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Abstract

This work deals with the topic of information processing over graphs.
The presentation is largely self-contained and covers results that re-
late to the analysis and design of multi-agent networks for the dis-
tributed solution of optimization, adaptation, and learning problems
from streaming data through localized interactions among agents. The
results derived in this work are useful in comparing network topologies
against each other, and in comparing networked solutions against cen-
tralized or batch implementations. There are many good reasons for the
peaked interest in distributed implementations, especially in this day
and age when the word “network” has become commonplace whether
one is referring to social networks, power networks, transportation net-
works, biological networks, or other types of networks. Some of these
reasons have to do with the benefits of cooperation in terms of im-
proved performance and improved resilience to failure. Other reasons
deal with privacy and secrecy considerations where agents may not be
comfortable sharing their data with remote fusion centers. In other sit-
uations, the data may already be available in dispersed locations, as
happens with cloud computing. One may also be interested in learning
through data mining from big data sets. Motivated by these consid-
erations, this work examines the limits of performance of distributed
stochastic-gradient solutions and discusses procedures that help bring
forth their potential more fully. The presentation adopts a useful sta-
tistical framework and derives performance results that elucidate the
mean-square stability, convergence, and steady-state behavior of the
learning networks. The work also illustrates how distributed processing
over graphs gives rise to some revealing phenomena due to the coupling
effect among the agents. These phenomena are discussed in the context
of adaptive networks, along with examples from a variety of areas in-
cluding distributed sensing, intrusion detection, distributed estimation,
online adaptation, network system theory, and machine learning.

A. H. Sayed. Adaptation, Learning, and Optimization over Networks. Foundations
and TrendsR© in Machine Learning, vol. 7, no. 4-5, pp. 311–801, 2014.
DOI: 10.1561/2200000051.



1
Motivation and Notation

1.1 Introduction

Network science is a fascinating field that is evolving rapidly across
many domains [15, 19, 92, 121, 154, 178, 207]. As remarked in [207], and
for long, classical system and learning theories have focused on opti-
mizing stand-alone systems or learners with great success. Nevertheless,
progress in recent decades in the biological sciences [16, 50, 131, 146],
animal behavior studies [7, 50, 79, 90, 187, 219], and the neuroscience
of the brain [20, 49, 225], has revealed remarkable patterns of organiza-
tion and structured complexity in the behavior of biological networks,
animal groups, and in the dynamics of brain connectivity. These studies
have brought forward notable examples of complex systems that derive
their sophistication from coordination among simpler units and from
the aggregation and processing of decentralized pieces of information.
While each unit in these systems is not capable of sophisticated behav-
ior on its own, it is the interaction among the constituents that leads
to systems that are resilient to failure and that are capable of adjusting
their behavior in response to changes in their environment.

These discoveries have motivated diligent efforts towards a deeper
understanding of information processing, adaptation, and learning over

312



1.2. Biological Networks 313

complex networks in several disciplines including machine learning, op-
timization, control, economics, biological sciences, information sciences,
and the social sciences. A common goal in these investigations has been
to develop theory and tools that enable the design of networks with
sophisticated learning and processing abilities, such as networks that
are able to solve important inference and optimization tasks in a dis-
tributed manner by relying on agents that interact locally and do not
rely on fusion centers to collect and process their information.

1.2 Biological Networks

Examples abound for the viability of such designs in the realm of bi-
ological networks. Nature is laden with examples of networks exhibit-
ing sophisticated behavior that arises from interactions among agents
of limited abilities. For example, fish schools are unusually skilled at
navigating their environment with remarkable discipline and at config-
uring the topology of their school in the face of danger from predators
[79, 187]; when a predator is sighted or sensed, the entire school of fish
adjusts its configuration to let the predator through and then coalesces
again to continue its schooling behavior. It is reasonable to assume that
this complex behavior is the result of sensing information spreading
fast across the school of fish through local interactions among adjacent
members of the school. Likewise, in bee swarms, it is observed that only
a small fraction of the agents (about 5%) are informed and this small
fraction of agents is still capable of guiding an entire swarm of bees to
their new hive [12, 22, 125, 219]. It is a remarkable property of biolog-
ical networks and animal groups that sophisticated behavior is able to
arise from simple interactions among limited agents [119, 199, 228].

1.3 Distributed Processing

Motivated by these observations, this work deals with the topic of in-
formation processing over graphs and how collaboration among agents
in a network can lead to superior adaptation and learning performance.
The presentation covers results and tools that relate to the analysis and
design of networks that are able to solve optimization, adaptation, and
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learning problems in an efficient and distributed manner from stream-
ing data through localized interactions among their agents.

The treatment extends the presentation from [207] in several di-
rections1 and covers three intertwined topics: (a) how to perform dis-
tributed optimization over networks; (b) how to perform distributed
adaptation over networks; and (c) how to perform distributed learn-
ing over networks. In these three domains, we examine and compare
the advantages and limitations of non-cooperative, centralized, and dis-
tributed stochastic-gradient solutions. In the non-cooperative mode of
operation, agents act independently of each other in their pursuit of
their desired objective. In the centralized mode of operation, agents
transmit their (collected or processed) data to a fusion center, which is
capable of processing the data centrally. The fusion center then shares
the results of the analysis back with the distributed agents. While cen-
tralized solutions can be powerful, they still suffer from some limita-
tions. First, in real-time applications where agents collect data contin-
uously, the repeated exchange of information back and forth between
the agents and the fusion center can be costly especially when these ex-
changes occur over wireless links or require nontrivial routing resources.
Second, in some sensitive applications, agents may be reluctant to share
their data with remote centers for various reasons including privacy and
secrecy considerations. More importantly perhaps, centralized solutions
have a critical point of failure: if the central processor fails, then this
solution method collapses altogether.

Distributed implementations, on the other hand, pursue the desired
objective through localized interactions among the agents. In the dis-
tributed mode of operation, agents are connected by a topology and
they are permitted to share information only with their immediate
neighbors. There are many good reasons for the peaked interest in
such distributed solutions, especially in this day and age when the
word “network” has become commonplace whether one is referring to
social networks, power networks, transportation networks, biological
networks, or other types of networks. Some of these reasons have to do

1The author is grateful to IEEE for allowing reproduction of material from [207]
in this work.
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with the benefits of cooperation in terms of improved performance and
improved robustness and resilience to failure. Other reasons deal with
privacy and secrecy considerations where agents may not be comfort-
able sharing their data with remote fusion centers. In other situations,
the data may already be available in dispersed locations, as happens
with cloud computing. One may also be interested in learning and
extracting information through data mining from large data sets. De-
centralized learning procedures offer an attractive approach to dealing
with such large data sets. Decentralized mechanisms can also serve as
important enablers for the design of robotic swarms, which can assist
in the exploration of disaster areas.

For these various reasons, we devote some good effort in this work
towards quantifying the limits of performance of distributed solutions
and towards discussing design procedures that can bring forth their po-
tential more fully. Our emphasis is on solutions that are able to learn
from streaming data. In particular, we shall study three families of dis-
tributed strategies: (a) incremental strategies, (b) consensus strategies,
and (c) diffusion strategies — see Chapter 7. We shall derive expres-
sions that quantify the behavior of the distributed algorithms and use
the expressions to compare their performance and to illustrate under
what conditions network cooperation is beneficial to the learning and
adaptation process. While the social benefit, defined as the average per-
formance across the network, generally improves through cooperation,
it is not necessarily the case that the individual agents will always ben-
efit from cooperation: some agents may see their performance degrade
relative to the non-cooperative mode of operation [214, 276]. This ob-
servation will motivate us to seek optimized combination policies that
enable all agents in a network to enhance their performance through
cooperation.

1.4 Adaptive Networks

We shall study distributed solutions in the context of adaptive networks
[207, 208, 214], which consist of a collection of agents with adaptation
and learning abilities. The agents are linked together through a topol-
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ogy and they interact with each other through localized in-network
processing to solve inference and optimization problems in a fully dis-
tributed and online manner. The continuous sharing and diffusion of
information across the network enables the agents to respond in real-
time to drifts in the data and to changes in the network topology. Such
networks are scalable, robust to node and link failures, and are par-
ticularly suitable for learning from big data sets by tapping into the
power of collaboration among distributed agents. The networks are also
endowed with cognitive abilities [108, 207] due to the sensing abilities
of their agents, their interactions with their neighbors, and an embed-
ded feedback mechanism for acquiring and refining information. Each
agent is not only capable of experiencing the environment directly, but
it also receives information through interactions with its neighbors and
processes this information to drive its learning process.

Adaptive networks are well-suited to perform decentralized infor-
mation processing tasks. They are also well-suited to model several
forms of complex behavior exhibited by biological [16, 50, 131, 146]
and social networks [15, 77, 92, 121, 229] such as fish schooling [187],
prey-predator maneuvers [105, 170], bird formations [110, 119], bee
swarming [12, 22, 125, 219], bacteria motility [25, 188, 257], and so-
cial and economic interactions [98, 103]. Examples of references that
discuss applications of the diffusion distributed algorithms studied in
this work to problems involving biological and social networks in-
clude [56, 65, 155, 212, 214, 245, 246, 249, 275]. Examples of refer-
ences that discuss applications of consensus implementations include
[2, 18, 64, 80, 118, 122, 123, 180, 183, 184, 198, 199, 254]. We do not
discuss biological networks in this work and refer the reader instead
to the above references; the survey article [214] provides some further
motivation.

1.5 Organization

This work is largely self-contained. It provides an extended treatment
of topics presented in condensed form in the survey [207], and of sev-
eral other additional topics. For maximal benefit, readers may review
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first the background material in Appendices A through G on complex
gradient vectors and Hessian matrices, convex functions, mean-value
theorems, Lipschitz conditions, matrix theory, and logistic regression.

In preparation for the study of multi-agent networks, Chapters 2–
4 review some fundamental results on optimization, adaptation, and
learning by single stand-alone agents. The emphasis is on stochastic-
gradient constructions. The presentation in these chapters provides in-
sights that will be useful in our subsequent study of adaptation and
learning by a collection of networked agents. This latter study is more
demanding due to the coupling among interacting agents, and due to
the fact that networks are generally sparsely connected. The results
in this work will help clarify the effect of network topology on perfor-
mance and will develop tools that enable designers to compare various
strategies against each other and against the centralized solution.

1.6 Notation and Symbols

All vectors are column vectors, with the exception of the regression
vector (denoted by the letters u or u), which will be taken to be a row
vector for convenience of presentation. Table 1.1 lists the main conven-
tions used in our exposition. In particular, note that we use boldface
letters to refer to random quantities and normal font to refer to their
realizations or deterministic quantities. We also use T for matrix or
vector transposition and ∗ for complex-conjugate transposition.

Moreover, for generality, we treat the case in which the variables of
interest are generally complex-valued; when necessary, we show how the
results simplify in the real case. Some subtle differences in the analy-
sis arise when dealing with complex data. These differences would be
masked if we focus exclusively on real-valued data. Moreover, studying
design problems with complex data is relevant for many fields, espe-
cially in the domain of signal processing and communications problems.
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Table 1.1: List of notation and symbols used in the text and appendices.

R Field of real numbers.
C Field of complex numbers.
1 Column vector with all its entries equal to one.
IM Identity matrix of size M ×M .
d Boldface notation denotes random variables.
d Normal font denotes realizations of random variables.
A Capital letters denote matrices.
a Small letters denote vectors or scalars.
α Greek letters denote scalars.
d(i) Small letters with parenthesis denote scalars.
di Small letters with subscripts denote vectors.
T Matrix transposition.
∗ Complex-conjugate transposition.

Re(z) Real part of complex number z.
Im(z) Imaginary part of complex number z.

col{a, b} Column vector with entries a and b.
diag{a, b} Diagonal matrix with entries a and b.
vec{A} Vector obtained by stacking the columns of A.
bvec{A} Vector obtained by vectorizing and stacking blocks of A.
‖x‖ Euclidean norm of its vector argument.
‖x‖2Σ Weighted square value x∗Σx.
‖A‖ Two-induced norm of matrix A, also equal to σmax(A).
‖A‖1 Maximum absolute column sum of matrix A.
‖A‖∞ Maximum absolute row sum of matrix A.
A ≥ 0 Matrix A is non-negative definite.
A > 0 Matrix A is positive-definite.
ρ(A) Spectral radius of matrix A.

λmax(A) Maximum eigenvalue of the Hermitian matrix A.
λmin(A) Minimum eigenvalue of the Hermitian matrix A.
σmax(A) Maximum singular value of A.
A⊗B Kronecker product of A and B.
A⊗b B Block Kronecker product of block matrices A and B.
a � b Element-wise comparison of the entries of vectors a and b.
δk,` Kronecker delta sequence: 1 when k = ` and 0 when k 6= `.

α = O(µ) Signifies that |α| ≤ c|µ| for some constant c > 0.
α = o(µ) Signifies that α/µ→ 0 as µ→ 0.

α(µ) .= β(µ) Signifies that α(µ) and β(µ) agree to first order in µ.
lim sup
n→∞

a(n) Limit superior of the sequence a(n).

lim inf
n→∞

a(n) Limit inferior of the sequence a(n).



2
Optimization by Single Agents

In this chapter we review the class of gradient-descent algorithms,
which are among the most successful iterative techniques for the so-
lution of optimization problems by stand-alone single agents. The pre-
sentation summarizes some classical results and provides insights that
are useful for our later study of the more demanding scenario of op-
timization by networked agents. We consider initially the case of real-
valued arguments [207] and extend the results to the complex domain
as well. We also consider both cases of constant step-sizes and decaying
step-sizes.

2.1 Risk and Loss Functions

Thus, let J(w) ∈ R denote a real-valued (cost or utility or risk) function
of a real-valued vector argument, w ∈ RM . It is common in adaptation
and learning applications for J(w) to be constructed as the expectation
of some loss function, Q(w;x), where the boldface variable x is used
to denote some random data, say,

J(w) = E Q(w;x) (2.1)

319
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and the expectation is evaluated over the distribution of x [207]. Fol-
lowing the notation introduced in Appendices A and B, we denote the
gradient vectors of J(w) relative to w and wT by the following row and
column vectors, respectively, where the first expression is also referred
to as the Jacobian of J(w) relative to w:

∇w J(w) ∆=
[
∂J(w)
∂w1

∂J(w)
∂w2

. . .
∂J(w)
∂wM

]
(2.2)

∇wTJ(w) ∆= [∇w J(w)]T (2.3)

These definitions are in terms of the partial derivatives of J(w) relative
to the individual entries of w:

w
∆= col{w1, w2, . . . , wM} (2.4)

Likewise, the Hessian matrix of J(w) with respect to w is defined as
the following M ×M symmetric matrix:

∇2
w J(w) ∆= ∇wT [∇w J(w)] = ∇w[∇wTJ(w)] (2.5)

which is constructed from two successive gradient operations.

Example 2.1 (Mean-square-error costs). Let d denote a zero-mean scalar ran-
dom variable with variance σ2

d = Ed2 and let u denote a zero-mean 1 ×M
random vector with covariance matrix Ru = EuTu > 0. The combined quan-
tities {d,u} represent the random variable x referred to in (2.1). The cross-
covariance vector is denoted by rdu = EduT. We formulate the problem of
estimating d from u in the linear least-mean-squares sense or, equivalently, the
problem of seeking the vector wo that minimizes the quadratic cost function:

J(w) ∆= E (d− uw)2 = σ2
d − 2rT

duw + wTRuw (2.6)

This cost corresponds to the following choice for the loss function:

Q(w;x) ∆= (d− uw)2 = d2 − 2duw + wTuTuw (2.7)

Such quadratic costs are widely used in estimation and adaptation problems
[107, 133, 205, 206, 262]. They are also widely used as quadratic risk functions
in machine learning applications [37, 233]. The gradient vector and Hessian
matrix of J(w) are easily seen to be:

∇w J(w) = 2 (Ruw − rdu)T
, ∇2

w J(w) = 2Ru (2.8)
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Figure 2.1 illustrates the mean-square-error cost (2.6) for the two-
dimensional case, M = 2. The individual entries of w ∈ RM are denoted
by w = col{w1, w2}. The plot is generated by using σ2

d = 0.5, a diagonal
covariance matrix, Ru, whose entries are generated randomly from within
the interval [1, 10], and a cross-covariance vector, rdu, whose entries are also
generated randomly within the range [0, 1].
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Figure 2.1: Illustration of the mean-square-error cost (2.6) for the two-
dimensional case, M = 2 (left), along with the corresponding contour curves
(right). The plots are generated by using σ2

d = 0.5, and randomly-generated
diagonal covariance matrix, Ru, and cross-covariance vector rdu.

�

Example 2.2 (Logistic or log-loss risks). Let γ denote a binary random variable
that assumes the values ±1, and let h denote anM×1 random (feature) vector
with Rh = EhhT. The combined quantities {γ,h} represent the random
variable x referred to in (2.1). In the context of machine learning and pattern
classification problems [37, 115, 233], the variable γ designates the class that
feature vector h belongs to. In these problems, one seeks the vector wo that
minimizes the regularized logistic risk function — see Appendix G:

J(w) ∆= ρ

2‖w‖
2 + E

{
ln
(

1 + e−γhTw
)}

(2.9)

where ρ > 0 is some regularization parameter, ln(·) is the natural logarithm
function, and ‖w‖2 = wTw. The risk (2.9) corresponds to the following choice
for the loss function:

Q(w;x) ∆= ρ

2‖w‖
2 + ln

(
1 + e−γhTw

)
(2.10)

Once wo is recovered, its value can be used to classify new feature vectors, say,
{h`}, into classes +1 or −1. This can be achieved, for example, by assigning
feature vectors with hT

` w
o ≥ 0 to one class and feature vectors with hT

` w
o < 0
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to another class. Assuming the distribution of {γ,h} is such that it permits the
exchange of the expectation and differentiation operations, it can be verified
that for the above J(w):

∇w J(w) = ρwT − E

{
γhT

(
e−γhTw

1 + e−γhTw

)}
(2.11)

∇2
w J(w) = ρIM + E

{
hhT

(
e−γhTw(

1 + e−γhTw
)2
)}

(2.12)
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Figure 2.2: Illustration of the logistic risk (2.9) for M = 2 and ρ = 10. The
plot is generated by approximating the expectation in (2.9) by the sample
average over 100 repeated realizations for the random variables {γ,h}.

Figure 2.2 illustrates the logistic risk function (2.9) for the two-
dimensional case, M = 2, and using ρ = 10. The individual entries of w ∈ R2

are denoted by w = col{w1, w2}. The plot is generated by approximating the
expectation in (2.9) by means of a sample average over 100 repeated real-
izations for the random variables {γ,h}. Specifically, a total of 100 binary
realizations are generated for γ, where the values ±1 are assumed with equal
probability, and 100 Gaussian realizations are generated for h with mean
vectors +1 and −1 for the classes γ = +1 and γ = −1, respectively.

�
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2.2 Conditions on Risk Function

Stochastic gradient algorithms are powerful iterative procedures for
solving optimization problems of the form

wo = arg min
w

J(w) (2.13)

While the analysis that follows can be pursued under more relaxed
conditions (see, e.g., the treatments in [32, 190, 191, 243]), it is suffi-
cient for our purposes to require J(w) to be strongly-convex and twice-
differentiable with respect to w. Recall from property (C.18) in the
appendix that the cost function J(w) is said to be ν−strongly convex
if, and only if, its Hessian matrix is sufficiently bounded away from
zero [29, 45, 177, 190]:

J(w) is ν−strongly convex ⇐⇒ ∇2
w J(w) ≥ νIM > 0 (2.14)

for all w and for some scalar ν > 0. Strong convexity is a useful con-
dition in the context of adaptation and learning from streaming data
because it helps guard against ill-conditioning in the algorithms; it also
helps ensure that J(w) has a unique global minimum, say, at location
wo; there will be no other minima, maxima, or saddle points. In addi-
tion, as we are going to see later in (2.23), it is well-known that strong
convexity endows gradient-descent algorithms with geometric (i.e., ex-
ponential) convergence rates in the order of O(αi), for some 0 ≤ α < 1
and where i is the iteration index [32, 190]. For comparison purposes,
when the function J(w) is only convex but not necessarily strongly
convex, then from the same property (C.18) we know that convexity is
equivalent to the following condition:

J(w) is convex ⇐⇒ ∇2
w J(w) ≥ 0 (2.15)

for all w. In this case, while the function J(w) will only have global
minima, there can now be multiple global minima. Moreover, the con-
vergence of the gradient-descent algorithm will now occur at the slower
rate of O(1/i) [32, 190].

In most problems of interest in adaptation and learning, the cost
function J(w) is either already strongly convex or can be made strongly
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convex by means of regularization. For example, it is common in ma-
chine learning problems [37, 233] and in adaptation and estimation
problems [133, 206] to incorporate regularization factors into the cost
functions; these factors help ensure strong convexity automatically. For
instance, the mean-square-error cost (2.6) is strongly convex whenever
Ru > 0. If Ru happens to be singular, then the following regularized
cost will be strongly convex:

J(w) ∆= ρ

2‖w‖
2 + E (d− uw)2 (2.16)

where ρ > 0 is a regularization parameter similar to (2.9).
Besides strong convexity, we also require the gradient vector of J(w)

to be δ−Lipschitz, namely, that there exists δ > 0 such that

‖∇w J(w2)−∇w J(w1)‖ ≤ δ ‖w2 − w1‖ (2.17)

for all w1, w2. It follows from Lemma E.3 in the appendix that for
twice-differentiable costs, conditions (2.14) and (2.17) combined are
equivalent to

0 < νIM ≤ ∇2
w J(w) ≤ δIM (2.18)

For example, it is clear that the Hessian matrices in (2.8) and (2.12)
satisfy this property since

2λmin(Ru)IM ≤ ∇2
w J(w) ≤ 2λmax(Ru)IM (2.19)

in the first case and

ρIM ≤ ∇2
w J(w) ≤ (ρ+ λmax(Rh))IM (2.20)

in the second case. In summary, we will be assuming the following
conditions on the cost function.

