with the statement of Lemma 2.1.

P 42. Refer to the second proof of Lemma 2.1. Conclude that convergence
occurs at a geometric rate given by α2 = max{(1−µδ)2, (1−µν)2}. Show that
the convergence rate is fastest when the step-size is chosen as µo = 2/(ν + δ)
for which αo

2 = (δ − ν)2/(δ + ν)2. Roughly, how many iterations are needed
for the squared error, ‖w̃i‖2, to fall below a small threshold value, ǫ?

P 43. Let J(w) denote a real-valued ν−strongly convex and twice-
differentiable cost function with w ∈ RM . Assume the Hessian matrix of
J(w) is δ−Lipschitz continuous, i.e.,

∥∥∇2wJ(w2)− ∇2wJ(w1)
∥∥ ≤ δ‖w2 − w1‖

The global minimizer of J(w) is sought by means of the following iterative
Newton’s method:

wi = wi−1 −
[
∇2wJ(wi−1)

]−1∇wTJ(wi−1), i ≥ 0
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which employs the inverse of the Hessian matrix. The initial condition is
denoted by w−1. Let

α
∆
=

(
δ

2ν2

)2
‖∇wJ(w−1)‖2

and assume α < 1. Show that ‖w̃i‖2 converges to zero at a geometric rate.
Specifically, show that

‖w̃i‖2 ≤
(
2ν2

δ

)
α2

i

Conclude that the convergence rate is now dependent on the quality of the
initial condition.

P 44. Let J(w) be a real-valued cost function that satisfies the conditions
stated in Assumption 2.1 with w ∈ RM . Consider a modified gradient-descent
algorithm of the following form:

wi = wi−1 − µ∇wTJ(wi−1) + η(wi−1 − wi−2), i ≥ 0

where the past iterate wi−2 is also used in the update equation. Assume the
initial conditions w−1 and w−2 lie sufficiently close to wo, i.e., ‖w̃−1‖2 < ǫ′

and ‖w̃−2‖2 < ǫ′ for some small enough ǫ.

(a) Show that if 0 ≤ η < 1 and 0 < µ < 2(1 + η)/δ, then ‖w̃i‖2 converges to
zero at a geometric rate, α3. Identify the rate and show that optimal values
for {µ, η, α3} are

µo =
4

(√
δ +

√
ν
)2 , ηo =

(√
δ − √

ν√
δ +

√
ν

)2
, αo

3 = ηo

(b) Let κ = δ/ν. Large values for κ indicate ill-conditioned Hessian matrices,
∇2wJ(w), since their spectra will lie over wider intervals. Let αo

2 denote the
optimal rate of convergence when η = 0. We already know from Problem 42
that αo

2 = (δ − ν)2/(δ + ν)2. Argue that for large κ:

αo
2 ≈ 1− 2/κ, αo

3 ≈ 1− 2/√
κ

Compare the number of iterations that are needed for ‖w̃i‖2 to fall below a
threshold ǫ for both cases of η = 0 and η = ηo.

P 45. Let J(w) denote a real-valued ν−strongly convex and twice-
differentiable cost function with w ∈ CM . Following the construction from
Problem 43, develop Newton’s method for complex-valued arguments w, and
study its convergence properties. Simplify the general results to the case of
mean-square-error costs.
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CHAPTER 3

P 46. How would the convergence rates shown in (3.111) change for step-size
sequences of the form

µ(i) =
τ

(i+ 1)q
,

1

2
< q ≤ 1, τ > 0?

P 47. Assume the regression data ui is Gaussian-distributed. Show that
(3.22) is also satisfied for the following choice of the constant c:

c = λ2max(Ru) + λmax(Ru)Tr(Ru)

P 48. Let γ(i) be a streaming sequence of binary random variables that
assume the values ±1, and let hi be a streaming sequence of M × 1 real
random (feature) vectors with Rh = Ehih

T

i > 0. Assume the random pro-
cesses {γ(i), hi} are wide-sense stationary. Consider the regularized logistic
risk function:

J(w) =
ρ

2
‖w‖2 + E

{
ln

[
1 + e−γ(i)hT

i w
]}

(a) Write down the expression for the gradient noise process, si(wi−1), that
would result from using a constant step-size stochastic gradient algorithm for
seeking the minimum of J(w).

(b) Verify that this noise process satisfies conditions similar to (3.31)–(3.32),
namely,

E [ si(wi−1) | F i−1 ] = 0

E
[

‖si(wi−1)‖2 | F i−1

]
≤ β2 ‖w̃i−1‖2 + σ2s

for some nonnegative constants β2 and σ2s .