Assumption 2.1 (Conditions on cost function). The cost function J(w) is
twice-differentiable and satisfies (2.18) for some positive parameters ν ≤ δ.
Condition (2.18) is equivalent to requiring J(w) to be ν−strongly convex and
for its gradient vector to be δ−Lipschitz as in (2.14) and (2.17), respectively.
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2.3 Optimization via Gradient Descent

There are many techniques by which optimization problems of the form
(2.13) can be solved. We focus in this work on the important class of
gradient descent algorithms. These algorithms require knowledge of the
actual gradient vector and take the following form:

wi = wi−1 − µ∇wTJ(wi−1), i ≥ 0 (2.21)

where i ≥ 0 is an iteration index (usually time), and µ > 0 is a constant
step-size parameter. The following result establishes that the successive
iterates {wi} converge exponentially fast towards wo for any step-size
smaller than the threshold specified by (2.22).

Lemma 2.1 (Convergence with constant step-size: Real case). Assume the cost
function, J(w), satisfies Assumption 2.1. If the step-size µ is chosen to satisfy

0 < µ <
2ν
δ2 (2.22)

then, it holds that for any initial condition, w−1, the gradient descent algo-
rithm (2.21) generates iterates {wi} that converge exponentially fast to the
global minimizer, wo, i.e., it holds that

‖w̃i‖2 ≤ α ‖w̃i−1‖2 (2.23)

where the real scalar α satisfies 0 ≤ α < 1 and is given by

α = 1− 2µν + µ2δ2 (2.24)

and w̃i = wo − wi denotes the error vector at iteration i.

Proof. We provide two arguments. The first derivation is perhaps more tra-
ditional, while the second derivation is based on arguments that are more
convenient when we extend the results to optimization over networked agents.
We start by subtracting wo from both sides of (2.21) and use the fact that
∇wTJ(wo) = 0 to write

w̃i = w̃i−1 + µ [∇wTJ(wi−1)−∇wTJ(wo)] (2.25)

Computing the squared Euclidean norms (or energies) of both sides of the
above equality gives
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‖w̃i‖2 = ‖w̃i−1‖2 + µ2 ‖∇wTJ(wi−1)−∇wTJ(wo)‖2 +
2µ [∇wJ(wi−1)−∇wJ(wo)] w̃i−1

(a)
≤ ‖w̃i−1‖2 + µ2

∥∥∥∥(∫ 1

0
∇2
wJ(wo − tw̃i−1)dt

)
w̃i−1

∥∥∥∥2

− 2µν‖w̃i−1‖2

(b)
≤ ‖w̃i−1‖2 + µ2δ2 ‖w̃i−1‖2 − 2µν‖w̃i−1‖2

= α ‖w̃i−1‖2 (2.26)

where step (a) uses the mean-value relation (D.9) and the strong-convexity
property (C.17) from the appendices, while step (b) uses the upper bound in
(2.18) on the Hessian matrix.

We next verify that condition (2.22) ensures 0 ≤ α < 1. For this purpose,
we refer to Figure 2.3, which plots the coefficient α(µ) as a function of µ. The
minimum value of α(µ), which occurs at the location µ = ν/δ2 and is equal
to 1 − ν2/δ2, is nonnegative since 0 < ν ≤ δ. It is now clear from the figure
that 0 ≤ α < 1 for µ ∈ (0, 2ν

δ2 ).

Figure 2.3: Plot of the function α(µ) = 1−2νµ+µ2δ2 given by (2.24). It shows
that the function α(µ) assumes values below one in the range 0 < µ < 2ν/δ2.
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Alternative proof. We can arrive at the same conclusion by using an alternative
argument, which may seem to be more demanding at first sight. However,
it turns out to be more convenient for scenarios involving optimization by
networked agents, as we are going to study in future chapters — see, e.g., the
derivation in Sec. 8.4.

We again subtract wo from both sides of (2.21) to get

w̃i = w̃i−1 + µ∇wTJ(wi−1) (2.27)

We then appeal to the mean-value relation (D.9) from the appendix to note
that

∇wTJ(wi−1) = −
(∫ 1

0
∇2
w J(wo − tw̃i−1)dt

)
w̃i−1

∆= −Hi−1w̃i−1 (2.28)

where we are introducing the symmetric time-variant matrix Hi−1, which is
defined in terms of the Hessian of the cost function:

Hi−1
∆=
∫ 1

0
∇2
w J(wo − tw̃i−1)dt (2.29)

Substituting (2.28) into (2.27), we get the alternative representation:

w̃i = (IM − µHi−1)w̃i−1 (2.30)

Note that the matrix Hi−1 depends on w̃i−1 so that the right-hand side of the
above recursion actually depends on w̃i−1 in a nonlinear fashion. However,
we can still determine a condition on µ for convergence of w̃i to zero because
we can determine a uniform bound on Hi−1 as follows [190]. Using the sub-
multiplicative property of norms, we have

‖w̃i‖2 ≤ ‖IM − µHi−1‖2 · ‖w̃i−1‖2 (2.31)

But since J(w) satisfies (2.18), we know that

(1− µδ)IM ≤ IM − µHi−1 ≤ (1− µν)IM (2.32)

for all i. Using the fact that IM −µHi−1 is a symmetric matrix, we have that
its 2−induced norm is equal to its spectral radius so that

‖IM − µHi−1‖2 = [ρ(IM − µHi−1)]2

(2.32)
≤ max{(1− µδ)2, (1− µν)2}
= max

{
1− 2µδ + µ2δ2, 1− 2µν + µ2ν2}

(a)
≤ 1− 2µν + µ2δ2

= α (2.33)
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where we used the fact that δ ≥ ν in step (a). Combining this result with
(2.31) we again conclude that (2.23) holds and, therefore, condition (2.22) on
the step-size ensures w̃i → 0 as i→∞.

Actually, the argument that led to (2.33) can be refined to conclude that
convergence of w̃i to zero occurs over the wider interval

µ < 2/δ (2.34)

than (2.22). This is because condition (2.34) already ensures

max{(1− µδ)2, (1− µν)2} < 1 (2.35)

We will continue with condition (2.22); it is sufficient for our purposes to know
that a small enough step-size value exists that ensures convergence.

Example 2.3 (Optimization of mean-square-error costs). Let us reconsider the
quadratic cost (2.6) from Example 2.1. We know from (2.19) that δ =
2λmax(Ru) and ν = 2λmin(Ru). Furthermore, if we set the gradient vector
in (2.8) to zero, we conclude that the minimizer, wo, is given by the unique
solution to the equations Ruwo = rdu. We can alternatively determine this
same minimizer in an iterative manner by using the gradient descent recursion
(2.21). Indeed, if we substitute expression (2.8) for the gradient vector into
(2.21), we find that the iterative algorithm reduces to

wi = wi−1 + 2µ (rdu −Ruwi−1), i ≥ 0 (2.36)

We know from condition (2.22) that the iterates {wi} generated by this re-
cursion will converge to wo at an exponential rate for any step-size µ <
λmin(Ru)/λ2

max(Ru). Using condition (2.34) instead, we actually have that
convergence of wi to wo is guaranteed over the wider range of step-size values
µ < 1/λmax(Ru). This conclusion can also be seen from the fact that, in this
case, the matrix Hi−1 defined by (2.29) is constant and equal to 2Ru (i.e., it
is independent of w̃i−1). In this way, recursion (2.30) becomes

w̃i = (IM − 2µRu)w̃i−1, i ≥ 0 (2.37)

from which it is again clear that w̃i converges to zero for all µ < 1/λmax(Ru).

�

2.4 Decaying Step-Size Sequences

It is also possible to employ in (2.21) iteration-dependent step-size se-
quences, µ(i) ≥ 0, instead of the constant step-size µ, and to require
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µ(i) to satisfy the two conditions:
∞∑
i=0

µ(i) =∞, lim
i→∞

µ(i) = 0 (2.38)

For example, sequences of the form

µ(i) = τ

i+ 1 , i ≥ 0 (2.39)

satisfy conditions (2.38) for any finite positive constant τ . It is well-
known that, under (2.38), the gradient descent recursion, namely,

wi = wi−1 − µ(i)∇wTJ(wi−1), i ≥ 0 (2.40)

continues to ensure the convergence of wi towards wo, as explained
next [32, 190, 243]. However, the convergence rate will now be slower
and in the order of O(1/i2ντ ). That is, the convergence rate will not
be geometric (or exponential) any longer. For this reason, the constant
step-size implementation is preferred. Nevertheless, we will still discuss
the decaying step-size case in order to prepare for our future treat-
ment of stochastic gradient algorithms where such step-sizes are more
relevant. A second issue with the use of decaying step-sizes is that con-
ditions (2.38) force the step-size sequence to decay to zero; this feature
is problematic for scenarios requiring continuous adaptation and learn-
ing from streaming data (which will be the main focus of our treatment
starting from the next chapter). This is because, in many instances, it
is not unusual for the location of the minimizer, wo, to drift with time.
With µ(i) decaying towards zero, the gradient descent algorithm (2.40)
will stop updating and will not be able to track drifts in the solution.

Lemma 2.2 (Convergence with decaying step-size sequence: Real case). Assume
the cost function, J(w), satisfies Assumption 2.1. If the step-size sequence
µ(i) satisfies the two conditions in (2.38), then it holds that for any initial
condition, w−1, the gradient descent algorithm (2.40) generates iterates {wi}
that converge to the global minimizer, wo. Moreover, when the step-size
sequence is chosen as in (2.39), then the convergence rate is in the order of
‖w̃i‖2 = O(1/i2ντ ) for large enough i.
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Proof. We first establish the convergence result for step-size sequences satis-
fying (2.38). The argument that led to (2.26) will similarly lead to

‖w̃i‖2 ≤ α(i) ‖w̃i−1‖2 (2.41)

where now α(i) = 1 − 2νµ(i) + δ2µ2(i). We split 2νµ(i) into the sum of two
factors and write

α(i) = 1− νµ(i)− νµ(i) + δ2µ2(i) (2.42)

Now, since µ(i) → 0, we conclude that for large enough i > io, the sequence
µ2(i) will assume smaller values than µ(i). Therefore, a large enough time
index, io, exists such that the following two conditions are satisfied:

νµ(i) ≥ δ2µ2(i), 0 < 1− νµ(i) ≤ 1, i > io (2.43)

It follows that
α(i) ≤ 1− νµ(i), i > io (2.44)

and, hence,
‖w̃i‖2 ≤ (1− νµ(i)) ‖w̃i−1‖2, i > io (2.45)

Iterating over i we can write (assuming a finite io exists for which ‖w̃io‖ 6= 0,
otherwise the algorithm would have converged) [164, 205]:

lim
i→∞

(
‖w̃i‖2

‖w̃io‖2

)
≤

∞∏
i=io+1

(1− νµ(i)) (2.46)

or, equivalently,

lim
i→∞

ln
(
‖w̃i‖2

‖w̃io‖2

)
≤

∞∑
i=io+1

ln (1− νµ(i)) (2.47)

Now using the following easily verified property for the natural logarithm
function:

ln(1− y) ≤ −y, for all 0 ≤ y < 1 (2.48)

and letting y = νµ(i), we have that

ln(1− νµ(i)) ≤ −νµ(i), i > io (2.49)

so that
∞∑

i=io+1
ln(1− νµ(i)) ≤ −

∞∑
i=io+1

νµ(i) = −ν

( ∞∑
i=io+1

µ(i)
)

= −∞ (2.50)
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since the step-size series is assumed to be divergent in (2.38). We conclude
that

lim
i→∞

ln
(
‖w̃i‖2

‖w̃io‖2

)
= −∞ (2.51)

so that w̃i → 0 as i→∞.
We now examine the convergence rate for step-size sequences of the form

(2.39). Note first that these sequences satisfy the following two conditions

∞∑
i=0

µ(i) =∞,
∞∑
i=0

µ2(i) = τ2

( ∞∑
i=1

1
i2

)
= τ2π2

6 <∞ (2.52)

Again, since µ(i) → 0 and µ2(i) decays faster than µ(i), we know that for
some large enough i > i1, it will hold that

2νµ(i) ≥ δ2µ2(i) (2.53)

and, hence,
0 < α(i) ≤ 1, i > i1 (2.54)

We can now repeat the same steps up to (2.51) using y = 2νµ(i′) − δ2µ2(i′)
to conclude that

ln
(
‖w̃i‖2

‖w̃i1‖2

)
≤

i∑
i′=i1+1

ln
(
1− 2νµ(i′) + δ2µ2(i′)

)
≤ −

i∑
i′=i1+1

[
2νµ(i′)− δ2µ2(i′)

]
= −2ν

(
i∑

i′=i1+1
µ(i′)

)
+ δ2

(
i∑

i′=i1+1
µ2(i′)

)

≤ −2ν
(

i∑
i′=i1+1

µ(i′)
)

+ δ2τ2π2

6

= −2ντ
(

i+1∑
i′=i1+2

1
i′

)
+ δ2τ2π2

6

(a)
≤ −2ντ

(∫ i+2

i1+2

1
x
dx

)
+ δ2τ2π2

6

= 2ντ ln
(
i1 + 2
i+ 2

)
+ δ2τ2π2

6

= ln
(
i1 + 2
i+ 2

)2ντ
+ δ2τ2π2

6 (2.55)
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where in step (a) we used the following integral bound, which reflects the fact
that the area under the curve f(x) = 1/x over the interval x ∈ [i1 + 2, i+ 2] is
upper bounded by the sum of the areas of the rectangles shown in Figure 2.4:∫ i+2

i1+2

1
x
dx ≤

i+1∑
i′=i1+2

1
i′

(2.56)

Figure 2.4: The area under the curve f(x) = 1/x over the interval x ∈
[i1 + 2, i + 2] is upper bounded by the sum of the areas of the rectangles
shown in the figure.

We therefore conclude from (2.55) that

‖w̃i‖2 ≤
(
e

{
ln( i1+2

i+2 )2ντ+ δ2τ2π2
6

})
‖w̃i1‖2, i > i1

= e
δ2τ2π2

6 · ‖w̃i1‖2 ·
(
i1 + 2
i+ 2

)2ντ

= O(1/i2ντ ) (2.57)

as claimed.
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2.5 Optimization in the Complex Domain

We now extend the results of the previous two sections to the case
in which the argument w ∈ CM is complex-valued while J(w) ∈ R
continues to be real-valued. We again focus on the case of strongly-
convex functions, J(w), for which the minimizer, wo, is unique. It is
explained in (C.44) in the appendix that, in the complex case, condition
(2.14) is replaced by

J(w) is ν−strongly convex ⇐⇒ ∇2
w J(w) ≥ ν

2 I2M > 0 (2.58)

with a factor of 1
2 multiplying ν, and with IM replaced by I2M since the

Hessian matrix is now 2M × 2M . Note that we can capture conditions
(2.14) and (2.58) simultaneously in a single statement for both cases of
real or complex-valued arguments by writing

J(w) is ν−strongly convex ⇐⇒ ∇2
w J(w) ≥ ν

h
IhM > 0 (2.59)

where the variable h is an integer that denotes the type of the data:

h
∆=
{

1, when w is real
2, when w is complex (2.60)

Observe that h appears in two locations in (2.59); in the denominator
of ν and in the subscript indicating the size of the identity matrix.
We shall frequently employ the data-type variable, h, throughout our
presentation, and especially in future chapters, in order to permit a
uniform treatment of the various algorithms regardless of the type of
the data.

Likewise, the Lipschitz condition (2.17) is replaced by

‖∇w J(w2)−∇w J(w1)‖ ≤ δ

h
‖w2 − w1‖ (2.61)

for all w1, w2, where again a factor of h = 2 would appear on the right-
hand-side in the complex case. It follows from the result of Lemma E.7
in the appendix that for twice-differentiable costs, conditions (2.59)
and (2.61) combined are equivalent to

0 < ν

h
IhM ≤ ∇2

w J(w) ≤ δ

h
IhM (2.62)
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We therefore assume that the cost function J(w) is twice-differentiable
and satisfies (2.62) for some positive parameters ν ≤ δ.

Example 2.4 (Complex Hessian matrices). Let us reconsider the context of
Example 2.1 with complex data. Let d be a scalar zero-mean random variable
with variance σ2

d = E |d|2 and let u be a 1×M zero-mean random vector with
covariance matrix Ru = Eu∗u > 0. The cross-correlation vector between d
and u is denoted by rdu = Edu∗. The mean-square-error cost function is now
defined as

Jk(w) ∆= E |d− uw|2

= σ2
d − (rdu)∗w − w∗rdu + w∗Ruw (2.63)

The complex gradient vectors of J(w) relative to w and w∗ are given by —
see Example A.3 in the appendix:

∇w J(w) = (Ruw − rdu)∗ , ∇w∗J(w) = Ruw − rdu (2.64)

and the 2M×2M Hessian matrix of J(w) can be verified to be block diagonal
in this case and given by — see (B.36) in the appendix:

∇2
w J(w) =

[
Ru 0
0 RT

u

]
(2.65)

It is instructive to compare expressions (2.64) and (2.65) with (2.8) in the real
case.

�

In the complex case, the gradient descent algorithm (2.21) is re-
placed by

wi = wi−1 − µ∇w∗J(wi−1), i ≥ 0 (2.66)
in terms of the complex gradient vector relative to w∗. Since J(w) is
real-valued, it holds that

∇w∗J(wi−1) = [∇wJ(wi−1)]∗ (2.67)

Comparing with (2.21) we see that transposition of the gradient vector
is replaced by complex conjugation. The above recursion can be mo-
tivated from (2.21) as follows. We express the complex variable w in
terms of its real and imaginary components as

w = x+ jy (2.68)
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We then treat J(w) as the function J(v) of the 2M × 1 extended real
variable:

v = col{x, y} (2.69)

and consider instead the equivalent optimization problem

min
v∈R2M

J(v) (2.70)

We already know from (2.21) that the gradient descent recursion for
minimizing J(v) over v, using the step-size µ′ = µ/2, has the form:

vi = vi−1 −
1
2µ∇vTJ(vi−1), i ≥ 0 (2.71)

The reason for introducing the factor of 1
2 into µ′ will become clear

soon. We can rewrite the above recursion in terms of the components
of vi = col{xi, yi} as follows:[

xi
yi

]
=
[
xi−1
yi−1

]
− 1

2µ
[
∇xTJ(xi−1, yi−1)
∇yT J(xi−1, yi−1)

]
(2.72)

where we used relation (C.29) from the appendix to express the gradient
vector of J(v) in terms of the gradients of the same function J(x, y)
relative to x and y. Now, if we multiply the second block row of (2.72)
by jIM , add both block rows, and use wi = xi + jyi, we can rewrite
(2.72) in terms of the complex variables {wi, wi−1}:

wi = wi−1 −
1
2µ

[
∇xTJ(xi−1, yi−1) + j∇yTJ(xi−1, yi−1)

]
(C.31)= wi−1 − µ∇w∗J(wi−1) (2.73)

The second relation above agrees with the claimed form (2.66); it is
seen that the factor of 1/2 is used in transforming the combination of
gradient vectors relative to x and y into the gradient vector relative
to w. The next statement establishes the convergence of (2.66); in the
statement, we employ the data-type variable, h, so that the conclusion
encompasses both the real and complex-valued domains.
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Lemma 2.3 (Convergence with constant step-size: Complex case). Assume the
cost function J(w) satisfies (2.62). If the step-size µ is chosen to satisfy

µ

h
<

2ν
δ2 (2.74)

then, it holds that for any initial condition, w−1, the gradient descent algo-
rithm (2.66) generates iterates that converge exponentially fast to the global
minimizer, wo, i.e., it holds that

‖w̃i‖2 ≤ αi ‖w̃i−1‖2 (2.75)

where the real scalar α satisfies 0 ≤ α < 1 and is given by

α = 1− 2ν
(µ
h

)
+ δ2

(µ
h

)2
(2.76)

Proof. We are only interested in establishing the above results in the complex
case, which corresponds to h = 2, since we already established these same
conclusions for the real case in Lemma 2.1. Rather than establish the claims
by working directly with recursion (2.66) in the complex domain, we instead
reduce the problem to one that deals with the equivalent function J(v) of the
extended real variable v = col{x, y} and then apply the result of Lemma 2.1.

To begin with, we already know from (E.39) in the appendix that if J(w)
is ν−strongly convex, then J(v) is ν−strongly convex as well. We also know
from (E.22) and (E.56) in the same appendix that the gradient vector function
of J(v) is Lipschitz with factor δ when the gradient vector function of J(w) is
Lipschitz with factor δ/2. We further know from (2.71)–(2.73) that a gradient
descent recursion in the w−domain (as in (2.73)) is equivalent to a gradient
descent recursion in the v−domain (as in (2.71)) if we use µ′ = µ/2:

vi = vi−1 − µ′∇vTJ(vi−1), i ≥ 0 (2.77)

Lemma 2.1 then guarantees that the real-valued iterates {vi} will converge to
vo when µ′ < 2ν/δ2. Consequently, the gradient descent algorithm (2.66) will
converge for µ < 4ν/δ2, which is condition (2.74) with h = 2 in the complex
case. We note that from the argument that led to (2.34) we can conclude that
convergence actually occurs over the wider interval µ′ < 2/δ or, equivalently,
µ/h < 2/δ. Either way, we find that relation (2.75) holds by noting that
‖w̃i‖2 = ‖ṽi‖2 and using the result from Lemma 2.1 to conclude that

‖ṽi‖2 ≤ αi ‖ṽi−1‖2 (2.78)
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where ṽi = vo − vi and

α = 1− 2µ′ν + (µ′)2δ2 (2.79)

We can also study gradient descent recursions with decaying step-
size sequences satisfying (2.38), namely,

wi = wi−1 − µ(i)∇w∗J(wi−1), i ≥ 0 (2.80)

Lemma 2.4 (Convergence with decaying step-size: Complex case). Assume
the cost function J(w) satisfies (2.62). If the step-size sequence µ(i) satisfies
(2.38), then it holds that for any initial condition, w−1, the gradient
descent algorithm (2.80) generates iterates {wi} that converge to the global
minimizer, wo. Moreover, when the step-size sequence is chosen as in (2.39),
then the convergence rate is in the order of ‖w̃i‖2 = O(1/i(2ντ/h)) for large
enough i.