(c) Verify similarly that the fourth-order moment of the noise process satisfies
a condition similar to (3.56), namely,

E
[

‖si(wi−1)‖4 | F i−1

]
≤ β44 ‖w̃i−1‖4 + σ4s4

for some nonnegative constants β44 and σ4s4. What conditions on the moments
of the data are needed to ensure this result?

(d) For any w ∈ F i−1, we let

Rs,i(w)
∆
= E

[
si(w)s

T

i (w) | F i−1

]
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denote the conditional second-order moment of the gradient noise process.
Show that the cost function, J(w), and the above conditional moment satisfy
Lipschitz conditions similar to (4.18)–(4.19), i.e.,

∥∥∇2w J(wo +∆w)− ∇2w J(wo)
∥∥ ≤ κ1 ‖∆w‖

‖Rs,i(w
o +∆w)− Rs,i(w

o)‖ ≤ κ2 ‖∆w‖γ

for small perturbations ‖∆w‖ ≤ ǫ and for some constants κ1 ≥ 0, κ2 ≥ 0, and
positive exponent γ. What conditions on the moments of the data are needed
to ensure these results?

P 49. Consider the mean-square-error cost J(w) = E (d(i)−uiw)
2. Substitute

(3.19) into (3.42) and verify that the error recursion in this case reduces to

w̃i = (IM − 2µuT

i ui)w̃i−1 − 2µuT

i v(i)

Refer to the conditions on the regression data and the measurement noise
process {ui, v(i)} in Example 3.1. Assume further that the regression data is
Gaussian distributed. The following problem is extracted from the results of
[206][Ch. 23].

(a) Determine a recursion for E w̃i. Find a necessary and sufficient condition
on µ to ensure convergence in the mean.

(b) Determine a recursion for E‖w̃i‖2.

(c) Find a necessary and sufficient condition on µ to ensure that E‖w̃i‖2
converges.

(d) How does the condition of part (c) compare with condition (3.36)?

(e) Find an expression for the MSD level of the filter.

P 50. Consider the mean-square-error cost J(w) = E (d(i) − uiw)
2. Refer

to the conditions on the regression data and the measurement noise process
{ui, v(i)} in Example 3.1. Assume further that the regression data is Gaussian
distributed with Ru = σ2uIM . Consider the stochastic-gradient algorithm:

wi = wi−1 + 2µuT

i e(i), e(i) = d(i)− uiwi−1, i ≥ 0

(a) Determine exact expressions for the filter EMSE and MSD, written as

MSD = lim
i→∞

E‖w̃i‖2, EMSE = lim
i→∞

E |uiw̃i−1|2

where w̃i = wo − wi.
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(b) Define the convergence time, K, of the filter as the number of iterations it
takes for the mean-square-error, E |e(i)|2, to be within ǫ% of its steady-state
value. Find a closed form expression for K.

P 51. Consider the LMS recursion (3.13) and a collection of L data points
{d(i), ui, i = 0, 1, . . . , L−1}. Starting with the initial condition w−1 = 0, the
recursion is applied to all L data points until wL−1 is generated. The recursion
is then applied again to the same data points albeit using now wL−1 as the
initial condition. This process is continued indefinitely: at the end of every L
iterations, the procedure is repeated starting from the last iterate obtained
in the previous iteration. Assuming the step-size µ is sufficiently small and
L is finite but of sufficient size, what would the MSD performance of this
implementation be?

P 52. Refer to the stochastic gradient recursion (3.5) and assume the step-size
parameter µ is replaced by a diagonal matrix as follows:

wi = wi−1 − B ∇̂wTJ(wi−1), i ≥ 0

where B is the M × M diagonal matrix:

B
∆
= µmax · diag{b1, b2, . . . , bM }

and the {bm} are positive scalars in the range 0 < bm ≤ 1. In other words,
different step-sizes are possibly assigned to the different entries of wi, with
µmax denoting the largest step-size value. Assume the conditions under As-
sumptions 3.1 and 3.2 on the cost function and the gradient noise process
continue to hold.

(a) Extend the result of Lemma 3.1 to this case.

(b) Extend the result of Lemma 3.2 to this case.

P 53. All variables are zero-mean. Consider a complex-valued scalar random
variable d and a complex-valued 1 × M regression vector u. Let d̂ = uwo

denote the linear least-mean-squares estimator of d given u. That is, wo ∈ CM

is the vector that minimizes the mean-square-error cost

wo ∆
= argmin

w
E |d − uw|2

Consider additionally the problems of estimating separately the real and imag-
inary parts of d from the real and imaginary parts of u, also in the linear
least-mean-squares error sense, namely,

d̂real =
[
Re(u) Im(u)

]
wo

real
, d̂imag =

[
Re(u) Im(u)

]
wo

imag
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where the wo
real

∈ R2M and wo
imag

∈ R2M are the minimizers to the following
mean-square-error costs:

wo
real

∆
= argmin

wreal

E
∣∣Re(d) −

[
Re(u) Im(u)

]
wreal

∣∣2

wo
imag

∆
= argmin

wimag

E
∣∣Im(d)−

[
Re(u) Im(u)

]
wimag

∣∣2

Let d̂2 = d̂real + jd̂imag denote the estimator that is obtained for d from the
second construction.

(a) Argue that the problem of estimating the real and imaginary parts of
d from the real and imaginary parts of u is equivalent to the problem of
estimating d from the combination {u, u∗}, namely,

d̂2 = uao + (u∗)
T

bo

where ao, bo ∈ CM correspond to the minimizer of the mean-square-error cost:

ao, bo ∆
= argmin

a,b
E |d − ua − (u∗)Tb|2

(b) Determine expressions for wo, wo
real

, and wo
imag

.

(c) What is the mean-square-error that results from the construction d̂2?
How does it compare to the mean-square-error obtained from the construc-
tion d̂? Under what conditions will both constructions lead to the same
mean-square-error value?

(d) Write down an LMS-type stochastic-gradient algorithm for estimating
{ao, bo} from streaming data {d(i), ui, u∗

i }.

(e) Assuming sufficiently small step-sizes, derive an expression for the filter
MSD. How does this performance compare to that delivered by the traditional
LMS implementation that estimates wo directly from {d(i), ui}? Under what
conditions will both filters have similar MSD performance?

CHAPTER 4

P 54. Refer to the stochastic gradient recursion (3.5) and assume the step-size
parameter µ is replaced by a diagonal matrix as follows:

wi = wi−1 − B ∇̂wTJ(wi−1), i ≥ 0
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where B is the M × M diagonal matrix:

B
∆
= µmax · diag{b1, b2, . . . , bM }

and the {bm} are positive scalars in the range 0 < bm ≤ 1. In other words,
different step-sizes are possibly assigned to update the different entries of wi,
with µmax denoting the largest step-size value. Assume the conditions under
Assumptions 4.1, 4.2, and 4.4 on the cost function and the gradient noise
process continue to hold. Extend the result of Theorem 4.7 to this case. What
would the performance expressions be in the complex case?

P 55. Is there any advantage to using a complex step-size in the complex case
for single-agent adaptation and learning? Refer to the stochastic-gradient
recursion (3.116) in the complex case and replace µ by the complex value
µ = µaejθ, where µa denotes its amplitude and θ denotes its phase. How
would the results of Lemma 3.5 and Theorem 4.8 be modified?

CHAPTER 5

P 56. Consider a collection of N agents, each running an LMS update with
step-size µk similar to the situation described in Section 5.1. We express the
step-sizes across the agents in the form µk = µmax · bk, where bk is a positive
scalar bounded by one. What is the average non-cooperative performance
in this case? At what rate of convergence will this average performance be
achieved? Next consider a centralized implementation of the form (5.13). Pick
µ to match the above convergence rate. How do the performance levels of the
average non-cooperative and centralized solutions compare in this case? Will
the conclusion of Lemma 5.2 continue to hold?

P 57. Lemma 5.2 establishes that the MSD performance of the centralized
stochastic-gradient solution is always superior to the average MSD perfor-
mance over a collection of N non-cooperative agents. Example 5.1 describes
a situation where the centralized solution is N−fold superior to the non-
cooperative solution. Can you find an example where the centralized solution
can be more than N−fold superior to non-cooperative implementations?

CHAPTER 6

P 58. Is the converse statement of Lemma 6.1 correct? That is, does it hold
that if A is a primitive left-stochastic matrix, then the network is strongly
connected?
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P 59. Consider an N−agent connected network with a left-stochastic combi-
nation matrix A. We already know that A is irreducible but not necessarily
primitive. Let B = 0.5(I + A). Is B a left-stochastic matrix? Show that the
entries of BN−1 are all positive. Conclude that B is a primitive matrix.

P 60. Show that to check whether an N × N left-stochastic matrix A is
irreducible or primitive, we can replace all nonzero entries in A by ones and
verify instead whether the resulting matrix is irreducible or primitive.

P 61. Assume A is a left-stochastic primitive matrix of size N × N .

(a) Show that A is power convergent and the limit converges to the following
rank-one product:

lim
n→∞

An = p1T

where p is the Perron vector of A. Is the limit a primitive matrix?

(b) For any vector b = col{b1, b2, . . . , bN }, show that

lim
n→∞

Anb = αp

where α = b1 + b2 + . . .+ bN .

(c) If A is irreducible but not necessarily primitive, does the limit of part (a)
exist?

P 62. Consider the 3× 3 combination matrix

A =



1
2 1 0
0 0 1
1
2 0 0




Draw the corresponding graph. Is the network strongly-connected? Compute
the powers A3 and A4. Conclude that the power no in (6.10) can be larger
than the number of agents, N .