Proof. We apply Lemma 2.2 to the following recursion in the v−domain:

vi = vi−1 − µ′(i)∇vTJ(vi−1), i ≥ 0 (2.81)

where µ′(i) = µ(i)/2.



3
Stochastic Optimization by Single Agents

The gradient descent algorithm (2.21) of the previous chapter requires
knowledge of the exact gradient vector of the cost function that is
being minimized. In the context of adaptation and learning, this infor-
mation is rarely available beforehand and needs to be approximated.
This step is generally achieved by replacing the true gradient by an
approximate gradient, thus leading to stochastic gradient algorithms.
Important challenges and new features arise when the gradient vec-
tor is approximated. For instance, the gradient error that is caused by
the approximation (and which we shall call gradient noise) ends up
interfering with the operation of the algorithm. It therefore becomes
important to assess how much degradation in performance occurs. At
the same time, the stochastic approximation step infuses a powerful
tracking mechanism into the operation of the gradient descent algo-
rithm; it becomes able to track drifts in the location of the minimizer
due to changes in the underlying signal statistics or models. This is
because stochastic gradient implementations approximate the gradient
vector from streaming data. By doing so, and by relaying on actual data
realizations, the drifts in the signal models become reflected in the data
and they influence the operation of the algorithm in real-time.

338
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3.1 Adaptation and Learning

In order to illustrate the main concepts in these introductory chapters,
we treat again the real case first and subsequently extend the results
to the complex domain.

Thus, let J(w) ∈ R denote the real-valued cost function of a real-
valued vector argument, w ∈ RM and consider the same optimization
problem (3.1):

wo = arg min
w

J(w) (3.1)

We continue to assume that J(w) is twice-differentiable and satisfies
(2.18) for some positive parameters ν ≤ δ, namely,

0 < νIM ≤ ∇2
w J(w) ≤ δIM (3.2)

Assumption 3.1 (Conditions on cost function). The cost function J(w) is
twice-differentiable and satisfies (3.2) for some positive parameters ν ≤ δ.
Condition (3.2) is equivalent to requiring J(w) to be ν−strongly convex and
for its gradient vector to be δ−Lipschitz as in (2.14) and (2.17), respectively.

We mentioned in the previous chapter that it is common in adap-
tation and learning applications for the risk function J(w) to be con-
structed as the expectation of some loss function, Q(w;x), say,

J(w) = E Q(w;x) (3.3)

where the expectation is evaluated over the distribution of x. The tradi-
tional gradient-descent algorithm for solving (3.1) was described earlier
by (2.21), and we repeat it below for ease of reference:

wi = wi−1 − µ∇wTJ(wi−1), i ≥ 0 (3.4)

where i ≥ 0 is an iteration index and µ > 0 is a small step-size param-
eter. In order to run this recursion, we need to have access to the true
gradient vector, ∇wTJ(wi−1). This information is generally unavailable
in most instances involving learning from data. For example, when
cost functions are defined as the expectations of certain loss functions
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as in (3.3), the statistical distribution of the data x may not be known
beforehand. In that case, the exact form of J(w) will not be known
since the expectation of Q(w;x) cannot be computed. In such situa-
tions, it is necessary to replace the true gradient vector, ∇wTJ(wi−1),
by an instantaneous approximation for it, and which we shall denote
by ∇̂wTJ(wi−1). Doing so leads to the following stochastic-gradient re-
cursion in lieu of (3.4):

wi = wi−1 − µ ∇̂wTJ(wi−1), i ≥ 0 (3.5)

Note that we are using the boldface notation, wi, for the iterates in
(3.5) to highlight the fact that these iterates are randomly perturbed
versions of the values {wi} generated by the original recursion (3.4).
The random perturbations arise from the use of the approximate gra-
dient vector; different data realizations lead to different realizations for
the approximate gradients. The boldface notation is therefore meant
to emphasize the random nature of the iterates in (3.5).

Stochastic gradient algorithms are among the most successful iter-
ative techniques for the solution of adaptation and learning problems
by stand-alone single agents [190, 207, 243]. We will be using the term
“learning” to refer broadly to the ability of an agent to extract in-
formation about some unknown parameter from streaming data, such
as estimating the parameter itself or learning about some of its fea-
tures. We will be using the term “adaptation” to refer broadly to the
ability of the learning algorithm to track drifts in the parameter. The
two attributes of learning and adaptation will be embedded simultane-
ously into the algorithms discussed in this work. We will also be using
the term “streaming data” regularly because we are interested in al-
gorithms that perform continuous learning and adaptation and that,
therefore, are able to improve their performance in response to continu-
ous streams of data arriving at the agent. This is in contrast to off-line
algorithms, where the data are first aggregated before being processed
for extraction of information.

We illustrate construction (3.5) by considering a scenario from clas-
sical adaptive filter theory [107, 206, 262], where the gradient vector
is approximated directly from data realizations. The construction will
reveal why stochastic-gradient implementations of the form (3.5), us-
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ing approximate rather than exact gradient information, are naturally
endowed with the ability to respond to streaming data.

Example 3.1 (LMS adaptation). Let d(i) denote a streaming sequence of zero-
mean random variables with variance σ2

d = Ed2(i). Let ui denote a streaming
sequence of 1 ×M independent zero-mean random vectors with covariance
matrix Ru = EuT

i ui > 0. Both processes {d(i),ui} are assumed to be jointly
wide-sense stationary. The cross-covariance vector between d(i) and ui is
denoted by rdu = Ed(i)uT

i . The data {d(i),ui} are assumed to be related via
a linear regression model of the form:

d(i) = uiw
o + v(i) (3.6)

for some unknown parameter vector wo, and where v(i) is a zero-mean white-
noise process with power σ2

v = Ev2(i) and assumed independent of uj for all
i, j. Observe that we are using parentheses to represent the time-dependency
of a scalar variable, such as writing d(i), and subscripts to represent the time-
dependency of a vector variable, such as writing ui. This convention will be
used throughout this work. In a manner similar to Example 2.1, we again pose
the problem of estimating wo by minimizing the mean-square error cost

J(w) = E (d(i)− uiw)2 ≡ EQ(w;xi) (3.7)

where the quantities {d(i),ui} represent the random data xi in the definition
of the loss function, Q(w;xi). Using (3.4), the gradient-descent recursion in
this case will take the form:

wi = wi−1 − 2µ [Ruwi−1 − rdu] , i ≥ 0 (3.8)

The main difficulty in running this recursion is that it requires knowledge of
the moments {rdu, Ru}. This information is rarely available beforehand; the
adaptive agent senses instead realizations {d(i),ui} whose statistical distribu-
tions have moments {rdu, Ru}. The agent can therefore use these realizations
to approximate the moments and the true gradient vector. There are many
constructions that can be used for this purpose, with different constructions
leading to different adaptive algorithms [107, 205, 206, 262]. It is sufficient to
illustrate the construction by focusing on one of the most popular adaptive
algorithms, which results from using the data {d(i),ui} to compute instan-
taneous approximations for the unavailable moments at every time instant as
follows:

rdu ≈ d(i)uT
i , Ru ≈ uT

i ui (3.9)

By doing so, the true gradient vector is approximated by:

∇̂wTJ(w) = 2
[
uT
i uiw − uT

i d(i)
]

= ∇wT Q(w;xi) (3.10)
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Observe that this construction amounts to replacing the true gradient vector,
∇wT J(w), by the gradient vector of the instantaneous loss function itself
(which, equivalently, amounts to dropping the expectation operator):

∇wTJ(w) = ∇wTEQ(w;xi) (3.11)
∇̂wTJ(w) = ∇wTQ(w;xi) (3.12)

Substituting (3.10) into (3.8) leads to the well-known least-mean-squares
(LMS, for short) algorithm [107, 206, 262]:

wi = wi−1 + 2µuT
i [d(i)− uiwi−1], i ≥ 0 (3.13)

The LMS algorithm is therefore a stochastic-gradient algorithm. By relying
directly on the instantaneous data {d(i),ui}, the algorithm is infused with
useful tracking abilities. This is because drifts in the model wo from (3.6) will
be reflected in the data {d(i),ui}, which are used directly in (3.13).

�

Example 3.2 (Logistic learner). Let us reconsider the setting of Example 2.2,
which dealt with logistic risk functions. Let γ(i) be a streaming sequence of
binary random variables that assume the values ±1, and let hi be a streaming
sequence of M × 1 real random (feature) vectors with Rh = EhihT

i > 0.
We assume the random processes {γ(i),hi} are wide-sense stationary. The
objective is to seek the vector w that minimizes the following risk function:

J(w) ∆= ρ

2‖w‖
2 + E

{
ln
(

1 + e−γ(i)hT
iw
)}

(3.14)

The loss function that is associated with J(w) is

Q(w;γ(i),hi)
∆= ρ

2‖w‖
2 + ln

(
1 + e−γ(i)hT

iw
)
≡ Q(w;xi) (3.15)

and the stochastic gradient algorithm for minimizing J(w) then takes the
form:

wi = (1− µρ)wi−1 + µγ(i)hi
(

1
1 + eγ(i)hT

i
wi−1

)
, i ≥ 0 (3.16)

�

The idea of using sample realizations to approximate actual expec-
tations, as was the case with steps (3.9) and (3.12), is at the core of what
is known as stochastic approximation theory. According to [206, 243],
the pioneering work in the field of stochastic approximation is that of
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[200], which is a variation of a scheme developed about two decades
earlier in [255]. The work by [200] dealt primarily with scalar weights
w and was extended by [40, 217] to weight vectors — see [258]. During
the 1950s, stochastic approximation theory did not receive much atten-
tion in the engineering community until the landmark work by [260],
in which the authors developed the real form of the LMS algorithm
(3.13), which has since then found remarkable success in a wide range
of applications.

3.2 Gradient Noise Process

Now, the use of an approximate gradient vector in (3.5) introduces
perturbations relative to the operation of the original recursion (3.4).
We refer to the perturbation as gradient noise and define it as the
difference:

si(wi−1) ∆= ∇̂wTJ(wi−1) − ∇wTJ(wi−1) (3.17)

which can also be written as

si(wi−1) ∆= ∇wTQ(wi−1;xi) − ∇wTEQ(wi−1;xi) (3.18)

for cost functions of the form (3.3) and where, as in cases (3.7) and
(3.15), the {xi} represent the data.

The presence of the noise perturbation, si(wi−1), prevents the
stochastic iterate, wi, from converging to the minimizer wo when con-
stant step-sizes are used. Some deterioration in performance occurs
since the iterate wi will instead fluctuate close to wo in the steady-
state regime. We will assess the size of these fluctuations in the next
chapter. Here, we argue that they are bounded and that their mean-
square-error is in the order of O(µ) — see (3.39). The next example
from [66] illustrates the nature of the gradient noise process (3.17) in
the context of mean-square-error adaptation.
Example 3.3 (Gradient noise). It is clear from the expressions in Examples 2.3
and 3.1 that the corresponding gradient noise process is given by:

si(wi−1) = ∇̂wTJ(wi−1) − ∇wTJ(wi−1)
= 2

(
uT
i ui
)
wi−1 − 2uT

i [uiwo + v(i)] − 2Ruwi−1 + 2Ruwo

= 2(Ru − uT
i ui)w̃i−1 − 2uT

i v(i) (3.19)
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where we introduced the error vector, w̃i = wo −wi, and used the relations
d(i) = uiw

o + v(i) and Ruw
o = rdu. Let the symbol F i−1 represent the

collection of all possible random events generated by the past iterates {wj}
up to time j ≤ i−1. Formally, F i−1 is the filtration generated by the random
process wj for j ≤ i−1 (i.e., F i−1 represents the information that is available
about the random process wj up to time i− 1):

F i−1
∆= filtration {w−1, wo, w1, . . . ,wi−1} (3.20)

It follows from the conditions on the random processes {ui,v(i)} in Exam-
ple 3.1 that

E [ si(wi−1) |F i−1 ] = 2(Ru − EuT
i ui)w̃i−1 − 2EuT

i v(i)
= 2(Ru −Ru)w̃i−1 − 2

(
EuT

i

)
(Ev(i))

= 0 (3.21)

and

E
[
‖si(wi−1)‖2 | F i−1

]
≤ 4 c ‖w̃i−1‖2 + 4σ2

v Tr(Ru) (3.22)

where the constant c is given by

c
∆= E‖Ru − uT

i ui‖2 (3.23)

If we take expectations of both sides of (3.22), we further conclude that

E‖si(wi−1)‖2 ≤ 4cE‖w̃i−1‖2 + 4σ2
v Tr(Ru) (3.24)

so that the variance of the gradient noise, E‖si(wi−1)‖2, is bounded by the
combination of two factors. The first factor depends on the quality of the
iterate, E‖w̃i−1‖2, while the second factor depends on σ2

v . Therefore, even if
the adaptive agent is able to approach wo with great fidelity so that E‖w̃i−1‖2
is small, the size of the gradient noise will still depend on σ2

v .

�

In order to examine the convergence and performance properties
of the stochastic-gradient recursion (3.5), it is necessary to introduce
some assumptions on the stochastic nature of the gradient noise pro-
cess (3.17), whose definition we rewrite more generally as follows for
arbitrary vectors w ∈ F i−1:

si(w) ∆= ∇̂wTJ(w) − ∇wTJ(w) (3.25)
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The conditions that we state below are similar to conditions used earlier
in the optimization literature, e.g., in [190, pp. 95–102] and [33, p. 635];
they are also motivated by the conditions we observed in the mean-
square-error case in Example 3.3. Following the developments in [66,
70, 277], we assume the gradient noise process satisfies the following
conditions.

Assumption 3.2 (Conditions on gradient noise). It is assumed that the first
and second-order conditional moments of the gradient noise process satisfy
the following conditions for any w ∈ F i−1:

E [ si(w) |F i−1 ] = 0 (3.26)
E
[
‖si(w)‖2 |F i−1

]
≤ β̄2 ‖w‖2 + σ̄2

s (3.27)

almost surely, for some nonnegative scalars β̄2 and σ̄2
s .

Condition (3.26) ensures that the construction of the approximate gra-
dient vector is unbiased. Moreover, using the second condition (3.27),
we deduce for any wi−1 ∈ F i−1 that

E
[
‖si(wi−1)‖2 |F i−1

]
≤ β̄2 ‖wi−1‖2 + σ̄2

s

(a)= β̄2 ‖wi−1 − wo + wo‖2 + σ̄2
s

(b)
≤ 2β̄2 ‖wi−1 − wo‖2 + 2β̄2‖wo‖2 + σ̄2

s

(c)
≤ β2 ‖w̃i−1‖2 + σ2

s (3.28)

where in step (a) we added and subtracted the global minimizer, wo,
and in step (b) we used the inequality ‖x+y‖2 ≤ 2‖x‖2 +2‖y‖2 for any
vectors x and y, and in step (c) we introduced the nonnegative scalars:

β2 ∆= 2β̄2 (3.29)

σ2
s

∆= 2β̄2‖wo‖2 + σ̄2
s (3.30)

In other words, we conclude from conditions (3.26)–(3.27) that the
following conditions also hold:

E [ si(wi−1) |F i−1 ] = 0 (3.31)
E
[
‖si(wi−1)‖2 |F i−1

]
≤ β2 ‖w̃i−1‖2 + σ2

s (3.32)



346 Stochastic Optimization by Single Agents

in terms of the error vector, w̃i−1 = wo −wi−1, and for some nonneg-
ative scalars β2 ≥ 0 and σ2

s ≥ 0. We shall use these conditions more
frequently in lieu of (3.26)–(3.27). We could have required these con-
ditions directly in the statement of Assumption 3.2. We instead opted
to state conditions (3.26)–(3.27) in that manner, in terms of a generic
w ∈ F i−1 rather than w̃i−1, so that the upper bound in (3.27) is
independent of the unknown wo.

By further taking expectations of the relations (3.31)–(3.32), we
conclude that the gradient noise process also satisfies:

Esi(wi−1) = 0 (3.33)
E‖si(wi−1)‖2 ≤ β2 E‖w̃i−1‖2 + σ2

s (3.34)

It is straightforward to verify that the gradient noise process (3.19) in
the mean-square-error case satisfies conditions (3.31)–(3.32). Note in
particular from (3.24) that we can make the identifications

σ2
s → 4σ2

v Tr(Ru), β2 → 4c (3.35)

3.3 Stability of Second-Order Error Moment

We can now examine the convergence of the stochastic-gradient recur-
sion (3.5) in the mean-square-error sense. Result (3.39) below is stated
in terms of the limit superior of the error variance sequence, E‖w̃i‖2.
We recall that the limit superior of a sequence essentially corresponds
to the smallest upper bound for the limiting behavior of that sequence;
this concept is particularly useful when the sequence is not necessarily
convergent but tends towards a small bounded region [89, 144, 202].
One such situation is illustrated schematically in Figure 3.1 for the
sequence E‖w̃i‖2. If the sequence happens to be convergent, then the
limit superior will coincide with its regular limiting value.

Lemma 3.1 (Mean-square-error stability: Real case). Assume the conditions
under Assumptions 3.1 and 3.2 on the cost function and the gradient noise
process hold, and consider the nonnegative scalars {β2, σ2

s} defined by (3.29)–
(3.30). For any step-size value, µ, satisfying:
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µ <
2ν

δ2 + β2 (3.36)

it holds that E‖w̃i‖2 converges exponentially (i.e., at a geometric rate) ac-
cording to the recursion

E‖w̃i‖2 ≤ αE‖w̃i−1‖2 + µ2σ2
s (3.37)

where the scalar α satisfies 0 ≤ α < 1 and is given by

α = 1− 2νµ+ (δ2 + β2)µ2 (3.38)

It follows from (3.37) that, for sufficiently small step-sizes:

lim sup
i→∞

E‖w̃i‖2 = O(µ) (3.39)

Proof. While the result can be established in other ways, we follow the al-
ternative route suggested in the proof of the earlier Lemma 2.1 since this
argument is more convenient for extensions to the case of networked agents
[66, 69, 70, 277]. We subtract wo from both sides of (3.5) and use (3.17) to
get

w̃i = w̃i−1 + µ∇wTJ(wi−1) + µ si(wi−1) (3.40)

We now appeal to the mean-value relation (D.9) from the appendix to write
[190]:

∇wT J(wi−1) = −
(∫ 1

0
∇2
w J(wo − tw̃i−1)dt

)
w̃i−1

∆= −Hi−1w̃i−1 (3.41)

where we are introducing the symmetric and random time-variant matrix
Hi−1 to represent the integral expression. Substituting into (3.40), we get

w̃i = (IM − µHi−1)w̃i−1 + µ si(wi−1) (3.42)

so that

E
[
‖w̃i‖2 |F i−1

]
≤ ‖IM − µHi−1‖2 ‖w̃i−1‖2 +

µ2 E
[
‖si(wi−1)‖2 |F i−1

]
(3.32)
≤ ‖IM − µHi−1‖2 ‖w̃i−1‖2 +

µ2 (β2‖w̃i−1‖2 + σ2
s

)
(3.43)
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Using an argument similar to (2.33) we have

‖IM − µHi−1‖2 = [ρ(IM − µHi−1)]2

≤ max{(1− µδ)2, (1− µν)2}
≤ 1− 2µν + µ2δ2 (3.44)

since ν ≤ δ. Substituting into (3.43) and using the definition (3.38) we obtain

E
[
‖w̃i‖2 |F i−1

]
≤ α ‖w̃i−1‖2 + µ2σ2

s (3.45)

Taking expectations of both sides of this inequality we arrive at (3.37). The
bound (3.36) on the step-size ensures that 0 ≤ α < 1. Iterating recursion
(3.37) gives

E‖w̃i‖2 ≤ αi+1 E‖w̃−1‖2 + µ2σ2
s

1− α (3.46)

which proves that E‖w̃i‖2 converges exponentially to a region that is upper
bounded by

lim sup
i→∞

E‖w̃i‖2 ≤ µ2σ2
s

1− α = µσ2
s

2ν − µ(δ2 + β2) (3.47)

It is easy to check that the upper bound does not exceed µσ2
s/ν for any step-

size µ < ν/(δ2 + β2). We conclude that (3.39) holds for sufficiently small
step-sizes.

Observe that we can rewrite (3.37) in the equivalent form

(
E‖w̃i‖2 −

µ2σ2
s

1− α

)
≤ α

(
E‖w̃i−1‖2 −

µ2σ2
s

1− α

)
(3.48)

where the steady-state bound is subtracted from both sides. It is clear
from this representation that α relates to the rate of decay of the mean-
square-error towards its steady-state bound — see Figure 3.1.



3.4. Stability of Fourth-Order Error Moment 349

Figure 3.1: Exponential decay of the mean-square error described by (3.37) to
a level that is bounded by O(µ) and at a rate that is in the order of 1−O(µ).

3.4 Stability of Fourth-Order Error Moment

We can also examine the stability of the fourth-order moment of the
error vector by showing that the limit superior of E‖w̃i‖4 tends asymp-
totically to a region that is bounded by O(µ2). The main motivation
for establishing this result, in addition to the stability of the second-
order moment already established by (3.39), is that these results will be
used in the next chapter to derive expressions that quantify the perfor-
mance of stochastic gradient algorithms to first-order in the step-size
parameter.

To establish the convergence of the fourth-order moment, E‖w̃i‖4,
to a bounded region, we need to replace Assumption 3.2 by the following
condition on the fourth-order moment of the gradient noise process
[71, 278].