P 63. Give an example of a 4−agent network that is connected (but not
strongly-connected) and whose combination matrix A is not primitive. Verify
that the corresponding A is indeed not primitive.

P 64. Consider a strongly-connected network with N−agents. Prove that, for
any agent k, there always exists a circular path (i.e., a cycle) with non-zero
scaling weights that starts at k and ends at the same location k.

P 65. Show that a network is connected if, and only if, its combination matrix
A is irreducible.
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P 66. Consider an N × N left-stochastic matrix A. Let no = N2 − 2N + 2.
Show that A is primitive if, and only if, [Ano ]ℓk > 0 for all ℓ and k.

P 67. Refer to the original consensus recursion (7.35). Show that under con-
dition (7.33) and assuming that |λ2(A)| < 1, the convergence result (7.36)
holds for all agents. Determine the rate of convergence.

P 68. Consider a network consisting of N vertices and L edges. We associate
two useful matrices with the network. One is the Laplacian matrix, denoted
by L, and is square of size N × N , while the second matrix is the incidence
matrix, denoted by I, and its size is size N ×L. The Laplacian matrix is useful
in characterizing whether a network consists of a single graph or of separate
disconnected subgraphs.

We denote the degree of an agent k by nk and define it as the size of
its neighborhood, nk = |Nk|. Since k ∈ Nk, we have nk ≥ 1. The Laplacian
matrix is symmetric and its entries are defined as follows:

[L]kℓ =





nk − 1, if k = ℓ
−1, if k Ó= ℓ and nodes k and ℓ are neighbors
0, otherwise

Note that the term nk − 1 measures the number of edges that are incident
on agent k, and the locations of the −1′s on row k indicate the agents that
are connected to agent k. The entries of the incidence matrix, I, are defined
as follows. Every column of I represents one edge in the graph. Each edge
connects two agents and its column will display two nonzero entries at the rows
corresponding to these agents: one entry will be +1 and the other entry will
be −1. For directed graphs, the choice of which entry is positive or negative
can be used to identify the agents from which edges emanate (source nodes)
and the agents at which edges arrive (sink nodes). We shall simply assign
positive values to lower indexed agents and negative values to higher indexed
agents:

[I]ke =





+1, if agent k is the lower-indexed node connected to edge e
−1, if agent k is the higher-indexed node connected to edge e
0, otherwise

Let
θ1 ≥ θ2 ≥ . . . ≥ θN

denote the ordered eigenvalues of L. Establish the following properties —
See App. B of [208]:

(a) L = I IT. Conclude that L is symmetric nonnegative-definite so that
θm ≥ 0.
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(b) The rows of L add up to zero so that L1 = 0. This means that 1 is a
right eigenvector of L corresponding to the eigenvalue zero.

(c) The smallest eigenvalue is always zero, θN = 0. The second smallest
eigenvalue, θN−1, is called the algebraic connectivity of the graph.

(d) The number of times that zero is an eigenvalue of L (i.e., its multiplicity)
is equal to the number of connected subgraphs.

(e) The algebraic connectivity of a connected graph is nonzero, i.e., θN−1 Ó= 0.
In other words, a graph is connected if, and only if, its algebraic connectivity
is nonzero.

P 69. Show that the Laplacian matrix of a fully-connected network with N
agents is given by L = NIN −1N1

T

N . Conclude that the largest eigenvalue of
L is λ1(L) = N .

CHAPTER 7

P 70. Write down the ATC diffusion LMS algorithm that would result from
minimizing the following regularized cost function over a connected network
of N agents, where ρ > 0 and w ∈ CM :

min
w

ρ‖w‖2 +
N∑

k=1

E |dk(i)− uk,iw|2

P 71. Derive a CTA diffusion LMS algorithm for minimizing the following
constrained cost function over a connected network of N agents:

min
w

N∑

k=1

E |dk(i)− uk,iw|2 subject to c∗w = α

where c is a known column vector and α is a given scalar.

P 72. Derive a consensus LMS algorithm for minimizing the following con-
strained cost function over a connected network of N agents:

min
w

N∑

k=1

E |dk(i)− uk,iw|2 subject to c∗w = α

where c is a known column vector and α is a given scalar.
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P 73. Derive a diffusion least-mean-squares algorithm for minimizing the fol-
lowing optimization problem over a connected network of N = N1+N2 agents:

min
w

[
N1∑

k=1

E |dk(i)− uk,iw|2 −
N1+N2∑

k=N1+1

E |dk(i)− uk,iw|2
]

Can you provide an interpretation for this choice of cost functions?

CHAPTER 8

P 74. Consider the incremental LMS recursion (7.7). Define the network error
vector at time i:

w̃i
∆
= col {w̃1,i, w̃2,i, . . . , w̃N,i}

Determine a recursion for the evolution of w̃i.

P 75. Consider the diffusion logistic recursion (7.26). Define the network error
vector at time i:

w̃i
∆
= col {w̃1,i, w̃2,i, . . . , w̃N,i}

Determine a recursion for the evolution of w̃i.

P 76. Consider consensus and diffusion strategies with enlarged coopera-
tion schemes similar to recursions (7.27) and (7.28), which involve a right-
stochastic matrix C. Repeat the derivation of Example 8.1 for MSE networks
and derive the analogue of recursions (8.22) and (8.25) when C is present.

P 77. Consider a situation similar to the MSE network model described in
Example 6.3, except that the linear regression model at each agent k is now

dk(i) = uk,iw
o
k + vk(i), k = 1, 2, . . . , N

where the models {wo
k} are possibly different across the agents. For each agent

k, we define the error vector w̃k,i = wo
k − wk,i, where the error is measured

relative to wo
k. Let

w̃i
∆
= col{w̃1,i, w̃2,i, . . . , w̃N,i}

Repeat the arguments of Example 8.1 and derive the corresponding error
recursions that would correspond to the extensions of (8.22) and (8.25) to
this scenario.

P 78. Establish the validity of (8.91), which provides an expression for the
entries of the Perron eigenvector of a uniform combination matrix.
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P 79. Show that (8.98) are indeed the entries of the Perron eigenvector of the
Hastings matrix defined by (8.96).

P 80. Refer to Figure 8.2. Argue, from the definition of Pareto optimality,
that any w ∈ (wo

1, wo
2) is a Pareto optimal solution for the multi-objective

optimization problem
min

w
{J1(w)J2(w)}

where J1(w) and J2(w) are the quadratic costs defined by (8.69). How would
you select the scalarization weights {π1, π2} to ensure that the resulting Pareto
optimal solution is wπ = 1

3wo
1 +

2
3wo
2? Likewise, how would you select the

scalarization weights {π1, π2} to ensure that the resulting Pareto optimal so-
lution is wπ = 2

3wo
1 +

1
3wo
2?

P 81. Pareto optimality is a useful concept in game theory as well. Consider
two players, A and B. Each player has a choice between two strategies: Player
A can choose between strategies A1 or A2, while player B can choose between
strategies B1 or B2. The table below lists the costs associated with the four
possible choices by the players. For example, refer to the entry in the table
corresponding to player A selecting A1 and player B selecting B1. The cell
shows the values (6, 4), meaning that 6 is the cost incurred by player A and 4
is the cost incurred by player B. The players wish to minimize their costs. Can
you identify which strategies are Pareto optimal? That is, can you identify
those strategies such that there are no other strategies where at least one
player sees his cost reduced (i.e., does better) while the other player does not
do worse?

B1 B2

A1 (6,4) (5,5)
A2 (4,6) (7,5)

P 82. Assume all agents employ the same step-size parameter, µk ≡ µ. As-
sume further that we would like a strongly-connected network of N agents to
optimize the weighted aggregate cost:

Jglob,π(w)
∆
=

N∑

k=1

πkJk(w)

(a) Consider initially the case in which the positive weight πk that is associated
with agent k is chosen to be proportional to its relative degree (i.e., to its level
of connectivity in the network), namely,

πk
∆
= nk

(
N∑

ℓ=1

nℓ

)−1

, nk
∆
= |Nk|
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What combination policy would result from the construction (8.96)? Is the
policy left-stochastic or doubly-stochastic?

(b) Consider next the case in which all πk are identical so that all individual
costs are weighted equally, and minimizing Jglob,π(w) is equivalent to mini-
mizing the aggregate cost:

Jglob(w)
∆
=

N∑

k=1

Jk(w)

What combination policy would result from the construction (8.96)? Is it
left-stochastic or doubly-stochastic?

P 83. If each of the individual left-stochastic combination matrices
{Ao, A1, A2} is primitive, is the product P = A1AoA2 defined by (8.48) prim-
itive? Conversely, if P is primitive, does it necessarily follow that each of the
matrices {Ao, A1, A2} is primitive? Prove or give a counter-example.

P 84. Refer to the general strategy (8.46) and observe that each line contains
a sum over agents ℓ in a neighborhood Nk; these sums use combination weights
from the matrices {A1, Ao, A2}. Do these neighborhoods need to coincide? If
we write instead





φk,i−1 =
∑

ℓ∈Nk,1

a1,ℓk wℓ,i−1

ψk,i =
∑

ℓ∈Nk,o

ao,ℓk φℓ,i−1 − µk ∇̂w∗Jk

(
φk,i−1

)

wk,i =
∑

ℓ∈Nk,2

a2,ℓk ψℓ,i

where {Nk,1, Nk,o, Nk,2} refer to neighborhoods defined by the respective ma-
trices {A1, Ao, A2}, would the result of Lemma 8.1 still hold?