Assumption 3.3 (Conditions on gradient noise). It is assumed that the first
and fourth-order conditional moments of the gradient noise process satisfy
the following conditions for any iterates w ∈ F i−1:
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E [ si(w) |F i−1 ] = 0 (3.49)
E
[
‖si(w)‖4 |F i−1

]
≤ β̄4 ‖w‖4 + σ̄4

s (3.50)

almost surely, for some nonnegative coefficients σ̄4
s and β̄4.

It is straightforward to check that if the above condition on the fourth-
order moment holds, then a condition similar to (3.27) on the second-
order moment will also hold (while the reverse direction is not neces-
sarily true). Indeed, note that

E
[
‖si(w)‖4 |F i−1

]
≤

(
β̄2 ‖w‖2 + σ̄2

s

)2
(3.51)

so that using the property that (Ea)2 ≤ Ea2 for any real random
variable a, we conclude that

E
[
‖si(w)‖2 |F i−1

]
≤ β̄2 ‖w‖2 + σ̄2

s (3.52)

Therefore, the conditions in Assumption 3.3 continue to ensure the
mean-square stability of the stochastic-gradient algorithm, as already
established by Lemma 3.1.

Now, for any two vectors a and b, it holds that

‖a+ b‖4 =
∥∥∥∥1

2 · 2a + 1
2 · 2b

∥∥∥∥4

(a)
≤ 1

2‖2a‖
4 + 1

2‖2b‖
4

≤ 8‖a‖4 + 8‖b‖4 (3.53)

where in step (a) we called upon Jensen’s inequality (F.26) from the
appendix and applied it to the convex function f(x) = ‖x‖4. Using
(3.53), it follows from condition (3.50) that the gradient noise process
itself satisfies:

E
[
‖si(wi−1)‖4 |F i−1

]
≤ β̄4 ‖wi−1‖4 + σ̄4

s

= β̄4 ‖wi−1 − wo + wo‖4 + σ̄4
s

≤ 8β̄4 ‖w̃i−1‖4 + 8β̄4‖wo‖4 + σ̄4
s

(3.54)
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so that the following conditions also hold:

E [si(wi−1) |F i−1] = 0 (3.55)
E
[
‖si(wi−1)‖4 |F i−1

]
≤ β4

4 ‖w̃i−1‖4 + σ4
s4 (3.56)

where we introduced the non-negative parameters:

β4
4

∆= 8β̄4 (3.57)

σ4
s4

∆= 8β̄4‖wo‖4 + σ̄4
s (3.58)

We shall use conditions (3.55)–(3.56) more frequently in lieu of (3.49)–
(3.50). By taking expectations of (3.55)–(3.56) we obtain:

Esi(wi−1) = 0 (3.59)
E‖si(wi−1)‖4 ≤ β4

4 E‖w̃i−1‖4 + σ4
s4 (3.60)

The following example illustrates that the mean-square-error cost con-
sidered earlier in Examples 3.1 and 3.2 satisfies the conditions of As-
sumption 3.3.

Example 3.4 (Mean-square error costs). Let us consider the same scenario from
Example 3.3 where we determined in (3.19) that the gradient noise process is
given by

si(wi−1) = 2(Ru − uT
i ui)w̃i−1 − 2uT

i v(i) (3.61)

It follows that

‖si(wi−1)‖4
(3.53)
≤ 8‖2(Ru − uT

i ui)w̃i−1‖4 + 8‖2uT
i v(i)‖4

≤ 128‖Ru − uT
i ui‖4 ‖w̃i−1‖4 + 128‖ui‖4 ‖v(i)‖4

(3.62)

From the conditions on the random processes {ui,v(i)} in Example 3.1, and
assuming further that the fourth-order moments of {v(i),ui} are bounded
and independent of i, we get

E
[
‖si(wi−1)‖4 |F i−1

]
≤ 128

(
E‖Ru − uT

i ui‖4
)
‖w̃i−1‖4 +

128
(
E‖ui‖4

) (
E‖v(i)‖4

)
∆= β4

4‖w̃i−1‖4 + σ4
s4 (3.63)
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which is of the same form as (3.60) with

β4
4

∆= 128
(
E‖Ru − uT

i ui‖4
)

(3.64)

σ4
s4

∆= 128
(
E‖ui‖4

) (
E‖v(i)‖4

)
(3.65)

�

In a manner similar to Lemma 3.1 we can now argue that the evolution
of the fourth-order moment of the weight-error vector is also stable
[71, 278].

Lemma 3.2 (Stability of fourth-order moment: Real case). Assume the condi-
tions under Assumptions 3.1 and 3.3 on the cost function and the gradient
noise process hold. Then, for sufficiently small step-sizes, it holds that

lim sup
i→∞

E‖w̃i‖2 = O(µ) (3.66)

lim sup
i→∞

E‖w̃i‖4 = O(µ2) (3.67)

Proof. We only need to establish (3.67) since (3.66) was established earlier
in Lemma 3.1. Following an argument similar to [278], we refer to the error
recursion (3.42):

w̃i = (IM − µHi−1)w̃i−1 + µ si(wi−1) (3.68)

Using the fact that, for any vectors a and b,

‖a+ b‖4 = ‖a‖4 + ‖b‖4 + 2‖a‖2 ‖b‖2 + 4(aTb)2 + 4‖b‖2 aTb+ 4‖a‖2 aTb

(3.69)

we can equate the fourth-order powers of both sides of (3.68) to get

‖w̃i‖4 = ‖(IM − µHi−1) w̃i−1‖4 + µ4‖si(wi−1)‖4 +
2µ2‖(IM − µHi−1)w̃i−1‖2 ‖si(wi−1)‖2 +

4µ2
[
w̃T
i−1(IM − µHi−1)si(wi−1)

]2
+

4µ2‖si(wi−1)‖2
[
w̃T
i−1(IM − µHi−1)µs(wi−1)

]
+

4‖(IM − µHi−1)w̃i−1‖2
[
w̃T
i−1(IM − µHi−1)µsi(wi−1)

]
(3.70)
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Applying the Cauchy Schwarz’s inequality (aTb)2 ≤ ‖a‖2 ‖b‖2 to the third
term on the right-hand side, and using the sub-multiplicative property of
norms, we get

‖w̃i‖4 ≤ ‖IM − µHi−1‖4 ‖w̃i−1‖4 + µ4‖si(wi−1)‖4 +
6µ2‖(IM − µHi−1)w̃i−1‖2 ‖si(wi−1)‖2 +

4µ2‖si(wi−1)‖2
[
w̃T
i−1(IM − µHi−1)µsi(wi−1)

]
+

4‖(IM − µHi−1)w̃i−1‖2
[
w̃T
i−1(IM − µHi−1)µsi(wi−1)

]
(3.71)

Applying further the inequality 2aTb ≤ ‖a‖2 + ‖b‖2 to the rightmost factor in
the third line, and using again the sub-multiplicative property of norms, we
get

‖w̃i‖4 ≤ ‖IM − µHi−1‖4 ‖w̃i−1‖4 + 3µ4‖si(wi−1)‖4 +
8µ2‖IM − µHi−1‖2 ‖w̃i−1‖2 ‖si(wi−1)‖2 +

4‖(IM − µHi−1)w̃i−1‖2
[
w̃T
i−1(IM − µHi−1)µsi(wi−1)

]
(3.72)

Conditioning both sides of (3.72) on F i−1 and using (3.55) and (3.56), we
obtain

E
[
‖w̃i‖4|F i−1

]
≤ ‖IM − µHi−1‖4 ‖w̃i−1‖4 +

3µ4(β4
4 ‖w̃i−1‖4 + σ4

s4) +
8µ2 ‖IM − µHi−1‖2 ‖w̃i−1‖2 (β2 ‖w̃i−1‖2 + σ2

s)
(3.73)

where the expectation of the last term on the right-hand side of (3.72) is zero
since E [si(wi−1)|F i−1] = 0. Using an argument similar to (3.44) we have

‖IM − µHi−1‖2 ≤ 1− 2µν + µ2δ2

< 1 + µ2δ2 (3.74)

and

‖IM − µHi−1‖4 ≤ (1− 2µν + µ2δ2)2

= 1− 4µν + 2µ2(2ν2 + δ2) + µ4δ4 − 4µ3νδ2

< 1− 4µν + 2µ2(2ν2 + δ2) + µ4δ4 (3.75)

Substituting these bounds into (3.73), taking expectations of both sides again
to eliminate the conditioning on F i−1, and grouping terms we get

E‖w̃i‖4 ≤ (1− a1)E‖w̃i−1‖4 + a2E‖w̃i−1‖2 + a3 (3.76)
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where the constants {a1, a2, a3} are defined by

a1 = 4µν − 2µ2(2ν2 + δ2 + 4β2)− µ4(δ4 + 8β2δ2 + 3β4
4)

= O(µ) (3.77)
a2 = 8µ2(1 + µ2δ2)σ2

s = O(µ2) (3.78)
a3 = 3µ4σ4

s4 = O(µ4) (3.79)

We can combine (3.76) and the earlier mean-square-error inequality (3.37)
into a single linear recursive inequality as follows:[

E‖w̃i‖2
E‖w̃i‖4

]
�
[
α 0
a2 (1− a1)

] [
E‖w̃i−1‖2
E‖w̃i−1‖4

]
+
[
µ2σ2

s

a3

]
(3.80)

where the notation a � b means that each entry of vector a is smaller than
or equal to the corresponding entry in vector b. We already know from (3.36)
that for µ < 2ν/(δ2 + β2), it will hold that 0 ≤ α < 1 so that the mean-
square error, E‖w̃i‖2, converges asymptotically to a region bounded by O(µ).
We can therefore ensure the convergence of recursion (3.80) by showing that
a small enough step-size can be chosen to further enforce |1 − a1| < 1 or,
equivalently, 0 < a1 < 2. Since we know from (3.77) that a1 < 4µν, then
selecting µ according to the following three conditions is sufficient to meet the
requirement 0 < a1 < 2 (these conditions combined guarantee µν < a1 < 2):

4µν < 2 (3.81)
µ4(δ4 + 8β2δ2 + 3β4

4) < µ2(2ν2 + δ2 + 4β2) (3.82)
µ2(2ν2 + δ2 + 4β2) < µν (3.83)

or, since δ ≥ ν,

µ < 1/2δ (3.84)

µ <

(
2ν2 + δ2 + 4β2

δ4 + 8β2δ2 + 3β4
4

)1/2

(3.85)

µ <
ν

2ν2 + δ2 + 4β2 (3.86)

Since the bounds on the right-hand side are positive constants and indepen-
dent of µ, it is clear that a sufficiently small µ exists that meets all three
conditions and leads to |1− a1| < 1. For example, the smallest bound among
the above three bounds determines an upper limit, µo, such that for all µ < µo
we get 0 < a1 < 2:

µo = min
{

1
2δ ,

ν

2ν2 + δ2 + 4β2 ,

(
2ν2 + δ2 + 4β2

δ4 + 8β2δ2 + 3β4
4

)1/2}
(3.87)
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It is clear that
ν

2ν2 + δ2 + 4β2 <
ν

δ2 + β2 (3.88)

Therefore, any µ < µo also satisfies µ < ν/(δ2 + β2) and E‖w̃i‖2 will be
mean-square stable according to (3.36), i.e.,

lim sup
i→∞

E‖w̃i‖2 ≤ bµ (3.89)

for some constant b > 0. Computing the limit superior of both sides of (3.76)
then gives:

lim sup
i→∞

E‖w̃i‖4 ≤ a2bµ+ a3

a1
(a)
≤ 8µ2(1 + µ2δ2)σ2

sbµ + 3µ4σ4
s4

µν

≤
(

8bσ2
s

ν

)
µ2 +

(
3σ4

s4
ν

)
µ3 +

(
8bσ2

sδ
2

ν

)
µ4

(b)
≤

(
8bσ2

s

ν

)
µ2 +

(
3σ4

s4
2ν2

)
µ2 +

(
2bσ2

sδ
2

ν3

)
µ2

= O(µ2) (3.90)

where step (a) is because a1 > µν and step (b) is because µ < 1/2ν.

3.5 Decaying Step-Size Sequences

If desired, it is also possible to employ iteration-dependent step-size
sequences in (3.5) instead of the constant step-size µ, and to require
µ(i) > 0 to satisfy either of the following two sets of conditions:

∞∑
i=0

µ(i) =∞, lim
i→∞

µ(i) = 0 (3.91)

or
∞∑
i=0

µ(i) =∞,
∞∑
i=0

µ2(i) <∞ (3.92)

The first set of conditions is the same one we encountered before in
(2.38). The second set of conditions is stronger: if a sequence µ(i) sat-
isfies (3.92) then it also satisfies (3.91). In either case, recursion (3.5)
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would be replaced by

wi = wi−1 − µ(i) ∇̂wTJ(wi−1), i ≥ 0 (3.93)

It is well-known [32, 190, 243] that the iterate wi converges towards
wo in the mean-square sense under (3.91), i.e.,

lim
i→∞

E‖w̃i‖2 = 0 (under (3.91)) (3.94)

and it converges to wo almost surely, i.e., with probability one, under
(3.92):

Prob
(

lim
i→∞

wi = wo
)

= 1 (under (3.92)) (3.95)

However, as already noted before, conditions (3.91)–(3.92) force the
step-size sequence to decay to zero, which is problematic for applica-
tions requiring continuous adaptation from streaming data.

Lemma 3.3 (Almost-sure convergence: Real case). Assume the conditions un-
der Assumptions 3.1 and 3.2 on the cost function and the gradient noise
process hold. Then, the following convergence properties hold for (3.93):

(a) If the step-size sequence µ(i) satisfies (3.92), then wi converges almost
surely to wo, written as wi → wo a.s.

(b) If the step-size sequence µ(i) satisfies (3.91), then wi converges in the
mean-square-error sense to wo, i.e., E‖w̃i‖2 → 0.

Proof. We again subtract wo from both sides of (3.93) to get

w̃i = w̃i−1 + µ(i)∇wTJ(wi−1) + µ(i) si(wi−1) (3.96)

We then use the mean-value relation (D.7) from the appendix to note that

∇wTJ(wi−1) =
(∫ 1

0
∇2
w J(wo − tw̃i−1)dt

)
︸ ︷︷ ︸

∆= Hi−1

w̃i−1 (3.97)

where we are introducing the symmetric and random time-variant matrix
Hi−1, which is defined in terms of the Hessian of the cost function; note that
this matrix depends on the random error vector w̃i−1. Substituting the above
relation into (3.96), we get the recursion

w̃i = (IM − µ(i)Hi−1)w̃i−1 + µ(i) si(wi−1) (3.98)
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It then follows that

E
[
‖w̃i‖2 | F i−1

]
≤ ‖IM − µ(i)Hi−1‖2 ‖w̃i−1‖2 +

µ2(i)E
[
‖si(wi−1)‖2|F i−1

]
(a)
≤ (1− 2µ(i)ν + δ2µ2(i)) ‖w̃i−1‖2 +

β2µ2(i)‖w̃i−1‖2 + µ2(i)σ2
s (3.99)

where step (a) uses an argument similar to (3.44). Therefore, it holds that:

E
[
‖w̃i‖2 | F i−1

]
≤ α(i) ‖w̃i−1‖2 + µ2(i)σ2

s (3.100)

where
α(i) ∆= 1− 2νµ(i) + (δ2 + β2)µ2(i) (3.101)

Now note that we can split the term 2νµ(i) in the above expression for
α(i) into the sum of two terms and write

α(i) = 1− νµ(i)− νµ(i) + (δ2 + β2)µ2(i) (3.102)

And since µ(i) → 0, we conclude that for large enough i > io, the sequence
µ2(i) will assume smaller values than µ(i). Therefore, a large enough time
index, io, exists such that the following two conditions are satisfied:

νµ(i) ≥ (δ2 + β2)µ2(i), 0 ≤ νµ(i) < 1, i > io (3.103)

Consequently,
α(i) ≤ 1− νµ(i), i > io (3.104)

Then, inequalities (3.100) and (3.104) imply that

E
[
‖w̃i‖2 | F i−1

]
≤ (1− νµ(i)) ‖w̃i−1‖2 + µ2(i)σ2

s , i > io (3.105)

For convenience of notation, let

u(i+ 1) ∆= ‖w̃i‖2 (3.106)

Then, inequality (3.105) implies that

E [u(i+ 1)| u(0),u(1), . . . ,u(i) ] ≤ (1− νµ(i)) u(i) + µ2(i)σ2
s , i > io

(3.107)
We now call upon the useful result (F.53) from the appendix and make the
identifications

a(i) = νµ(i), b(i) = µ2(i)σ2
s (3.108)
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These sequences satisfy conditions (F.54) in the appendix in view of assump-
tion (3.92) on the step-size sequence and the second condition in (3.103). We
then conclude that u(i)→ 0 almost surely and, hence,wi → wo almost surely.

Finally, taking expectations of both sides of (3.107) leads to

Eu(i+ 1) ≤ (1− νµ(i)) Eu(i) + µ2(i)σ2
s , i > io (3.109)

with the expectation operator appearing on both sides of the inequality. Then,
we conclude from result (F.49) in the appendix, under conditions (3.91), that
E‖w̃i‖2 → 0 so that wi converges to wo in the mean-square-error sense.

We can be more specific and quantify the rate at which the variance
E‖w̃i‖2 converges towards zero for step-size sequences of the form:

µ(i) = τ

i+ 1 , ξ > 0 (3.110)

which satisfy both conditions (3.91) and (3.92). In contrast to the result
of Lemma 2.2 on the convergence rate of gradient descent algorithms,
which was seen to be in the order of O(1/i2ντ ), the next statement
indicates that now three rates of convergence are possible depending
on how ντ compares to the value one.

Lemma 3.4 (Rates of convergence for a decaying step-size). Assume the con-
ditions under Assumptions 3.1 and 3.2 on the cost function and the gradient
noise process hold. Assume further that the step-size sequence is selected ac-
cording to (3.110). Then, three convergence rates are possible depending on
how the factor ντ compares to the value one. Specifically, for large enough i,
it holds that: 

E‖w̃i‖2 ≤
(
τ2σ2

s

ντ−1

)
1
i + o

( 1
i

)
, ντ > 1

E‖w̃i‖2 = O
(

log i
i

)
, ντ = 1

E‖w̃i‖2 = O
( 1
iντ

)
, ντ < 1

(3.111)

The fastest convergence rate occurs when ντ > 1 (i.e., for large enough τ)
and is in the order of O(1/i).

Proof. We use (3.109) and the assumed form for µ(i) in (3.110) to write

Eu(i+ 1) ≤
(

1− ντ

i+ 1

)
Eu(i) + τ2σ2

s

(i+ 1)2 , i > io (3.112)
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This recursion has the same form as recursion (F.49) in the appendix with
the identifications

a(i) = ντ

i+ 1 , b(i) = τ2σ2
s

(i+ 1)2 , p = 1 (3.113)

The above rates of convergence then follow from the statement in part (b) of
Lemma F.5 in the appendix.

3.6 Optimization in the Complex Domain

We now extend the previous results to the case in which the argument
w ∈ CM is complex-valued. As was explained earlier in Sec. 2.5, the
strongly-convex function, J(w) ∈ R, is required to satisfy condition
(2.62), namely,

0 < ν

h
IhM ≤ ∇2

w J(w) ≤ δ

h
IhM (3.114)

in terms of the data-type variable

h
∆=
{

1, when w is real
2, when w is complex (3.115)

Condition (3.114) captures the requirements that J(w) is twice-
differentiable, ν−strongly convex, and has a δ−Lipschitz gradient vec-
tor function. The condition is also applicable to both cases of real and
complex data. In this section, we are interested in the case h = 2 cor-
responding to complex data. The previous sections studied the case
h = 1.

In the complex domain, the stochastic gradient recursions (3.4) and
(3.93) are replaced by

wi = wi−1 − µ ∇̂w∗J(wi−1), i ≥ 0 (3.116)

and
wi = wi−1 − µ(i) ∇̂w∗J(wi−1), i ≥ 0 (3.117)

respectively, where the second form employs an iteration-dependent
step-size sequence. Comparing with (3.4) and (3.93) we see that trans-
position of the approximate gradient vector is replaced by complex
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conjugation. We again denote the approximation error by the gradient
noise model:

si(wi−1) ∆= ∇̂w∗J(wi−1) − ∇w∗J(wi−1) (3.118)

This noise process is now complex-valued.

Example 3.5 (LMS adaptation in the complex domain). We extend the formu-
lation of Examples 3.1 and 3.3 to the complex case. Thus, let d(i) denote
a streaming sequence of zero-mean (now complex-valued) random variables
with variance σ2

d = E |d(i)|2. Let ui denote a streaming sequence of 1×M in-
dependent zero-mean (now complex-valued) random vectors with covariance
matrix Ru = Eu∗iui > 0. Both processes {d(i),ui} are assumed to be jointly
wide-sense stationary. The cross-covariance vector between d(i) and ui is de-
noted by rdu = Ed(i)u∗i . The data {d(i),ui} are assumed to be related via
the same linear regression model

d(i) = uiw
o + v(i) (3.119)

for some unknown parameter vector wo, and where v(i) is a zero-mean white-
noise process with power σ2

v = E |v(i)|2 and assumed independent of uj for
all i, j. In a manner similar to Example 2.1, we again pose the problem of
estimating wo by minimizing the mean-square error cost

J(w) = E |d(i)− uiw|2

= σ2
d − r∗duw − w∗rdu + w∗Ruw

≡ EQ(w;xi) (3.120)

where the quantities {d(i),ui} represent the random data xi in the definition
of Q(w;xi). Using (2.66), the gradient-descent recursion in this case will take
the form:

wi = wi−1 − µ [Ruwi−1 − rdu] , i ≥ 0 (3.121)

Observe that the factor of 2 that used to appear multiplying µ in (3.8) in the
real case is not needed here since now

∇w∗J(wi−1) = Ruwi−1 − rdu (3.122)

Again, the main difficulty in running (3.121) is that it requires knowledge of
the moments {rdu, Ru}. Using the instantaneous approximations:

rdu ≈ d(i)u∗i , Ru ≈ u∗iui (3.123)
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we can replace the true gradient vector by the approximation:

∇̂w∗J(w) = [u∗iuiw − u∗id(i)] = ∇w∗Q(w;xi) (3.124)

Substituting (3.124) into (3.121) leads to the complex form of the least-mean-
squares (LMS) algorithm [107, 206, 262]:

wi = wi−1 + µu∗i [d(i)− uiwi−1], i ≥ 0 (3.125)

It can be verified from the construction of the approximate gradient vector
that the corresponding gradient noise process is now given by

si(wi−1) = (Ru − u∗iui)w̃i−1 − u∗i v(i) (3.126)

in terms of w̃i = wo −wi. If we again let F i−1 represent filtration generated
by the random process wj for j ≤ i− 1, we readily obtain that

E [ si(wi−1) |F i−1 ] = 0 (3.127)
E
[
‖si(wi−1)‖2 | F i−1

]
≤ c ‖w̃i−1‖2 + σ2

v Tr(Ru) (3.128)

where the constant c is given by

c
∆= E‖Ru − u∗iui‖2 (3.129)

If we take expectations of both sides of (3.128), we further conclude that

E‖si(wi−1)‖2 ≤ cE‖w̃i−1‖2 + σ2
v Tr(Ru) (3.130)

so that the variance of the gradient noise, E‖si(wi−1)‖2, is again bounded by
the combination of two factors. The first factor depends on the quality of the
iterate, E‖w̃i−1‖2, while the second factor depends on σ2

v .

�

In a manner similar to Assumption 3.2, we assume the gradient noise
process satisfies the following conditions. The statement below is ap-
plicable to both cases of real and complex data through the use of the
data-type variable: h = 1 for real data and h = 2 for complex data.

Assumption 3.4 (Conditions on gradient noise: Complex case). It is assumed
that the first and second-order conditional moments of the gradient noise
process satisfy the following conditions for any w ∈ F i−1:

E [ si(w) |F i−1 ] = 0 (3.131)

E
[
‖si(w)‖2 |F i−1

]
≤

(
β̄/h

)2 ‖w‖2 + σ̄2
s (3.132)

almost surely, for some nonnegative scalars β̄2 and σ̄2
s .



362 Stochastic Optimization by Single Agents

In a manner similar to the derivation of (3.31)–(3.32) in the real case,
we can again verify that the above two conditions lead to the following
forms, which we shall use frequently:

E [ si(wi−1) |F i−1 ] = 0 (3.133)
E
[
‖si(wi−1)‖2 |F i−1

]
≤ (β/h)2 ‖w̃i−1‖2 + σ2

s (3.134)

and where the scalars {β2, σ2
s} are defined by

β2 ∆= 2β̄2 (3.135)

σ2
s

∆= 2(β̄/h)2‖wo‖2 + σ̄2
s (3.136)

By taking expectations of (3.133)–(3.134), we conclude that the gradi-
ent noise process also satisfies:

Esi(wi−1) = 0 (3.137)
E‖si(wi−1)‖2 ≤ (β/h)2 E‖w̃i−1‖2 + σ2

s (3.138)

It is straightforward to verify from Example 3.5 that the gradient
noise process in the mean-square-error case satisfies conditions (3.133)–
(3.134). Note in particular from (3.130) that we can make the identifi-
cations

σ2
s → σ2

v Tr(Ru), β2 → 4c (3.139)

Stability of Second-Order Error Moment
The next statement extends Lemma 3.1 to the complex case and as-
certains the mean-square-error stability of recursion (3.116).

Lemma 3.5 (Mean-square-error stability: Complex case). Assume the cost func-
tion J(w) satisfies (3.114) and the gradient noise process satisfies the condi-
tions in Assumption 3.4, and consider the nonnegative scalars {β2, σ2

s} defined
by (3.135)–(3.136). If the step-size parameter is chosen to satisfy

µ

h
<

2ν
δ2 + β2 (3.140)

Then, it holds that for any initial condition, w−1, the mean-square error,
E‖w̃i‖2, converges exponentially (i.e., at a geometric rate) according to the
recursion:

E‖w̃i‖2 ≤ αE‖w̃i−1‖2 + µ2σ2
s (3.141)
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where
α = 1− 2ν

(µ
h

)
+ (δ2 + β2)

(µ
h

)2
(3.142)

It follows from (3.141) that, for sufficiently small step-sizes:

lim sup
i→∞

E‖w̃i‖2 = O(µ) (3.143)

Proof. We apply the result of Lemma 3.1 to the v−domain recursion:

vi = vi−1 − µ′ ∇̂vTJ(vi−1) (3.144)

where µ′ = µ/2 and vi = col{xi,yi} in terms of the real and imaginary parts
of wi = xi + jyi. We already know from (E.39) in the appendix that J(v) is
ν−strongly convex since J(w) is ν−strongly convex. We also know from from
(E.22) and (E.56) in the same appendix that the gradient vector function of
J(v) is δ−Lipschitz. Therefore, the equivalent function J(v), defined in terms
of the real-valued argument v, satisfies the conditions stated in Lemma 3.1.
All that remains to check is to identify the nature of the gradient noise associ-
ated with the modified recursion (3.144) and to verify that this noise satisfies
conditions of the same form required by Assumption 3.2. Let us denote the
gradient noise of the above recursion in the v−domain by

ti(vi−1) ∆= ∇̂vTJ(vi−1) − ∇vTJ(vi−1) (3.145)

We now express ti(·) in terms of the original gradient noise si(wi−1) from the
w−domain given by (3.118). To begin with, recursion (3.144) is equivalent to

vi = vi−1 −
µ

2 ∇vT J(vi−1) − µ

2 ti(vi−1) (3.146)

Multiplying (3.146) from the left by the matrix D from (B.27) in the appendix
and using (C.32), we can transform the above recursion into the following form
in terms of the original variables wi:[

wi

(w∗i )T

]
=
[

wi−1
(w∗i−1)T

]
− µ

[
∇w∗J(wi−1)
∇wTJ(wi−1)

]
− µ

2 D ti(vi−1) (3.147)

If we instead start from (3.117), then we would obtain[
wi

(w∗i )T

]
=
[

wi−1
(w∗i−1)T

]
− µ

[
∇w∗J(wi−1)
∇wTJ(wi−1)

]
− µ

[
si(wi−1)

(s∗i (wi−1))T

]
(3.148)

Comparing (3.147) and (3.148) we conclude that the processes ti(·) and si(·)
are related as follows:

1
2 D ti(vi−1) =

[
si(wi−1)

(s∗i (wi−1))T

]
(3.149)
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from which, using the fact that D∗D = 2I2M from (B.28) in the appendix,
we can solve for ti(vi−1) and find that

ti(vi−1) = 2
[
sR,i(wi−1)
sI,i(wi−1)

]
(3.150)

in terms of the real and imaginary parts of the gradient noise vector:

si(wi−1) ∆= sR,i(wi−1) + jsI,i(wi−1) (3.151)

Now since si(wi−1) satisfies conditions (3.133)–(3.134), it follows that

E [ ti(vi−1) | F i−1 ] = 0 (3.152)

and

E
[
‖ti(vi−1)‖2 | F i−1

] (3.150)= 4E
[
‖si(wi−1)‖2 | F i−1

]
(3.138)
≤ 4

(
β

h

)2
‖w̃i−1‖2 + 4σ2

s

= β2 ‖w̃i−1)‖2 + 4σ2
s (3.153)

where we used h = 2 for complex data. Therefore, the gradient noise process
ti(vi−1) satisfies conditions similar to (3.34) and the result of Lemma 3.1 is
then immediately applicable to the v−domain recursion (3.144). Specifically,
we know from the statement of that lemma that the stochastic gradient re-
cursion (3.146) converges in the mean-square sense when µ′ < 2ν/(δ2 + β2),
which is equivalent to (3.140). Moreover, from (3.37) we get

E‖ṽi‖2 ≤ αE‖ṽi−1‖2 + (µ′)2 (4σ2
s)

= αE‖ṽi−1‖2 + µ2σ2
s (3.154)

where

α = 1− 2νµ′ + (µ′)2(δ2 + β2)

= 1− νµ+ µ2

4 (δ2 + β2) (3.155)

and, therefore, from (3.154):

lim sup
i→∞

E‖ṽi‖2 ≤
µσ2

s

ν − µ
4 (δ2 + β2) (3.156)

It is easy to check that the upper bound does not exceed 2µσ2
s/ν for any µ

satisfying µ < 2ν(δ2 + β2). We conclude that (3.143) holds for sufficiently
small step-sizes.
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Stability of Fourth-Order Error Moment
We can similarly extend the conclusion of Lemma 3.2 to the complex
domain. For that purpose, and in a manner similar to Assumption 3.3,
we assume the gradient noise process satisfies the following conditions.

Assumption 3.5 (Conditions on gradient noise: Complex case). It is assumed
that the first and fourth-order conditional moments of the gradient noise
process satisfy the following conditions for any iterates w ∈ F i−1:

E [ si(w) |F i−1 ] = 0 (3.157)

E
[
‖si(w)‖4 |F i−1

]
≤

(
β̄/h

)4 ‖w‖4 + σ̄4
s (3.158)

almost surely, for some nonnegative coefficients σ̄4
s and β̄4.

In a manner similar to the derivation of (3.55)–(3.56) in the real case,
we can again verify that the above two conditions lead to the following
forms:

E [si(wi−1) |F i−1] = 0 (3.159)
E
[
‖si(wi−1)‖4 |F i−1

]
≤ β4

4 ‖w̃i−1‖4 + σ4
s4 (3.160)

in terms of the nonnegative parameters:

β4
4

∆= 8β̄4 (3.161)

σ4
s4

∆= 8(β̄/h)4‖wo‖4 + σ̄4
s (3.162)

By taking expectations of (3.159)–(3.160) we obtain:

Esi(wi−1) = 0 (3.163)
E‖si(wi−1)‖4 ≤ (β4/h)4 E‖w̃i−1‖4 + σ4

s4 (3.164)

Lemma 3.6 (Stability of fourth-order moment: Complex case). Assume the con-
ditions under Assumptions 3.1 and 3.5 on the cost function and the gradient
noise process hold. Then, for sufficiently small step-sizes, it again holds that

lim sup
i→∞

E‖w̃i‖2 = O(µ) (3.165)

lim sup
i→∞

E‖w̃i‖4 = O(µ2) (3.166)
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Proof. We apply Lemma 3.2 to the v−domain recursion

vi = vi−1 − µ′ ∇̂vT J(vi−1) (3.167)

where µ′ = µ/2 after noting that the gradient noise process ti(vi−1) satisfies
a fourth-order condition of the same form as (3.60) since

E
[
‖ti(vi−1)‖4 | F i−1

]
= E

[ (
‖ti(vi−1)‖2

)2 | F i−1

]
(3.150)= E

[ (
4‖si(wi−1)‖2

)2 | F i−1

]
= 16E

[
‖si(wi−1)‖4 | F i−1

]
(3.164)
≤ β4

4 ‖w̃i−1‖4 + 16σ4
s4 (3.168)

using h = 2.

Decaying Step-Sizes
We now examine the convergence of the iterates {wi} generated by
(3.117) towards the minimizer, wo. The lemmas that follow extend
the results from the real case to the complex case with some minimal
differences.

Lemma 3.7 (Almost-sure convergence: Complex case). Assume the cost func-
tion J(w) satisfies (3.114) and the gradient noise process satisfies the condi-
tions in Assumption 3.4. Then, the following convergence properties hold for
(3.117):

(a) If the step-size sequence µ(i) satisfies (3.92), then wi converges almost
surely to wo, written as wi → wo a.s.

(b) If the step-size sequence µ(i) satisfies (3.91), then wi converges in the
mean-square-error sense to wo, i.e., E‖w̃i‖2 → 0.

Proof. We apply the result of Lemma 3.3 to the v−domain recursion:

vi = vi−1 − µ′(i) ∇̂vT J(vi−1) (3.169)

where µ′(i) = µ(i)/2.
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Lemma 3.8 (Rates of convergence for a decaying step-size). Assume the cost
function J(w) satisfies (3.114) and the gradient noise process satisfies the
conditions in Assumption 3.4. Assume further that the step-size sequence
is selected according to (3.110). Then, three convergence rates are possible
depending on how the factor ντ/h compares to the value one. Specifically, for
large enough i, it holds that:

E‖w̃i‖2 ≤
(

τ2σ2
s

ντ/h−1

)
1
i + o

( 1
i

)
, ντ/h > 1

E‖w̃i‖2 = O
(

log i
i

)
, ντ/h = 1

E‖w̃i‖2 = O
( 1
iντ/h

)
, ντ/h < 1

(3.170)

where h = 2 for complex data and h = 1 for real data. The fastest convergence
rate occurs when ντ/h > 1 (i.e., for large enough τ) and is in the order of
O(1/i).

Proof. Apply the result of Lemma 3.4 to (3.169) noting that

µ′(i) = τ/2
i+ 1 (3.171)

so that τ is replaced by τ/2 and, from (3.153), σ2
s is replaced by 4σ2

s .



4
Performance of Single Agents

We established in Lemmas 3.3 and 3.7, for both cases of real and com-
plex data, that the use of a stochastic-gradient algorithm with a de-
caying step-size sequence of the form µ(i) = τ/(i + 1) guarantees the
almost sure convergence of the iterate wi to wo. However, the largest
rate of convergence that is attainable under this construction is in the
order of O(1/i), namely, for large enough i it holds that

E‖w̃i‖2 = O(1/i) (4.1)

On the other hand, when a constant step-size, µ, is used, we established
in Lemmas 3.1 and 3.5 that the stochastic-gradient algorithm is mean-
square stable in the sense that the error variance enters a bounded
region whose size is in the order of O(µ), namely, for large enough i it
now holds that

lim sup
i→∞

E‖w̃i‖2 = O(µ) (4.2)

More interestingly, we showed that convergence towards this bounded
region occurs at a faster geometric rate and is in the order of O(αi)
for some 0 ≤ α < 1. In other words, although some degradation in
steady-state performance occurs, the convergence rate is nevertheless
exponential. In this chapter, we will assess the size of the fluctuations

368
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of wi around wo in steady-state, as i → ∞, for both cases of real and
complex data. More specifically, we will determine an expression for
the mean-square-deviation (MSD) of the stochastic gradient algorithm
in the slow adaptation regime when µ is sufficiently small. The MSD is
a useful metric that measures the size of the error variance, E‖w̃i‖2, in
steady-state after sufficient iterations have elapsed. We will motivate
and define the MSD further ahead in relation (4.94) and subsequently
determine closed-form expressions for it in (4.100) for real data and in
(4.170) for complex data. In the mean time, we introduce the following
terminology for ease of reference here and elsewhere in this work.

Definition 4.1 (Operating regimes). The term “steady-state regime” will refer
to the operation of the stochastic-gradient implementation after sufficient
iterations have elapsed, i.e., as i → ∞. Likewise, the term “slow adaptation
regime” will refer to the operation of the stochastic-gradient implementation
with a sufficiently small step-size, i.e., as µ→ 0.

If we now examine expressions (4.100) and (4.170) for the MSD,
we observe that it will turn out to be proportional to the step-size
parameter, i.e., it is small and in the order of O(µ), as expected from
(4.2). This means that adaptation with small constant step-sizes can
still lead to reliable performance at an exponential convergence rate
even in the presence of gradient noise, which is a reassuring result. We
are also able to conclude that adaptation with constant step-sizes is
useful even for stationary environments when wo remains fixed. This
is because it is generally sufficient in practice to attain an iterate wi

within some fidelity (or confidence) level from wo in a finite number
of iterations. As long as the MSD level is satisfactory, a stochastic-
gradient algorithm will be able to attain satisfactory fidelity within a
reasonable time frame. In comparison, although diminishing step-sizes
ensure almost-sure convergence of wi to wo, they nevertheless disable
tracking and can only guarantee slower than geometric convergence
rates (see also [32, 190]).

We shall derive the closed-form expressions for the MSD metric,
and for a related excess-risk (ER) metric, starting from Sec. 4.5. This
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is an important task to pursue for various reasons [207]. First, once
performance expressions are available, it becomes possible to carry out
meaningful comparisons among different configurations for adaptation
and learning (such as non-cooperative, centralized, and distributed im-
plementations). Second, it also becomes possible to quantify how per-
formance depends on the algorithm and system parameters (such as
step-size, network topology, and cooperation policy); these parame-
ters can then be optimized for enhanced performance. And third, the
mean-square-error expressions define confidence levels about how well
the iterate wi approaches the global minimum, wo. In the sequel, we
shall derive an expression for the MSD by following the energy con-
servation technique of [6, 205, 206, 269]. For that purpose, we need to
introduce an additional smoothness condition on the cost function and
the gradient noise, as explained next.

4.1 Conditions on Risk Function and Noise

We consider the case of real arguments first. Thus, let J(w) ∈ R denote
the real-valued cost function of a real-valued vector argument, w ∈ RM

and consider the same optimization problem (3.1):

wo = arg min
w

J(w) (4.3)

We continue to assume that J(w) is twice-differentiable and satisfies
(3.2) for some positive parameters ν ≤ δ, namely,

0 < νIM ≤ ∇2
w J(w) ≤ δIM (4.4)

Assumption 4.1 (Conditions on cost function). The cost function J(w) is
twice-differentiable and satisfies (4.4) for some positive parameters ν ≤ δ.
Condition (4.4) is equivalent to requiring J(w) to be ν−strongly convex and
for its gradient vector to be δ−Lipschitz as in (2.14) and (2.17), respectively.

We established in the previous chapter the mean-square-error stability
of the following stochastic-gradient recursion for seeking the minimizer
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wo in the real data case:

wi = wi−1 − µ ∇̂wTJ(wi−1), i ≥ 0 (4.5)

The analysis relied on the conditions in Assumption 3.2 on the gradient
noise process, si(wi−1), which we repeat here for ease of reference.
Recall from (3.25) that

si(w) ∆= ∇̂wTJ(w) − ∇wTJ(w) (4.6)

Assumption 4.2 (Conditions on gradient noise). It is assumed that the first
and second-order conditional moments of the gradient noise process satisfy
the following conditions for any w ∈ F i−1:

E [ si(w) |F i−1 ] = 0 (4.7)
E
[
‖si(w)‖2 |F i−1

]
≤ β̄2 ‖w‖2 + σ̄2

s (4.8)

almost surely, for some nonnegative scalars β̄2 and σ̄2
s . These conditions were

shown in (3.31)–(3.32) to imply that the gradient noise process satisfies for
any wi−1 ∈ F i−1:

E [ si(wi−1) |F i−1 ] = 0 (4.9)
E
[
‖si(wi−1)‖2 |F i−1

]
≤ β2 ‖w̃i−1‖2 + σ2

s (4.10)

almost surely, for some nonnegative scalars β2 and σ2
s , and where

w̃i−1 = wo −wi−1.

Now, in order to pursue a closed form expression for the MSD of the
algorithm, we need to introduce two smoothness conditions: one condi-
tion is on the cost function and the other condition is on the covariance
matrix of the gradient noise process.

For any w ∈ F i−1, we let

Rs,i(w) ∆= E
[
si(w)sT

i (w) |F i−1
]

(4.11)

denote the conditional second-order moment of the gradient noise pro-
cess, which generally depends on i because the statistical distribution
of si(w) can be iteration-dependent. Note that Rs,i(w) is a random
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quantity since it depends on the random iterate w. We assume that,
in the limit, this covariance matrix tends to a constant value when
evaluated at wo and we denote the limit by

Rs
∆= lim

i→∞
E
[
si(wo)sT

i (wo) |F i−1
]

(4.12)

We sometimes refer to the term si(wo) as the absolute noise component.

Example 4.1 (Gradient noise for mean-square-error costs). Let us reconsider the
scenario studied in Example 3.3, which dealt with mean-square-error costs of
the form J(w) = E (d(i)− uiw)2. From expression (3.19) we know that

si(wo) = −2uT
i v(i) (4.13)

Rs = 4σ2
vRu ≡ Rs,i(wo), for all i (4.14)

Moreover, from expression (3.19) for si(wi−1), and from the conditions on
the random processes {ui,v(i)} in Example 3.1, we have that

Rs,i(wi−1) = 4E
{

(Ru − uT
i ui)w̃i−1w̃

T
i−1(Ru − uT

i ui) |F i−1

}
+ 4σ2

vRu

(4.15)
Now since ui and w̃i−1 are independent of each other:

‖Rs,i(wi−1)−Rs,i(wo)‖

= 4
∥∥∥E {(Ru − uT

i ui)w̃i−1w̃
T
i−1(Ru − uT

i ui) |F i−1

}∥∥∥
≤ 4E

{∥∥∥(Ru − uT
i ui)w̃i−1w̃

T
i−1(Ru − uT

i ui)
∥∥∥ |F i−1

}
≤ 4E

{∥∥Ru − uT
i ui
∥∥2 ‖w̃i−1‖2 |F i−1

}
= 4‖w̃i−1‖2

(
E
∥∥Ru − uT

i ui
∥∥2)

= 4c‖w̃i−1‖2 (4.16)

with the constant c = E‖Ru−uT
i ui‖2. It follows that, by taking expectations,

E‖Rs,i(wi−1)−Rs,i(wo)‖ ≤ 4cE‖w̃i−1‖2 (4.17)
�

The two smoothness conditions that are needed for the subsequent eval-
uation of the MSD performance of the stochastic-gradient algorithm
(4.5) are the following [66, 71, 278].
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Assumption 4.3 (Smoothness conditions). It is assumed that the Hessian ma-
trix of the cost function, J(w), and the noise covariance matrix defined by
(4.11) are locally Lipschitz continuous in a small neighborhood around w = wo

in the following manner:∥∥∇2
w J(wo + ∆w)−∇2

w J(wo)
∥∥ ≤ κ1 ‖∆w‖ (4.18)

‖Rs,i(wo + ∆w)−Rs,i(wo)‖ ≤ κ2 ‖∆w‖γ (4.19)

for small perturbations ‖∆w‖ ≤ ε and for some constants κ1 ≥ 0, κ2 ≥ 0,
and exponent 0 < γ ≤ 4.