P 85. Refer to the general strategy (8.46) and replace it by





φk,i−1 =
∑

ℓ∈Nk,1

a1,ℓk wℓ,i−1

ψk,i =
∑

ℓ∈Nk,o

ao,ℓk φℓ,i−1 − µk

∑

ℓ∈Nk,c

cℓk∇̂w∗Jℓ

(
φk,i−1

)

wk,i =
∑

ℓ∈Nk,2

a2,ℓk ψℓ,i

where C = [cℓk] is a right-stochastic matrix (each of its rows adds up to one),
and {Nk,1, Nk,o, Nk,2, Nk,c} refer to neighborhoods defined by the respective
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matrices {A1, Ao, A2, C}. Extend the result of Lemma 8.1 to this case and
derive the corresponding error recursion.

CHAPTER 9

P 86. Refer to definition (9.7) for q and let qk denote the individual entries
of q. Show that

N∑

k=1

qk

µk
= 1

P 87. Refer to the variable w̄e
i defined by (9.55). What are the dimensions

of w̄e
i ? Provide an interpretation for w̄e

i as a weighted linear combination of
the error vectors {w̃

e
k,i} across all N agents.

P 88. Refer to the non-cooperative strategy (5.76) with step-size µk, say,

wk,i = wk,i−1 − µk ∇̂w∗Jk(wk,i−1), k = 1, 2, . . . , N

and introduce the weighted convex combination

wc,i
∆
=

N∑

k=1

pkwk,i

for some positive scalars {pk} that add up to one.

(a) Apply the mean-value relation (D.20) around the minimizer w⋆ of
(9.6) and derive a recursion for the extended version of the error vector
w̃c,i = w⋆ − wc,i. How does the recursion for w̃

e
c,i compare with the recursion

for w̄e
i given by (9.60)?

(b) Evaluate the order of the following mean-square-error:

lim sup
i→∞

E‖w̃k,i − w̃c,i‖2 ?

What is the interpretation of this result?

P 89. Consider the case of MSE networks from Example 6.3 with a common
minimizer wo across all agents, and assume the ATC diffusion strategy is
employed by setting A1 = Ao = IN and A2 = A in (8.46) for some left-
stochastic primitive matrix A. Repeat the proof of Theorem 9.1 for this case,
with particular attention to the steps that get simplified. Are extended error
vectors necessary in this case?
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P 90. Consider the case of MSE networks from Example 6.3 with a com-
mon minimizer wo across all agents, and assume the ATC diffusion strategy
is employed by setting A1 = Ao = IN and A2 = A in (8.46) for some doubly-
stochastic primitive matrix A. Write down what the corresponding error re-
cursion (9.12) will become in this case. Are extended error vectors necessary
in this case? Equate the variances of both sides of this error recursion and use
the result to establish the mean-square stability of the network without the
need to introduce the Jordan canonical decomposition, and the basis trans-
formation, used in the proof of Theorem 9.1

P 91. Refer to the general strategy (8.46) and replace it by





φk,i−1 =
∑

ℓ∈Nk,1

a1,ℓk wℓ,i−1

ψk,i =
∑

ℓ∈Nk,o

ao,ℓk φℓ,i−1 − µk

∑

ℓ∈Nk,c

cℓk∇̂w∗Jℓ

(
φk,i−1

)

wk,i =
∑

ℓ∈Nk,2

a2,ℓk ψℓ,i

where C = [cℓk] is a right-stochastic matrix (each of its rows adds up to one),
and {Nk,1, Nk,o, Nk,2, Nk,c} refer to neighborhoods defined by the respective
matrices {A1, Ao, A2, C}. Does the result of Theorem 9.1 still hold? What
steps in the derivation will be affected?

P 92. Assume the matrix P corresponds to a connected but not necessarily
strongly-connected network (i.e., P is not necessarily primitive any longer).
Refer to Theorem 9.1. Can we still ensure the mean-square-error stability of
the network? Prove or give a counter-example.

P 93. Refer to the expressions for Batc and Bcta in (9.174)–(9.175). Assume
the non-cooperative matrix Bncop = I2MN −MH is stable. Show that Batc and
Bcta are stable regardless of whether the combination matrix A is primitive
or not, and regardless of whether the network topology is connected or not.

P 94. Simplify expression (9.173) for the case of MSE networks studied in
Example 6.3.

P 95. Verify the validity of the right-hand side of (9.214).