Observe from (4.17) that for mean-square-error costs, the Lipschitz
condition (4.19) is satisfied with γ = 2. Likewise, for mean-square-
error costs, the first condition (4.18) is automatically satisfied since
the Hessian matrices of quadratic costs are constant and independent
of w.

Although conditions (4.18)–(4.19) are required to hold only locally
in the proximity of w = wo, they actually turn out to imply that similar
bounds hold more globally. For example, using result (E.30) from the
appendix, it can be verified that condition (4.18) translates into a global
Lipschitz property relative to the minimizer wo, i.e., it will also hold
that [278]:

‖∇2
w J(w)−∇2

w J(wo)‖ ≤ κ′1 ‖w − wo‖ (4.20)

for all w and for some constant κ′1 ≥ 0.
A similar conclusion follows from (4.19). To see that, let us consider

any w ∈ F i−1 such that ‖wo −w‖ > ε. This condition corresponds to
a situation where the perturbation ∆w in (4.19) lies outside the disc of
radius ε. Nevertheless, we can still argue that an upper bound similar
to (4.19) continues to hold, albeit with some adjustment [71] — see
expression (4.24). To arrive at this expression, we start by using the
triangle inequality of norms to note that

‖Rs,i(w)−Rs,i(wo)‖ ≤ ‖Rs,i(w)‖ + ‖Rs,i(wo)‖ (4.21)
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Using the property that ‖A‖ ≤ Tr(A) for any symmetric nonnegative-
definite matrix A (since the trace is the sum of the eigenvalues of the
matrix and the 2−induced norm is its largest eigenvalue), we can bound
each term on the right-hand side of (4.21) as follows:

‖Rs,i(w)‖ ≤ Tr [Rs,i(w)]

= Tr
[
E
{
si(w)sT

i (w) |F i−1
}]

= E
{
Tr
(
si(w)sT

i (w)
)
| F i−1

}
= E

[
‖si(w)‖2 |F i−1

]
(4.10)
≤ β2‖wo −w‖2 + σ2

s (4.22)

By setting w = wo we also conclude that ‖Rs,i(wo)‖ ≤ σ2
s . Substituting

into (4.21) we get

‖Rs,i(w)−Rs,i(wo)‖ ≤ β2‖wo −w‖2 + 2σ2
s

(a)
≤ β2‖wo −w‖2 + 2σ2

s

(
‖wo −w‖2

ε2

)

=
(
β2 + 2σ2

s

ε2

)
‖wo −w‖2

∆= κ3‖wo −w‖2 (4.23)

for some nonnegative constant κ3 and where in step (a) we used the fact
that ‖wo−w‖ > ε. Combining this result with the localized assumption
(4.19) we conclude that the conditional noise covariance matrix satisfies
more globally a condition of the following form for any w ∈ F i−1:

‖Rs,i(w)−Rs,i(wo)‖ ≤ max
{
κ2 ‖w̃‖γ , κ3 ‖w̃‖2

}
≤ κ2 ‖w̃‖γ + κ3 ‖w̃‖2 (4.24)

where w̃ = wo −w.
One useful conclusion that follows from the smoothness condition

(4.19) and from (4.24) is that, after sufficient iterations, we can express
the covariance matrix of the gradient noise process in terms of the same
limiting value Rs defined by (4.12) for the absolute noise component.
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This fact is established next and will be employed later in the proof of
Theorem 4.7.

Lemma 4.1 (Limiting second-order moment of gradient noise: Real case). Under
the smoothness condition (4.19), and for sufficiently small step-sizes, it holds
for i� 1 that:1

Esi(wi−1) (si(wi−1))T = Rs + O
(
µmin{1, γ2 }

)
(4.25)

where 0 < γ ≤ 4 is from (4.19) and Rs is defined by (4.12). Consequently, it
holds for i� 1 that the trace of the covariance matrix satisfies:

Tr(Rs)− bo ≤ E‖si(wi−1)‖2 ≤ Tr(Rs) + bo (4.26)

for some nonnegative value bo = O
(
µmin{1, γ2 }

)
.

Proof. By adding and subtracting the same term, we have

E
[
si(wi−1) (si(wi−1))T |F i−1

]
= E

[
si(wo) (si(wo))T |F i−1

]
+

E
[
si(wi−1) (si(wi−1))T |F i−1

]
−

E
[
si(wo) (si(wo))T |F i−1

]
(4.11)= E

[
si(wo) (si(wo))T |F i−1

]
+

Rs,i(wi−1)−Rs,i(wo) (4.27)

so that by subtracting the covariance matrix Rs defined by (4.12) from both
sides, and computing expectations, we get:

Esi(wi−1) (si(wi−1))T −Rs = E
(
E
[
si(wo) (si(wo))T |F i−1

]
−Rs

)
+

E (Rs,i(wi−1)−Rs,i(wo)) (4.28)

It then follows from the triangle inequality of norms, and from Jensen’s in-
equality (F.29) in the appendix, that:

1The notation X = O(µ) for a matrix X signifies that the magnitude of the
individual entries of X are O(µ) or ‖X‖ = O(µ).
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∥∥∥Esi(wi−1) (si(wi−1))T −Rs
∥∥∥

≤
∥∥∥E (E [ si(wo) (si(wo))T |F i−1

]
−Rs

)∥∥∥ +

‖E (Rs,i(wi−1)−Rs,i(wo))‖
(F.29)
≤ E

∥∥∥E [ si(wo) (si(wo))T |F i−1

]
−Rs

∥∥∥ +

E ‖Rs,i(wi−1)−Rs,i(wo)‖ (4.29)

where the notation ‖X‖ denotes the 2−induced norm of its matrix argument,
X. If we now compute the limit superior of both sides, and recall definition
(4.12), we get

lim sup
i→∞

∥∥∥Esi(wi−1) (si(wi−1))T −Rs
∥∥∥

≤ lim sup
i→∞

E ‖Rs,i(wi−1)−Rs,i(wo)‖ (4.30)

The limit superior on the right-hand side can be evaluated by calling upon
(4.24) to get:

lim sup
i→∞

E‖Rs,i(wi−1)−Rs,i(wo)‖

≤ lim sup
i→∞

E
{
κ2 ‖w̃i−1‖γ + κ3 ‖w̃i−1‖2

}
≤ lim sup

i→∞

{
κ2 E

(
‖w̃i−1‖4

)γ/4 + κ3 E‖w̃i−1‖2
}

(a)
≤ lim sup

i→∞

{
κ2
(
E‖w̃i−1‖4

)γ/4 + κ3 E‖w̃i−1‖2
}

(3.39)= O(µγ
′/2) (4.31)

where in step (a) we applied Jensen’s inequality (F.30) to the function f(x) =
xγ/4; this function is concave over x ≥ 0 for γ ∈ (0, 4]. Moreover, in the
last step we called upon results (3.39) and (3.67), namely, that the second
and fourth-order moments of w̃i−1 are asymptotically bounded by O(µ) and
O(µ2), respectively. Accordingly, the exponent γ′ in the last step is given by

γ′
∆= min {γ, 2} (4.32)

since O(µγ/2) dominates O(µ) for values of γ ∈ (0, 2] and O(µ) dominates
O(µγ/2) for values of γ ∈ [2, 4]. Substituting (4.31) into (4.30) we conclude
that

lim sup
i→∞

∥∥∥Esi(wi−1) (si(wi−1))T −Rs
∥∥∥ = O(µγ

′/2) (4.33)
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If we denote the difference between Rs and the covariance matrix
Esi(wi−1) (si(wi−1))T by ∆i, then result (4.33) implies that, for i � 1, we
have ‖∆i‖ = O(µγ′/2) and we arrive at (4.25). Moreover, since for any square
matrix X, it can be verified that |Tr(X)| ≤ c ‖X‖, for some constant c that
is independent of γ′, we also conclude from (4.33) that

lim sup
i→∞

∣∣E‖si(wi−1)‖2 − Tr(Rs)
∣∣ = O(µγ

′/2) ∆= b1 (4.34)

in terms of the absolute value of the difference. We are denoting the value of
the limit superior by the nonnegative number b1; we know from (4.34) that
b1 = O(µγ′/2). The above relation then implies that, given ε > 0, there exists
an Io large enough such that for all i > Io it holds that∣∣E‖si(wi−1)‖2 − Tr(Rs)

∣∣ ≤ b1 + ε (4.35)

If we select ε = O(µγ′/2) and introduce the sum bo = b1 + ε, then we arrive
at the desired result (4.26).

4.2 Stability of First-Order Error Moment

Using the Lipschitz property (4.20), we can now examine the mean
stability of the error vector, w̃i, and show that the limit superior of
‖E w̃i‖ is bounded by O(µ).

Indeed, using the fact that (Ea)2 ≤ Ea2, for any real-valued ran-
dom variable a, we note that we may conclude from (3.39) that

lim sup
i→∞

E‖w̃i‖ = O(µ1/2) (4.36)

However, a tighter bound is possible with µ1/2 replaced by µ by ap-
pealing to (4.20) and bounding the limiting value of ‖E w̃i‖.

Let us reconsider recursion (3.42), namely,

w̃i = (IM − µH i−1)w̃i−1 + µ si(wi−1) (4.37)

where
H i−1

∆=
∫ 1

0
∇2
w J(wo − tw̃i−1)dt (4.38)

We introduce the deviation matrix

H̃ i−1
∆= H −H i−1 (4.39)
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where the constant symmetric and positive-definite matrix H is defined
as the value of the Hessian matrix at the minimizer wo:

H
∆= ∇2

w J(wo) (4.40)

Substituting (4.39) into (4.37) gives

w̃i = (IM − µH)w̃i−1 + µ si(wi−1) + µci−1 (4.41)

in terms of the perturbation term

ci−1
∆= H̃ i−1w̃i−1 (4.42)

Lemma 4.2 (Mean-error stability: Real case). Assume the requirements under
Assumptions 4.1 and 4.2 and condition (4.18) on the cost function and the
gradient noise process hold. Then, for sufficiently small step-sizes it holds that

lim sup
i→∞

‖E w̃i‖ = O(µ) (4.43)

Proof. Conditioning both sides of (4.41) on F i−1, and using the fact that
E [si(wi−1) |F i−1] = 0, we conclude that

E [w̃i |F i−1] = (IM − µH) w̃i−1 + µci−1 (4.44)

Taking expectations again we arrive at the mean recursion

E w̃i = (IM − µH)E w̃i−1 + µEci−1 (4.45)

The limit superior of the right-most expectation is bounded by O(µ2) for the
following reason. Note that

‖ci−1‖
(4.42)
≤ ‖H̃i−1‖ ‖w̃i−1‖

(4.38)
≤ ‖w̃i−1‖

∫ 1

0

∥∥∇2
w J(wo − tw̃i−1)−∇2

wJ(wo)
∥∥ dt

(4.20)
≤ κ′1 ‖w̃i−1‖

∫ 1

0
‖tw̃i−1‖dt

= κ′1
2 ‖w̃i−1‖2 (4.46)
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Thus, using (3.39), we conclude that the mean-norm value of the correction
term converges asymptotically to the region:

lim sup
i→∞

E‖ci−1‖ = O(µ) (4.47)

Now the matrix (IM − µH) is symmetric so that its 2−induced norm agrees
with its spectral radius:

‖IM − µH‖ = ρ(IM − µH) (4.48)

Moreover, for sufficiently small step-sizes µ � 1, it holds that this spectral
radius is strictly smaller than one and given by

ρ(IM − µH) = 1− µλmin(H) (4.49)

It then follows from (4.45) that

‖E w̃i‖ ≤ ‖IM − µH‖ ‖E w̃i−1‖ + µ‖Eci−1‖
≤ (1− µλmin(H))‖E w̃i−1‖ + µE‖ci−1‖ (4.50)

so that

lim sup
i→∞

‖E w̃i‖ ≤
1

1− (1− µλmin(H))

(
lim sup
i→∞

µE‖ci−1‖
)

= O(µ) (4.51)

as claimed.

4.3 Long-Term Error Dynamics

Continuing with model (4.41), we can use it to motivate a useful long-
term model for the evolution of the error vector w̃i after sufficient iter-
ations, i.e., for i� 1. For this purpose, we note first that we can deduce
from (4.47) that ‖ci−1‖ = O(µ) asymptotically with high probability.
Indeed, let us introduce the nonnegative random variable u = ‖ci−1‖
and let us recall Markov’s inequality [89, 91, 186], which states that for
any nonnegative random variable u and ξ > 0 it holds that

Prob(u ≥ ξ) ≤ Eu/ξ (4.52)

That is, the probability of the event u ≥ ξ is upper bounded by a
term that is proportional to Eu. We employ this result as follows. Let
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rc = nµ, for any constant integer n ≥ 1 that we are free to choose. We
then conclude from (4.47) and (4.52) that for i� 1:

Prob (‖ci−1‖ < rc) = 1− Prob (‖ci−1‖ ≥ rc)
≥ 1− (E‖ci−1‖/rc)

(4.47)
≥ 1−O (1/n) (4.53)

where the term O(1/n) is independent of µ. This result shows that the
probability of having ‖ci−1‖ bounded by rc can be made arbitrarily
close to one by selecting a large enough value for n. Once the value for
n has been fixed to meet a desired confidence level, then rc = O(µ).

Referring to recursion (4.41), this analysis suggests that we can as-
sess its mean-square performance by examining the following long-term
model, which holds with high probability after sufficient iterations:

w̃i = (IM − µH)w̃i−1 + µ si(wi−1), i� 1 (4.54)

In this model, the perturbation term µci−1 that appears in (4.41) is
removed. We may also consider an alternative long-term model where
µci−1 is instead replaced by a constant driving term in the order of
O(µ2). However, the conclusions that will follow about the performance
of the original recursion (4.37) will be the same whether we remove
µci−1 altogether or replace it by O(µ2). We therefore continue our
analysis by using model (4.54). Obviously, the iterates {w̃i} that are
generated by (4.54) are generally different from the iterates that are
generated by the original recursion (4.37). To highlight this fact, we
rewrite the long-term model (4.54) more explicitly as follows.

Lemma 4.3 (Long-term error dynamics). Assume the requirements under As-
sumptions 4.1 and 4.2 and condition (4.18) on the cost function and the gradi-
ent noise process hold. After sufficient iterations, i� 1, the error dynamics of
the stochastic-gradient algorithm (4.5) is well-approximated by the following
model (as confirmed by future result (4.70)):

w̃′i = (IM − µH)w̃′i−1 + µ si(wi−1) (4.55)

with the iterates denoted by w̃′i using the prime notation.
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Note that the driving process si(wi−1) in (4.55) continues to be the
same gradient noise process from the original recursion (4.37) and is
evaluated at wi−1. We can view the long-term model (4.55) as a dy-
namic recursion that is fed by the gradient noise sequence, si(wi−1).
Therefore, assuming both the original system (4.37) and the long-term
model (4.55) are launched from the same initial conditions, we observe
by iterating (4.55) that w̃′i will still be determined by the past his-
tory of the iterates {wj , j ≤ i − 1} through its dependence on the
gradient noise process {sj(wj−1), j ≤ i}. Therefore, it also holds that
w̃′i ∈ F i−1.

Now working with recursion (4.55) is much more tractable because
its dynamics is driven by the constant matrix H as opposed to the ran-
dom matrixH i−1 in the original error recursion (4.37). We shall there-
fore follow the following route to evaluate the MSD of the stochastic-
gradient algorithm (4.5). We shall work with the long-term model (4.55)
and evaluate its MSD. Subsequently, we will argue that, under a con-
dition on the fourth-order moment of the gradient noise process, this
MSD value is within O(µ3/2) from the true MSD expression that would
result had we worked directly with the original error recursion (4.37)
without the approximation of ignoring µci−1 in the long-term. There-
fore, the MSD expression that we shall derive based on the long-term
model (4.55) will provide an accurate representation for the MSD of
the original stochastic-gradient algorithm to first-order in µ.

We already know from the result of Lemma 3.1 that the original
error recursion (4.37) is mean-square stable in the sense that E‖w̃i‖2
tends asymptotically to a region that is bounded by O(µ). We now
verify that the long-term model (4.55) is also mean-square stable.

Lemma 4.4 (Mean-square stability of long-term model). Assume the condi-
tions under Assumptions 4.1 and 4.2 on the cost function and the gradient
noise process hold. Then, for sufficiently small step-sizes, the iterate that is
generated by the long-term model (4.55) satisfies:

lim sup
i→∞

E‖w̃′i‖2 = O(µ) (4.56)
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Proof. Note first that since w̃′i−1 ∈ F i−1 and E [si(wi−1) |F i−1] = 0, we
conclude from (4.55) that

E
[
‖w̃′i‖2 |F i−1

]
=
∥∥(IM − µH)w̃′i−1

∥∥2 + µ2 E‖si(wi−1) |F i−1‖2 (4.57)

Taking expectations again, we get

E‖w̃′i‖2 = E
∥∥(IM − µH)w̃′i−1

∥∥2 + µ2 E‖si(wi−1)‖2 (4.58)

Using an argument similar to (2.33) and assuming sufficiently small µ such
that µ < ν/δ2, we have:

‖IM − µH‖2 ≤ 1− 2µν + µ2δ2 ≤ 1− µν (4.59)

and, therefore,

E‖w̃′i‖2
(4.10)
≤ ‖IM − µH‖2 E‖w̃′i−1‖2 + µ2 [β2E‖w̃i−1‖2 + σ2

s

]
(4.59)
≤ (1− µν) E‖w̃′i−1‖2 + µ2 β2E‖w̃i−1‖2 + µ2σ2

s (4.60)

We already know from (3.39) that sufficiently small step-sizes ensure the con-
vergence of E‖w̃i−1‖2 towards a region that is bounded by O(µ). It follows
that

lim sup
i→∞

E‖w̃′i‖2 ≤ 1
1− (1− µν)

(
µ2 β2 ·O(µ) + µ2σ2

s

)
= O(µ) (4.61)

We therefore conclude that (4.56) holds for sufficiently small step-sizes.

We can also establish the stability of the mean error for the long-term
model (4.55) under the Lipschitz property (4.20).

Lemma 4.5 (Mean stability of long-term model). Assume the requirements
under Assumptions 4.1 and 4.2 and condition (4.20) on the cost function and
the gradient noise process hold. Then, for sufficiently small step-sizes, the
iterates of the long-term model (4.55) are asymptotically zero mean:

lim
i→∞

E w̃′i = 0 (4.62)
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Proof. The derivation is similar to the argument used to conclude the proof
of Lemma 4.2. Specifically, we first use (4.55) to obtain

E w̃′i = (IM − µH)E w̃′i−1 (4.63)

And since IM − µH is a stable matrix for µ � 1, we conclude that (4.62)
holds.

4.4 Size of Approximation Error

We can also examine how close the trajectories of the original error
recursion (4.37) and the long-term model (4.55) are to each other. We
reproduce both recursions below, with the state variable for the long-
term model denoted by w̃′i, namely,

w̃i = (IM − µH i−1)w̃i−1 + µ si(wi−1) (4.64)
w̃′i = (IM − µH)w̃′i−1 + µ si(wi−1) (4.65)

Observe that both models are driven by the same gradient noise pro-
cess; in this way, the evolution of the long-term model is coupled to
the evolution of the original recursion (but not the other way around).
The closeness of the trajectories of both recursions is established under
the fourth-order condition (3.50) on the gradient noise process, which
we repeat below for ease of reference.

Assumption 4.4 (Conditions on gradient noise). It is assumed that the first
and fourth-order conditional moments of the gradient noise process satisfy
the following conditions for any iterates w ∈ F i−1:

E [ si(w) |F i−1 ] = 0 (4.66)
E
[
‖si(w)‖4 |F i−1

]
≤ β̄4 ‖w‖4 + σ̄4

s (4.67)

almost surely, for some nonnegative coefficients σ̄4
s and β̄4. These conditions

were shown in (3.55)–(3.56) to imply that the gradient noise process also
satisfies for any wi−1 ∈ F i−1:

E [si(wi−1) |F i−1] = 0 (4.68)
E
[
‖si(wi−1)‖4 |F i−1

]
≤ β4

4 ‖w̃i−1‖4 + σ4
s4 (4.69)

almost surely, for some nonnegative coefficients β4
4 and σ4

s4.



384 Performance of Single Agents

The next statement establishes two useful facts: (a) it shows that the
mean-square difference between the trajectories {w̃i, w̃

′
i} is asymptot-

ically bounded by O(µ2), and (b) it shows that the MSD values for
the original model (4.64) and the long-term model (4.55) are within
O(µ3/2) from each other.

Lemma 4.6 (Performance error is O(µ3/2)). Assume the conditions under As-
sumptions 4.1, 4.3, and 4.4 on the cost function and the gradient noise process
are satisfied. It then holds that, for sufficiently small step-sizes:

lim sup
i→∞

E‖w̃i − w̃′i‖2 = O(µ2) (4.70)

lim sup
i→∞

E‖w̃i‖2 = lim sup
i→∞

E‖w̃′i‖2 + O(µ3/2) (4.71)

lim sup
i→∞

E‖w̃i‖2H = lim sup
i→∞

E‖w̃′i‖2H + O(µ3/2) (4.72)

where the last line involves weighted norms of {w̃′i, w̃i} with weighting
matrix equal to H.