P 96. Consider the setting of Theorem 9.1 and assume the ATC diffusion
strategy is employed by setting A1 = Ao = IN and A2 = A in (8.46) for some
doubly-stochastic primitive matrix A. Write down what the corresponding
error recursion (9.12) will become in this case. Equate the variances of both
sides of this error recursion and use the result to establish the mean-square
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stability of the network without the need to introduce the Jordan canonical
decomposition, and the basis transformation, used in the proof of Theorem 9.1.
Can you repeat the same argument if CTA diffusion is used instead? What
about consensus?

CHAPTER 10

P 97. How would expressions (10.29) and (10.30) be modified for the case of
MSE networks from Example 6.3?

P 98. Refer to Example 10.1 and assume all agents employ the same step-
size, µk ≡ µ, and that the Hessian matrices are uniform across the agents,
Hk ≡ H. For example, this scenario arises for MSE networks of the form
studied in Example 6.3 when all agents employ the same step-size and observe
regression data with uniform covariance matrix, Ru. Show that in this case:

ρ(Bdiff) = ρ(Bncop) ≤ ρ(Bcons)

with equality holding when A = IN or when the step-size satisfies

0 < µ < min
mÓ=1

{
1 − |λm(A)|

λmin(H) + λmax(H)

}

where λ1(A) = 1. What is the interpretation of this result?

P 99. Assume the mean-error recursion for some non-cooperative agents is
unstable and that the combination matrix, A, is symmetric. Can the consensus
strategy stabilize the network for any A?

P 100. Even if the mean-error recursion for some non-cooperative agents is
unstable, the diffusion strategy can still stabilize the network. Why?

P 101. True of False: For an N−agent MSE network with a symmetric combi-
nation policy, if the step-sizes are fixed and at least one non-cooperative agent
is unstable in the mean, then the consensus network is unstable regardless of
the topology. Prove or give a counter-example.

P 102. What would the error recursion (10.13) reduce to in the case of the
MSE networks described in Example 6.3? What is the value of ci−1 in that
case?

P 103. What would the long-term model (10.19) be in the case of the MSE
networks described in Example 6.3. How is this model different from the
original recursion (10.13)?
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P 104. Consider the specialization of Example 10.1 to an MSE network (of
the form described in Example 6.3) running on real data. Give an example
of a strongly-connected network with N = 4 agents such that (a) the non-
cooperative strategy is stable in the mean; (b) the ATC and CTA diffusion
strategies are stable in the mean; and (c) the consensus strategy is unstable
in the mean for the same step-size and combination policy as the diffusion
strategies.

CHAPTER 11

P 105. Can you minimize the MSD expression (11.144) over the {pk}? Can
you maximize the same MSD expression over the {pk}?

P 106. How does result (11.144) compare with the average performance of
N−non-cooperative agents? When will it be smaller?

P 107. How does result (11.203) compare with the average performance of
N−non-cooperative agents? When will it be smaller?

P 108. How does result (11.203) compare with the performance of the cen-
tralized solution given by (11.204)?

P 109. How does result (11.151) compare with the average performance of
N−non-cooperative agents? When will it be smaller?

P 110. Establish the validity of (11.240) and (11.242).

P 111. Derive expressions (11.247)–(11.250).

P 112. Establish result (11.251).

P 113. Derive expressions (11.235)–(11.238).

P 114. Refer to the simulation in Figure 10.2. Use expression (11.156) to
estimate what the steady-state MSD value should be. Does this value match
well with the limiting value of the learning curves in the figure? Use instead
expression (11.178) to estimate the steady-state MSD value. How does this
value now compare to the limiting value of the learning curves in the figure?
How do you explain the discrepancy? Can you derive a better expression for
the MSD in this case?



528 Problems

CHAPTER 12

P 115. Establish the validity of the algebraic property (12.31).

P 116. Is the Hastings matrix Ao defined by (12.20) the only solution to
(12.18)? Can you find another solution?

P 117. Refer to the Hastings matrix Ao defined by (12.20). When does this
rule reduce to the averaging rule defined by (8.89)?

P 118. Refer to the MSD expression (12.5) for a distributed solution. Simplify
the expression for both cases when the combination policy A is the Metropolis
rule and when the combination policy A is the averaging rule.

(a) Can you compare these two MSD values directly?

(b) Give examples showing when one rule outperforms the other.

(c) Give a condition that ensures equal MSD values for both rules.

(d) Under what conditions on the network topology, does the averaging rule
outperform the Metropolis rule?

(e) Under what conditions on the network topology, does the Metropolis rule
outperform the averaging rule?

P 119. Refer to the MSD expression (12.5) for a distributed solution. Can
you derive a sufficient condition under which a left-stochastic combination
policy would outperform a doubly-stochastic policy?