Proof. Subtracting recursions (4.64) and (4.65) we get

w̃i − w̃′i = (IM − µH)(w̃i−1 − w̃′i−1) + µci−1 (4.73)

where, from (4.20), ci−1 = H̃i−1w̃i−1. Using again an argument similar to
(2.33) and assuming sufficiently small µ such that µ < ν/δ2, we have:

‖IM − µH‖2 ≤ 1− 2µν + µ2δ2

≤ 1− µν

≤ 1− µν + µ2ν2

4

=
(

1− µν

2

)2
(4.74)

We now call upon Jensen’s inequality (F.26) from the appendix and apply it
to the convex function f(x) = ‖x‖2. Indeed, selecting

t = µν/2 (4.75)

and for any small µ that ensures 0 < t < 1, we can write
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∥∥(IM − µH)(w̃i−1 − w̃′i−1) + µci−1
∥∥2

=
∥∥∥∥(1− t) 1

1− t (IM − µH)(w̃i−1 − w̃′i−1) + t
1
t

(µci−1)
∥∥∥∥2

≤ (1− t)
∥∥∥∥ 1

1− t (IM − µH)
∥∥∥∥2
‖w̃i−1 − w̃′i−1‖2 + t

∥∥∥∥1
t

(µci−1)
∥∥∥∥2

(4.74)
≤ 1

1− t

(
1− µν

2

)2
‖w̃i−1 − w̃′i−1‖2 + 1

t
‖µci−1‖2

(4.75)=
(

1− µν

2

)
‖w̃i−1 − w̃′i−1‖2 + 2

µν
‖µci−1‖2 (4.76)

Using (4.46), we conclude from (4.73) and (4.76) that

E‖w̃i − w̃′i‖2 ≤
(

1− µν

2

)
E‖w̃i−1 − w̃′i−1‖2 + µ(κ′1)2

2ν E‖w̃i−1‖4 (4.77)

Now using (3.67) we conclude that (4.70) holds. With regards to (4.71), we
note that

E‖w̃′i‖2 = E‖w̃′i − w̃i + w̃i‖2

= E‖w̃′i − w̃i‖2 + E‖w̃i‖2 + 2
∣∣E (w̃′i − w̃i)Tw̃i

∣∣
≤ E‖w̃′i − w̃i‖2 + E‖w̃i‖2 + 2

√
E‖w̃′i − w̃i‖2 E‖w̃i‖2

(4.78)

where in the last step we used the property that |EaTb|2 ≤ E‖a‖2 E‖b‖2 for
any two real random vectors a and b. Therefore, from (3.39) and (4.70) we
get

lim sup
i→∞

(
E‖w̃′i‖2 − E‖w̃i‖2

)
≤ O(µ2) +

√
O(µ3) = O(µ3/2) (4.79)

since µ2 < µ3/2 for small µ � 1, which establishes (4.71). Similarly, we
can write for any two real random vectors a and b and constant symmetric
positive-definite matrix H:

|EaTHb|2 ≤ E‖a‖2 E‖Hb‖2

= E‖a‖2 E‖b‖2H2

(a)
≤ ρ2(H)E‖a‖2 E‖b‖2 (4.80)

where the notation ‖x‖2A denotes the weighted quantity xTAx, and in step (a)
we used the Rayleigh-Ritz characterization for the eigenvalues of any symmet-
ric matrix A [104, 113, 263]:

λmin(A)‖x‖2 ≤ xTAx ≤ λmax(A)‖x‖2 (4.81)
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In particular, by setting b = a, it also follows from (4.80) that E‖a‖2H ≤
ρ(H)E‖a‖2. Therefore, repeating the argument that led to (4.78) using
weighted norms we obtain

E‖w̃′i‖2H ≤ E‖w̃i‖2H + ρ(H)
[
E‖w̃′i − w̃i‖2 + 2

√
E‖w̃′i − w̃i‖2 E‖w̃i‖2

]
(4.82)

and we arrive at (4.72).

4.5 Performance Metrics

Two useful metrics for assessing the performance of stochastic gradient
algorithms are the mean-square-deviation (MSD) and the excess-risk
(ER). We define these two measures below before explaining how the
long-term model (4.55) can be used to evaluate their values.

Mean-Square-Deviation (MSD)
To motivate the definition of the MSD, we first remark that we will
be establishing further ahead in (4.97) and (4.128) the following two
expressions for the limit superior and limit inferior of the error variance:

lim sup
i→∞

E‖w̃i‖2 = µ ·MSD + o(µ) (4.83)

lim inf
i→∞

E‖w̃i‖2 = µ ·MSD − o(µ) (4.84)

for some common positive constant MSD whose exact value is not rele-
vant for the current discussion. We explained the meaning of the limit
superior operation earlier prior to the statement of Lemma 3.1. We can
similarly view the limit inferior of a sequence as essentially correspond-
ing to the largest lower bound for the limiting behavior of the sequence;
this concept is again useful when the sequence is not necessarily con-
vergent but tends towards a small bounded region [89, 144, 202]. A
schematic illustration of the limit superior and limit inferior values for
the error variance, E‖w̃i‖2, is shown in Figure 4.1. If the sequence hap-
pens to be convergent, then both its limit superior and limit inferior
values will coincide and they will be equal to the regular limiting value
of the sequence.
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Figure 4.1: Schematic illustration of the limit superior and limit inferior
bounds on the error variance sequence, E‖w̃i‖2.

Now, comparing the first relation (4.83) with (4.2), it is observed
that (4.83) characterizes the size of the coefficient of the first-order term
in µ as being equal to MSD. Moreover, if we divide both sides of (4.83)
and (4.84) by µ and compute the limit as µ→ 0, which corresponds to
assuming operation in the slow adaptation regime, then we find that

lim
µ→0

(
lim sup
i→∞

1
µ
E‖w̃i‖2

)
= lim

µ→0

(
lim inf
i→∞

1
µ
E‖w̃i‖2

)
= MSD (4.85)

That is, the limiting values of the scaled limit superior and limit inferior
expressions coincide with each other and they are both equal to MSD.
This fact indicates that as µ → 0, the quantity 1

µE‖w̃i‖2 approaches
a limiting value after sufficient iterations and, once multiplied by µ,
this limiting value can be used to assess the size of the error variance,
E‖w̃i‖2, in steady-state. For this reason, we shall define the MSD mea-
sure as follows:

MSD ∆= µ ·
(

lim
µ→0

lim sup
i→∞

1
µ
E‖w̃i‖2

)
(4.86)
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In view of equality (4.85), we could have also defined the MSD by using
the lim inf operation in (4.86) instead of the lim sup operation. For
uniformity throughout this work, we shall adopt the lim sup notation.

Sometimes, with some abuse of notation, we write the definition for
the MSD more simply, for sufficiently small step-sizes, as follows:

MSD ∆= lim
i→∞

E‖w̃i‖2 (4.87)

with the understanding that this limit is computed as in (4.86) since,
strictly speaking, the limit on the right-hand side of (4.87) may not
exist. Yet, it is useful to note that derivations that assume the validity
of (4.87) still lead to the same expression for the MSD to first-order
in µ as derivations that rely on the more formal expression (4.86)
— this fact can be verified by examining and repeating the proof of
Theorem 4.7 further ahead.

Excess Risk (ER)
The second useful metric for evaluating the performance of stochastic
gradient algorithms relates to the mean excess-cost; which is also called
the excess-risk (ER) in the machine learning literature [37, 233] and the
excess-mean-square-error (EMSE) in the adaptive filtering literature
[107, 206, 262]. We denote it by the letters ER and, similarly to (4.86),
we can motivate the following expression for it:

ER ∆= µ ·
(

lim
µ→0

lim sup
i→∞

1
µ
E{J(wi−1)− J(wo)}

)
(4.88)

In other words, the ER metric measures the average fluctuation of
the cost function around its minimum value in steady-state. Again, we
could have used the lim inf operation in (4.88) instead of the lim sup
operation. We again adopt the lim sup convention.

Using the smoothness condition (4.20), and result (E.10) from the
appendix, we recognize that the mean fluctuation that appears inside
(4.88) satisfies:

lim sup
i→∞

E{J(wi−1)− J(wo)} = lim sup
i→∞

E‖w̃i−1‖21
2H

+O(µ3/2) (4.89)

in terms of a weighted mean-square-error norm. The appearance of the
O(µ3/2) factor in the above expression can be motivated as follows. We
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note from expression (E.10) in the appendix that the right-most term
in (4.89) should be the asymptotic size of E‖w̃i−1‖3. We then rely on
result (3.67) to note that:

lim sup
i→∞

E‖w̃i−1‖3
(F.30)

≤ lim sup
i→∞

(
E‖w̃i−1‖4

)3/4

(3.67)=
(
O(µ2)

)3/4

= O(µ3/2) (4.90)

where in the first line we called upon Jensen’s inequality (F.30) and the
fact that the function f(x) = x3/4 is concave over the range x ≥ 0. It
follows from (4.88) and (4.89) that we can also evaluate the ER metric
by means of the following alternative expression:

ER = µ ·
(

lim
µ→0

lim sup
i→∞

1
µ
E‖w̃i−1‖21

2H

)
(4.91)

Again, with some abuse in notation, we sometimes write more simply
either of the following expressions for sufficiently small step-sizes in
place of (4.88) and (4.91):

ER = lim
i→∞

E{J(wi−1)− J(wo)} (4.92)

ER = lim
i→∞

E‖w̃i−1‖21
2H

(4.93)

with the understanding that the limits in the above two expressions
are computed as in (4.88) or (4.91) since, strictly speaking, these limits
may not exist. Still, it is useful to note that derivations that assume
the validity of (4.92)–(4.93) lead to the same expression for the ER to
first-order in µ as derivations that rely on the more formal expressions
(4.88) or (4.91) — this fact can be verified by examining and repeating
the proof of Theorem 4.7. We collect the expressions for the MSD and
ER measures in the following statement for ease of reference.
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Definition 4.2 (Performance measures). The mean-square-deviation (MSD)
and excess-risk (ER) performance metrics are defined as follows:

MSD ∆= µ ·
(

lim
µ→0

lim sup
i→∞

1
µ
E‖w̃i‖2

)
(4.94)

ER ∆= µ ·
(

lim
µ→0

lim sup
i→∞

1
µ
E{J(wi−1)− J(wo)}

)
(4.95)

for sufficiently small step-sizes, where the MSD measures the size of the error
variance, E‖w̃i‖2, in steady-state, while the ER measures the size of the mean
fluctuation, E{J(wi−1) − J(wo)}, also in steady state. Under result (3.67),
and using the Hessian matrix H from (4.40), the ER expression can also be
evaluated as:

ER = µ ·
(

lim
µ→0

lim sup
i→∞

1
µ
E‖w̃i−1‖21

2H

)
(4.96)

It is noteworthy to observe from (4.94) and (4.96) that both expressions
for the MSD and ER involve squared norms of the error vector, w̃i, in
steady-state. For this reason, in the argument that follows we will focus
on evaluating the limit superior of a weighted mean-square-error norm
of the form E‖w̃i‖2Σ, for some positive-definite weighting matrix Σ that
we are free to choose. Then, by setting Σ = IM or Σ = 1

2H, we will be
able to arrive at the MSD and ER values.

Theorem 4.7 (Mean-square-error performance: Real case). Assume the condi-
tions under Assumptions 4.1, 4.2, and 4.4 on the cost function and the gradient
noise process hold. Assume further that the step-size is sufficiently small to
ensure mean-square stability, as already ascertained by Lemmas 3.1 and 4.4.
Then, it holds that

lim sup
i→∞

E‖w̃i‖2 = µ

2 Tr
(
H−1Rs

)
+ O

(
µ1+γm

)
(4.97)

lim sup
i→∞

E{J(wi−1)− J(wo)} = µ

4 Tr (Rs) + O
(
µ1+γm

)
(4.98)

where
γm

∆= 1
2 min {1, γ} > 0 (4.99)
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with 0 < γ ≤ 4 from (4.19), while Rs and H are defined by (4.12) and (4.40).
Consequently, the MSD and ER metrics defined by (4.94) and (4.96) for the
stochastic-gradient algorithm (4.5) are given by the following expressions:

MSD = µ

2 Tr
(
H−1Rs

)
(4.100)

ER = µ

4 Tr (Rs) (4.101)

Moreover, for i� 1, the rate at which the error variance, E‖w̃i‖2, approaches
its steady-state region (4.97) is well-approximated to first-order in µ by

α = 1− 2µλmin(H) (4.102)

Proof. We introduce the eigen-decomposition H = UΛUT, where U is orthog-
onal and Λ is diagonal with positive entries, and rewrite (4.55) in terms of
transformed quantities:

wi = (I − µΛ)wi−1 + µsi(wi−1) (4.103)

where wi = UTw̃′i and si(wi−1) = UTsi(wi−1). Since the variables {w̃′i,wi}
are related to each other via an orthogonal transformation, it is clear that their
Euclidean norms are identical and, therefore, E‖wi‖2 = E‖w̃′i‖2. It follows
that we can rely on the mean-square-error of wi to evaluate the mean-square-
deviation (MSD) of the long-term model (4.55). We proceed to derive an
expression for the MSD by employing energy conservation arguments [6, 205,
206, 269].

Let Σ denote an arbitrary M ×M diagonal matrix with positive entries
that we are free to choose. Then, equating the weighted squared norms of
both sides of (4.103) and taking expectations conditioned on the past history
F i−1 gives :

E
[
‖wi‖2Σ|F i−1

]
= ‖wi−1‖2Σ′ + µ2E

[
‖si(wi−1)‖2Σ|F i−1

]
(4.104)

where the cross terms are annihilated on the right-hand side because
E [ si(wi−1)|F i−1 ] = 0. Moreover, the weighting matrix Σ′ is given by

Σ′ ∆= (I − µΛ)Σ(I − µΛ)
= Σ− 2µΛΣ + µ2ΛΣΛ (4.105)

Taking expectations of both sides of (4.104) gives:

E‖wi‖2Σ = E‖wi−1‖2Σ′ + µ2 E‖si(wi−1)‖2Σ (4.106)
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We now evaluate the two terms that appear on the right-hand side of this
expression for i� 1. With regards to the first term, we use expression (4.105)
for Σ′ to note that:

E‖wi−1‖2Σ′
(4.105)= E‖wi−1‖2Σ−2µΛΣ + µ2 E‖wi−1‖2ΛΣΛ (4.107)

Now since Σ and Λ are diagonal matrices with positive entries, we observe
that the rightmost term satisfies:

E‖wi−1‖2ΛΣΛ ≤ ρ(Λ2) · ρ(Σ) · E‖wi−1‖2

≤ ρ(Λ2) · Tr(Σ) · E‖wi−1‖2 (4.108)

where ρ(A) denotes the spectral radius of its matrix argument; obviously, for
the matrices Σ and Λ, we have that ρ(Λ) is equal to the largest entry in Λ
while ρ(Σ) is smaller than the trace of Σ. Combining the above result with
the fact from (3.39) that the limit superior of E‖wi−1‖2 is in the order of
O(µ), we conclude from (4.107) that for i� 1:

E‖wi−1‖2Σ′ = E‖wi−1‖2Σ−2µΛΣ + Tr(Σ) ·O(µ3) (4.109)

where we are keeping the factor Tr(Σ) explicit in the rightmost term for later
use in (4.129).

We next evaluate the second term on the right-hand side of (4.106). To
do so, we shall call upon the results of Lemma 4.1. We start by noting that

E‖si(wi−1)‖2Σ = Tr
[
ΣE

(
si(wi−1) (si(wi−1))T

)]
= Tr

[
UΣUT E

(
si(wi−1) (si(wi−1))T

)]
(4.110)

where the covariance matrix Esi(wi−1) (si(wi−1))T was already evaluated
earlier in (4.33). Using that result, and the sub-multiplicative property of
norms, namely, ‖AB‖ ≤ ‖A‖ ‖B‖, we conclude that:

lim sup
i→∞

∥∥∥UΣUTEsi(wi−1) (si(wi−1))T − UΣUTRs

∥∥∥ = O(µγ
′/2) (4.111)

where γ′ was defined in (4.32) as γ′ = min {γ, 2}. Consequently, as stated
earlier prior to (4.34), since |Tr(X)| ≤ c ‖X‖ for any square matrix X, we
have that:

lim sup
i→∞

∣∣E‖si(wi−1)‖2Σ − Tr(UΣUTRs)
∣∣ = O(µγ

′/2) ∆= b1 (4.112)

in terms of the absolute value of the difference. We are denoting the value of
the limit superior by the nonnegative number b1; we know from (4.112) that
b1 = O(µγ′/2). The same argument that led to (4.26) then leads to

Tr(UΣUTRs)− bo ≤ E‖si(wi−1)‖2Σ ≤ Tr(UΣUTRs) + bo (4.113)
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for i � 1 and for some nonnegative constant bo = O(µγ′/2). It follows from
(4.113) that we can also write, for i� 1:

E‖si(wi−1)‖2Σ = Tr(UΣUTRs) + O(µγ
′/2) (4.114)

Substituting results (4.109) and (4.113) into the variance relation (4.106) we
obtain for i� 1 that:

E‖wi‖2Σ ≤ E‖wi−1‖2Σ−2µΛΣ + µ2 (Tr(UΣUTRs) + bo
)

+O(µ3) (4.115)
E‖wi‖2Σ ≥ E‖wi−1‖2Σ−2µΛΣ + µ2 (Tr(UΣUTRs)− bo

)
+O(µ3) (4.116)

Using the sub-additivity and super-additivity properties of the limit superior
and limit inferior operations, namely, for bounded sequences a(i) and b(i)
[89, 144, 202]:

lim sup
i→∞

(a(i) + b(i)) ≤ lim sup
i→∞

a(i) + lim sup
i→∞

b(i) (4.117)

lim inf
i→∞

(a(i) + b(i)) ≥ lim inf
i→∞

a(i) + lim inf
i→∞

b(i) (4.118)

we conclude from (4.115) and (4.116) that

lim sup
i→∞

E‖wi‖2Σ ≤ lim sup
i→∞

E‖wi−1‖2Σ−2µΛΣ +

µ2 (Tr(UΣUTRs) + bo
)

+O(µ3) (4.119)

and

lim inf
i→∞

E‖wi‖2Σ ≥ lim inf
i→∞

E‖wi−1‖2Σ−2µΛΣ +

µ2 (Tr(UΣUTRs)− bo
)

+O(µ3) (4.120)

Grouping terms we get:

lim sup
i→∞

E‖wi‖22µΛΣ ≤ µ2 (Tr(UΣUTRs) + bo
)

+O(µ3) (4.121)

lim inf
i→∞

E‖wi‖22µΛΣ ≥ µ2 (Tr(UΣUTRs)− bo
)

+O(µ3) (4.122)

and, consequently, by eliminating a common factor µ from all terms and using
the fact that the limit inferior of a sequence is upper bounded by its limit
superior, we obtain the following inequality relation:

µ
(
Tr(UΣUTRs)− bo

)
+O(µ2) ≤ lim inf

i→∞
E‖wi‖22ΛΣ

≤ lim sup
i→∞

E‖wi‖22ΛΣ ≤ µ
(
Tr(UΣUTRs) + bo

)
+O(µ2)

(4.123)
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Recalling that bo = O(µγ′/2) and 0 < γ′

2 ≤ 1 so that µbo dominates O(µ2)
for small µ, we conclude that the limit superior and limit inferior of the error
variance satisfy:

lim sup
i→∞

E‖wi‖22ΛΣ = µTr(UΣUTRs) + O
(
µmin{2, 1+ γ

2 }
)

(4.124)

lim inf
i→∞

E‖wi‖22ΛΣ = µTr(UΣUTRs) − O
(
µmin{2, 1+ γ

2 }
)

(4.125)

Continuing with (4.124), and since we are free to choose Σ, we let Σ = 1
2Λ−1

so that the variance term on the left-hand side of (4.124) becomes E‖wi‖2.
Recalling that ‖wi‖2 = ‖w̃′i‖2 and noting that UΣUT = 1

2H
−1, we arrive at

lim sup
i→∞

E‖w̃′i‖2 = µ

2 Tr
(
H−1Rs

)
+ O

(
µmin{2, 1+ γ

2 }
)

(4.126)

However, we know from result (4.71) that the error variance of the stochastic-
gradient algorithm (4.5) is within O(µ3/2) from the error variance of the long-
term model, which is given by the above expression. We therefore need to
adjust the exponent of µ inside the big-O term to arrive at the desired ex-
pression (4.97) where the factor of 2 is replaced by 3/2 since

min
{

3
2 , 2, 1 + γ

2

}
= min

{
3
2 , 1 + γ

2

}
(4.127)

Likewise, if we select Σ = 1
4IM , then a similar argument leads to (4.98).

Returning to (4.125), the argument that led to (4.126) would similarly imply
that

lim inf
i→∞

E‖w̃i‖2 = µ

2 Tr
(
H−1Rs

)
− o(µ) (4.128)

Although this result is unnecessary for the argument in this proof, we nev-
ertheless established it because it was used earlier in (4.84) while motivating
the definition of the MSD metric.

With regards to the rate at which E‖w̃i‖2 approaches its steady-state
region (4.97) (and likewise for E‖w̃i‖21

2H
), we refer back to (4.106) and sub-

stitute (4.109) and (4.114) to rewrite the former relation as follows for i� 1:

E‖wi‖2Σ = E‖wi−1‖2(IM−2µΛ)Σ + µ2Tr(ΣUTRsU) + Tr(Σ) · o(µ2) (4.129)

where we replaced the approximation error by o(µ2) for brevity; it is sufficient
to know for the current argument that the power of µ is strictly larger than
two. For compactness of notation, we introduce the matrices

D
∆= IM − 2µΛ, Y

∆= UTRsU (4.130)
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It is clear that the matrix D is stable for sufficiently small step-sizes and,
moreover,

ρ(D) (4.130)= 1− 2µλmin(H) (4.131)
where we used the fact that the eigenvalues of Λ coincide with the eigenvalues
of H and they are all positive. Therefore, Di → 0 as i→∞ and, moreover,

∞∑
n=0

Dn = (IM −D)−1 = 1
2µΛ−1 (4.132)

so that

o(µ2) · Tr
( ∞∑
n=0

Dn

)
(4.132)= o(µ) (4.133)

These two conclusions are used in the sequel. Indeed, from (4.129) we have
that for any i� 1:

E‖wi‖2Σ = E‖wi−1‖2DΣ + µ2Tr(ΣY ) + Tr(Σ) · o(µ2) (4.134)

By setting Σ successively equal to the choices {IM , D, D2, D3 . . .}, and by
iterating the above recursion, we deduce that

E‖wi‖2 = E‖w−1‖2Di+1 + µ2
i∑

n=0
Tr(DnY ) + o(µ2) ·

i∑
n=0

Tr(Dn) (4.135)

The first-term on the right-hand side corresponds to a transient component
that dies out with time. The rate of its convergence towards zero determines
the rate of convergence of E‖wi‖2 towards its steady-state region. This rate
can be characterized as follows. We express the weighted variance of w−1 as
the following trace relation in terms of its un-weighted covariance matrix:

E‖w−1‖2Di+1 = E
(
w∗−1D

i+1w−1
)

= Tr
(
Di+1Ew−1w

∗
−1
)

(4.136)

Then, it is clear that the convergence rate of the transient component is dic-
tated by ρ(D) since this value characterizes the slowest rate at which the
transient term dies out. We conclude that the convergence rate of E‖wi‖2
towards the steady-state regime is also dictated by ρ(D), which we can ap-
proximate to first-order in µ by expression (4.102).