P 120. Let wo denote the unique minimizer of the aggregate cost

Jglob(w) =

N∑

k=1

Jk(w)

and consider a weighted centralized solution of the form:

wi = wi−1 − µ

(
N∑

k=1

pk ∇̂w∗Jk(wi−1)

)
, i ≥ 0

for some positive coefficients {pk} that add up to one.

(a) Determine an expression for the MSD of this solution in terms of the {pk}
under the same conditions on the aggregate cost function and the gradient
noise process as those stated in Theorem 5.1.

(b) Assume all individual costs have uniform Hessian matrices
Hk = ∇2wJk(w

o), i.e., Hk ≡ H for k = 1, 2, . . . , N . Optimize the MSD
expression over the {pk} and show that their optimal values are again given
by (12.21).
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CHAPTER 13

P 121. Refer to the MSD expression (13.24) for the distributed solution with
informed agents. If we fix the size of NI , there are many subgroups of size
NI that can be chosen to serve as informed agents. How many? If we were
to pick which subgroup results in the smallest MSD value, how would you do
that? Does this subgroup also result in the fastest convergence rate according
to (13.23). Either solve analytically or provide examples with constructions
that illustrate your answers.

P 122. Start with a strongly-connected network with N agents and assume
we number the agents such that the resulting Perron entries {pk} are ordered
from largest to smallest, i.e., p1 ≥ p2 ≥ . . . ≥ pN > 0. Assume further
that the Hessian matrices are uniform across the agents, i.e., Hk ≡ H for
k = 1, 2, . . . , N . If we were to pick a subset of informed agents of size NI to
ensure fastest convergence rate according to (13.23), which agents would you
pick? Does this selection result in the smallest MSD value according to (13.24)
over all possible selections of NI informed agents? Either solve analytically or
provide examples with constructions that illustrate your answers.

P 123. Consider the setting of Example 13.1. Assume the network employs
the averaging combination rule and that all agents have the same uniform
degree, n. That is, |Nk| = n for all k = 1, 2, . . . , N . If we were to pick a subset
of informed agents of size NI to ensure fastest convergence rate according to
(13.35), does it matter which agents we pick? Which selection of agents results
in the smallest MSD value according to (13.36) over all possible subsets of NI

informed agents?

P 124. Refer to expression (9.173) for ρ(B) and consider the approximation

ρ(B) ≈ 1 − λmin

(
N∑

k=1

qkHk

)

Assume further that each individual Hessian matrix, Hk, is positive-definite
and independent of w⋆. For example, this situation arises for the class MSE
networks described in Example 6.3.

(a) Assume initially that Hk ≡ H > 0 for all k. Can you optimize ρ(B) over
the {qk} so as to result in a spectral radius that is the furthest from one
possible? Which combination policy A would achieve this optimal rate of
convergence?
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(b) Assume now that Hk > 0 but that these Hessian matrices are not neces-
sarily uniform across the agents. Can you again optimize ρ(B) over the {qk}
so as to result in a spectral radius that is the furthest from one possible?
Which combination policy A would achieve this optimal rate of convergence?

P 125. Establish conclusion (13.47).

CHAPTER 14

P 126. Verify that the Laplacian rule in Table 14.1 is symmetric and doubly-
stochastic.

P 127. Verify that the relative-degree rule in Table 14.1 is left-stochastic.

P 128. Establish result (14.22).

P 129. Establish the validity of (14.27).

P 130. Refer to listings (14.51) and (14.57) for the computation of the agent-
centered and neighbor-centered adaptive combination weights. Repeat the
arguments leading to these listings to justify that for the CTA diffusion strat-
egy (7.18), the vectors yℓ,i in (14.51) and yℓk,i in (14.57) can be defined as
follows:

yℓ,i
∆
= wℓ,i − ψℓ,i−1, yℓk,i

∆
= wk,i − wℓ,i−1

CHAPTER 15

P 131. Refer to the gossip strategy (15.1) and assume each agent k selects ℓo

uniformly from among its neighbors, i.e., with probability 1/(nk −1). Assume
the combination coefficient ak is uniform across all agents and denote it by
a ∈ [0, 1]. Assume complex-valued data. Derive an expression for the network
MSD for sufficiently small step-sizes.

P 132. Refer to the asynchronous strategy (15.2) and assume only that the
step-size parameter µk(i) follows a binomial distribution. Specifically, at
every iteration i, the value assumed by µk(i) is either zero with probability
p or µ with probability 1 − p. Assume the neighborhoods do not change with
time, as well as the combination weights (which continue to be entries from
a left-stochastic combination policy A).

(a) Derive an expression for the network MSD for sufficiently small step-sizes.
(b) Derive an expression for the convergence rate of the network.
(c) How do these results compare with the performance of a synchronous
network where each agent k employs Eµk(i) as its step-size.