Additionally, if desired, computing the limit superior of both sides of
(4.135), and using (4.133), we can re-derive the MSD value for the algorithm
in an alternative route as follows. Note that

lim sup
i→∞

E‖wi‖2 = µ2

( ∞∑
n=0

Tr (DnY )
)

+ o(µ) (4.137)
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where the first term on the right-hand side is actually O(µ) and dominates
the second term since

µ2

( ∞∑
n=0

Tr (DnY )
)

= µ2Tr
[(
IM +D +D2 +D3 + . . .

)
Y
]

= µ2Tr
(
(IM −D)−1Y

)
(4.132)= µ

2Tr
(
Λ−1Y

)
= O(µ) (4.138)

If we now use the substitutions Y = UTRsU , Λ−1 = UTH−1U , and wi =
UTw̃′i, we conclude that

lim sup
i→∞

E‖w̃′i‖2 = µ

2Tr
(
H−1Rs

)
+ o(µ) (4.139)

which is in agreement with (4.126).

Results (4.100)–(4.101) are useful expressions that apply to general
ν−strongly convex functions J(w) that satisfy Assumptions 4.1 and 4.3.
The following example shows that the approximation error in expres-
sions (4.97)–(4.98) can be replaced by O(µ2) in the quadratic case.

Example 4.2 (Quadratic cost functions). When J(w) happens to be quadratic
in w, as is the case with the mean-square-error cost of Example 3.1, then the
matrices Hi−1 and H defined by (4.38) and (4.39), respectively, will coincide
with each other since the Hessian matrix ∇2

w J(w) will be constant for all w.
Thus, in this case Hi−1 ≡ H = ∇2

w J(wo). As a result, the perturbation term
µci−1 in (4.41) will be identically zero and recursions (4.37) and (4.55) will
therefore coincide. Both models will then have the same MSD expressions.
Therefore, we can rely on expression (4.126) without the need for the ad-
justment by O(µ3/2). We know from (4.16) that γ = 2 for mean-square-error
costs. Using this value for γ in (4.126), we arrive at

lim sup
i→∞

E‖w̃i‖2 = µ

2 Tr
(
H−1Rs

)
+ O

(
µ2) (4.140)

with an approximation error in the order of O(µ2) rather than the term
O(µ3/2) that would result from (4.97)–(4.98). Likewise, we obtain

lim sup
i→∞

E{J(wi−1)− J(wo)} = µ

4 Tr (Rs) + O
(
µ2) (4.141)
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In re-deriving this expression for the ER, we called upon expression (E.20) in
the appendix where it is shown that for quadratic costs, expression (4.89) is
replaced by the exact relation

lim sup
i→∞

E{J(wi−1)− J(wo)} = lim sup
i→∞

E‖w̃i−1‖21
2H

(4.142)

without the O(µ3/2) correction term that appeared in (4.89).
The resulting expressions for the MSD and ER performance metrics will

continue to be:

MSD = µ

2 Tr
(
H−1Rs

)
(4.143)

ER = µ

4 Tr (Rs) (4.144)

With regards to the convergence rate, we use γ = 2 (and, hence, γ′ = 2) in
(4.114) and recognize that the o(µ2) term in (4.129) will be replaced by O(µ3).
Continuing with the derivation, we will then conclude that the approximation
error o(µ) in (4.137) is replaced by O(µ2) and the convergence rate expression
(4.102) will still hold in the quadratic case:

α = 1− 2µλmin(H) (4.145)

�

The examples that follow show how expressions (4.100)–(4.101) can be
used to recover classical results for mean-square-error adaptation and
learning.

Example 4.3 (Performance of LMS adaptation). We reconsider the LMS recur-
sion (3.13). We know from Example 3.3 and (4.13) that this situation corre-
sponds to H = 2Ru and Rs = 4σ2

vRu. Substituting into (4.100)–(4.101) leads
to the following well-known expressions for the performance of the LMS filter
for sufficiently small step-sizes — see [96, 97, 100, 107, 114, 130, 206, 261, 262]:

MSD = µM σ2
v = O(µ) (4.146)

EMSE = µσ2
v Tr(Ru) = O(µ) (4.147)

where we are replacing ER by the notation EMSE, which is more common in
the adaptive filtering literature.

Figure 4.2 illustrates this situation numerically. The figure plots the evo-
lution of the ensemble-average learning curve, E‖w̃i‖2, over i; the curve is
generated by averaging the trajectories {‖w̃i‖2} over 2000 repeated exper-
iments. The label on the vertical axis in the figure refers to the learning



398 Performance of Single Agents

0 100 200 300 400 500 600 700 800 900 1000
−40

−35

−30

−25

−20

−15

−10

−5

0

i (iteration)

M
S
D
(i
)
(d
B
)

M = 10,σ2
v = 0.010,Ru = 2IM ,µ = 0.0025

 

 

MSD level

learning curve

theory (4.146)

Figure 4.2: Learning curve, E‖w̃i‖2, for the LMS rule (3.13) obtained by
averaging over 2000 repeated experiments using M = 10, σ2

v = 0.010, Ru =
2IM , and µ = 0.0025. The horizontal dashed line indicates the steady-state
MSD level predicted by the theoretical expression (4.146).

curve E‖w̃i‖2 by writing MSD(i), with an iteration index i. Each experiment
involves running the LMS recursion (3.13) on data {d(i),ui} generated ac-
cording to the model d(i) = uiw

o+v(i) withM = 10, σ2
v = 0.010, Ru = 2IM ,

and using µ = 0.0025. The unknown vector wo is generated randomly and its
norm is normalized to one. It is seen in the figure that the learning curve
tends to the MSD value predicted by the theoretical expression (4.146).

�

Example 4.4 (Performance of logistic learners). We reconsider the stochastic-
gradient algorithm (3.16) from Example 3.2 for logistic regression. The abso-
lute component of the gradient noise in that example is given by

si(wo) = ρwo − γ(i)hi
(

1
1 + eγ(i)hT

i
wo

)
(4.148)
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with covariance matrix

Rs
∆= E

{
hih

T
i ·
(

1
1 + eγ(i)hT

i
wo

)2
}
−ρ2wo(wo)T (4.149)

Note in particular that Rs ≤ Rh. Calling upon expression (4.101), we conclude
that the excess-risk measure is given by

ER = µ

4 Tr (Rs) ≤
µ

4 Tr (Rh) = O(µ) (4.150)
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Figure 4.3: Learning curve, E{J(wi−1 − J(wo)}, for the logistic rule (3.16)
obtained by averaging over 100 repeated experiments using M = 50, ρ = 10,
and µ = 4 × 10−5. The horizontal dashed line indicates the steady-state ER
level predicted by the theoretical expression (4.150).

Figure 4.3 illustrates this situation numerically. The figure plots the evo-
lution of the ensemble-average excess-risk curve, E{J(wi−1) − J(wo)}, over
i; the curve is generated by averaging the curves {J(wi−1)−J(wo)} over 100
repeated experiments. The label on the vertical axis in the figure refers to the
learning curve E{J(wi−1) − J(wo)} by writing ER(i), with an iteration in-
dex i. Each experiment involves running the logistic recursion (3.16) on data
{γ(i),hi} with M = 50, ρ = 10, and µ = 1 × 10−4. The data used for the
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simulation originate from the alpha data set [223]; we use the first 50 features
for illustration purposes so that M = 50. To generate the trajectories for the
experiments in this example, the optimal wo and the gradient noise covariance
matrix, Rs, are first estimated off-line by applying a batch algorithm to all
data points. For the data used in this example we have Tr(Rs) ≈ 131.48 and
Tr(Rh) ≈ 528.10. It is seen in the figure that the learning curve tends to the
ER value predicted by the theoretical expression (4.150).

�

Example 4.5 (Performance of online learners). More generally, consider a
stand-alone learner receiving a streaming sequence of independent data vec-
tors {xi, i ≥ 0} that arise from some fixed probability distribution X . The
goal is to learn the vector wo that optimizes some ν−strongly convex risk
function J(w) defined in terms of a loss function [236, 252]:

wo
∆= arg min

w
J(w) = arg min

w
EQ(w;xi) (4.151)

The learner seeks wo by running the stochastic-gradient algorithm:

wi = wi−1 − µ∇wTQ(wi−1;xi), i ≥ 0 (4.152)

so that the gradient noise vector is given by

si(wi−1) = ∇wTQ(wi−1;xi) − ∇wTJ(wi−1) (4.153)

Since ∇w J(wo) = 0, and since the distribution of xi is assumed stationary,
it follows that the covariance matrix of si(wo) is constant and given by

Rs = E∇wT Q(wo;xi)∇wQ(wo;xi) (4.154)

The excess-risk measure that will result from this stochastic implementation
is then given by (4.101) so that

ER = µ

4Tr(Rs) (4.155)

�

4.6 Performance in the Complex Domain

We now extend the performance results of the previous sections to
the complex domain in which case the argument w ∈ CM is complex-
valued. We explained in Sec. 3.6 that the strongly convex function,
J(w) ∈ R, is now required to satisfy condition (3.114), namely,

0 < ν

h
IhM ≤ ∇2

w J(w) ≤ δ

h
IhM (4.156)
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in terms of the data-type variable

h
∆=
{

1, when w is real
2, when w is complex (4.157)

As was the case in the real domain, we continue to assume that the now
2M × 2M Hessian Hessian matrix of J(w) satisfies the local Lipschitz
condition (4.18).

We also explained that the constant step-size stochastic gradient
recursion is given by

wi = wi−1 − µ ∇̂w∗J(wi−1), i ≥ 0 (4.158)

and that the gradient noise process is now complex-valued as well, i.e.,

si(wi−1) ∆= ∇̂w∗J(wi−1) − ∇w∗J(wi−1) (4.159)

The first and second-order moments of this noise process are assumed
to satisfy the same conditions in Assumption 3.4. The result in Theo-
rem 4.8 further ahead extends the conclusion from Theorem 4.7 to the
complex case. Comparing the performance expressions in the lemma
below to the earlier expressions in the real case from Theorem 4.7, we
observe that in the MSD case, two moment matrices are now involved,
and which are denoted by Rs and Rq. These matrices are defined as
follows.

For any w ∈ F i−1, we introduce the extended gradient noise vector
of size 2M × 1:

sei (w) ∆=
[

si(w)
(s∗i (w))T

]
(4.160)

where we are using the superscript “e” to denote the extended variable.
We then let

Res,i(w) ∆= E [ sei (w)se∗i (w) |F i−1 ] (4.161)

denote the conditional second-order moment of this extended noise
process. It is a 2M × 2M matrix whose blocks are given by

Res,i(w) =
[

Esi(w)s∗i (w) Esi(w)sT
i (w)

E
(
si(w)sT

i (w)
)∗

E (si(w)s∗i (w))T

]
(4.162)
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Compared with the earlier definition (4.11) in the real case, we
see that now two moment quantities of the form Esi(w)s∗i (w) and
Esi(w)sT

i (w) appear in (4.162), with the first one using conjugate
transposition and the second one using standard transposition. We as-
sume that, in the limit, these moment matrices tend to constant values
when evaluated at wo and we denote their limits by

Rs
∆= lim

i→∞
E [ si(wo)s∗i (wo) |F i−1 ] (4.163)

Rq
∆= lim

i→∞
E
[
si(wo)sT

i (wo) |F i−1
]

(4.164)

Comparing (4.163) with (4.164) we see that s∗i (w) is used in the ex-
pression for Rs while sT

i (w) is used in the expression for Rq. The two
moment matrices, {Rs, Rq}, are in general different. It is the first mo-
ment, Rs, that is an actual covariance matrix in the complex domain
(and is therefore Hermitian and non-negative definite), while the sec-
ond moment, Rq, is symmetric. Both matrices {Rs, Rq} are needed to
characterize the second-order moment of si(wo) in the complex domain.
When si(wo) happens to be real-valued, then Rs and Rq will obviously
coincide. Nevertheless, we will continue to use the universal notation
Rs (and not Rq) to denote the covariance matrix of si(wo). In other
words, whether si(wo) is real or complex-valued, the notation Rs will
always denote its limiting covariance matrix:

Rs
∆=


lim
i→∞

E
[
si(wo)sT

i (wo) |F i−1
]

(for real data)

lim
i→∞

E [ si(wo)s∗i (wo) |F i−1 ] (for complex data)
(4.165)

Before establishing the next result, we mention that the smoothness
condition (4.19) takes the following form in the complex case in terms
of the extended covariance matrix:∥∥∥Res,i(wo + ∆w)−Res,i(wo)

∥∥∥ ≤ κ2 ‖∆w‖γ (4.166)

for small perturbations ‖∆w‖ ≤ ε, and for some constant κ2 ≥ 0 and
exponent 0 < γ ≤ 4.



4.6. Performance in the Complex Domain 403

Theorem 4.8 (Mean-square-error performance: Complex case). Assume the cost
function J(w) satisfies conditions (4.156) and (4.18). Assume further that
the gradient noise process satisfies the conditions in Assumption 3.4 and the
smoothness condition (4.166), and that the step-size is sufficiently small to
ensure mean-square stability, as already ascertained by Lemma 3.5. Then, it
holds that

lim sup
i→∞

E‖w̃i‖2 = µ

4 Tr
(
H−1

[
Rs Rq
R∗q RT

s

])
+ O

(
µ1+γm

)
(4.167)

lim sup
i→∞

E{J(wi−1)− J(wo)} = µ

2 Tr (Rs) + O
(
µ1+γm

)
(4.168)

where
γm

∆= 1
2 min {1, γ} > 0 (4.169)

and γ ∈ (0, 4] is from (4.166). Moreover, {Rs, Rq} are defined by (4.163)–
(4.164) and H = ∇2

w J(wo) is 2M × 2M . Consequently, the MSD and ER
metrics for the complex stochastic-gradient algorithm (4.158) are given by:

MSD = µ

4 Tr
(
H−1

[
Rs Rq
R∗q RT

s

])
(4.170)

ER = µ

2 Tr (Rs) (4.171)

Moreover, for i� 1, the rate at which the error variance, E‖w̃i‖2, approaches
its steady-state region is well-approximated to first-order in µ by

α = 1− 2µλmin(H) (4.172)

When J(w) is quadratic in w, the approximation errors in (4.167)–(4.168)
are replaced by O(µ2).

Proof. We explained in the proof of Lemma 3.5 that results for the complex
recursion (4.158) can be recovered by working with the following recursion in
terms of an extended 2M × 1 real variable vi:

vi = vi−1 − µ′ ∇̂vTJ(vi−1) (4.173)

where µ′ = µ/2 and vi = col{xi,yi} in terms of the real and imaginary parts
of wi = xi + jyi. The gradient noise process that is associated with this
v−domain recursion was denoted by

ti(vi−1) ∆= ∇̂vTJ(vi−1) − ∇vTJ(vi−1) (4.174)
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and it was shown in (3.150) to be given by

ti(vi−1) = 2
[
sR,i(wi−1)
sI,i(wi−1)

]
(4.175)

in terms of the real and imaginary parts of the original gradient noise vector
si(wi−1), defined by (4.159):

si(wi−1) ∆= sR,i(wi−1) + jsI,i(wi−1) (4.176)

Therefore, in order to apply the results of Theorem 4.7 to the v−domain re-
cursion (4.173) under the conditions in Assumption 3.4, we need to determine
two quantities:

(a) First, we need to determine an expression for the Hessian matrix of the
cost function J(v), in the v−domain, which will play the role of the
matrix H in expressions (4.100)–(4.101).

(b) Second, we need to determine an expression for the second-order mo-
ment of the noise component, ti(vo), which will play the role of Rs in
the same expressions (4.100)–(4.101).

With regards to the Hessian matrix, we recall result (B.26) from the appendix,
which relates the Hessian matrix of J(v) in the v−domain to the complex
Hessian matrix of J(w) in the w−domain, and use it to write

∇2
v J(vo) = D∗

[
∇2
w J(wo)

]
D = D∗HD (4.177)

in terms of the matrix D defined by (B.27) and which satisfies DD∗ = 2I2M .
Note that this result also implies that ∇2

v J(vo) is similar to 2H so that

λmin
(
∇2
v J(vo)

)
= 2λmin(H) (4.178)

With regards to the second-order moment of the absolute component of
ti(vi−1), we let

Rt
∆= lim

i→∞
E
[
ti(vo)tTi (vo) |F i−1

]
(4.179)

Using (4.175), as well as definitions (4.163)–(4.164) for the second-order mo-
ments {Rs, Rq} associated with the original gradient noise component, si(wo),
it can be verified that

DRtD
∗ = 4 · lim

i→∞
E
([

si(wo)s∗i (wo) si(wo)sT
i (wo)(

si(wo)sT
i (wo)

)∗ (si(wo)s∗i (wo))
T

])
∆= 4

[
Rs Rq
R∗q RT

s

]
(4.180)
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We already know from (3.152)–(3.153) and (3.168) that the second and
fourth-order moments of the gradient noise process ti(vi−1) satisfy conditions
similar to (4.9)–(4.10) and (4.67) in the real case. Therefore, the results of
Theorem 4.7 can be applied to the v−domain recursion (4.173). Let

m
∆= 1 + γm (4.181)

We conclude from the expressions in Theorem 4.7 that the limit superior
for each of the error variance and the mean fluctuation for the v−domain
recursion are given by (using µ′ = µ/2)

lim sup
i→∞

E‖ṽi‖2 = µ′

2 Tr
([
∇2
v J(vo)

]−1
Rt

)
+O((µ′)m)

= µ

4 Tr
(
D−1H−1D−∗Rt

)
+O(µm)

= µ

4 Tr
(
H−1D−∗RtD

−1)+O(µm)

= µ

4 Tr
(
H−1 1

2DRt
1
2D
∗
)

+O(µm)

= µ

4 Tr
(
H−1

[
Rs Rq
R∗q RT

s

])
+O(µm) (4.182)

and

lim sup
i→∞

E{J(vi−1)− J(vo)} = µ′

4 Tr (Rt) +O((µ′)m)

= µ

8 Tr
(
D−1DRt

)
+O(µm)

= µ

8 Tr
(
DRtD

−1)+O(µm)

= µ

16 Tr (DRtD∗) +O(µm)

= µ

4 Tr
([

Rs Rq
R∗q RT

s

])
+O(µm)

= µ

2 Tr (Rs) +O(µm) (4.183)

Finally, using (4.172) we conclude that the convergence rate in the v−domain
is given by the following expression to first-order in µ:

α = 1− 2µ′λmin(∇2
v J(vo))

= 1− 2
(µ

2

)
2λmin(H)

(4.178)= 1− 2µλmin(H) (4.184)
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Example 4.6 (Performance of complex LMS adaptation). We reconsider the
complex LMS recursion (3.125) from Example 3.4. In this case we have

Rs = σ2
vRu, H =

[
Ru 0
0 RT

u

]
, Gk = σ2

v,k

[
Ru ×
× RT

u

]
(4.185)

where the block off-diagonal entries of Gk are not be not needed because Hk

is block-diagonal. Substituting into (4.170) and (4.171) we find that the MSD
and ER performance levels are given by

MSD = µMσ2
v

2 (4.186)

ER = µσ2
v

2 Tr (Rs) (4.187)

�

It is useful to remark that the block matrix that appears in expres-
sion (4.170) for the MSD is equal to the limiting covariance matrix of
the extended gradient noise vector when evaluated at w = wo:

sei (wo)
∆=
[

si(wo)
(s∗i (wo))

T

]
(4.188)

Specifically, it holds that[
Rs Rq
R∗q RT

s

]
= lim

i→∞
E [ sei (wo) (sei (wo))

∗ |F i−1 ] ∆= Res (4.189)

If we use Res to denote this extended covariance matrix, then we can
rewrite the MSD and ER expressions (4.170)–(4.171) in the equivalent
forms:

MSD = µ

4 Tr
(
H−1Res

)
(4.190)

ER = µ

4 Tr (Res) (4.191)



5
Centralized Adaptation and Learning

The discussion in the last two chapters established the mean-square
stability of stand-alone adaptive agents for small constant step-sizes
(Lemmas 3.1 and 3.5), and provided expressions for their MSD and
ER metrics (Theorems 4.7 and 4.8) for both cases of real and complex-
valued data. In this chapter, and in preparation for our treatment of
networked agents in future chapters, we examine two situations in-
volving a multitude of similar agents behaving in one of two modes
[207]. In the first scenario, each agent senses data and analyzes it in-
dependently of the other agents. We refer to this mode of operation
as non-cooperative processing. In the second scenario, the agents trans-
mit the collected data for processing at a fusion center. We refer to
this mode of operation as centralized or batch processing. We motivate
the discussion by considering first the case of mean-square-error costs.
Subsequently, we extend the results to more general costs.

5.1 Non-Cooperative Processing

Thus, consider separate agents, labeled k = 1, 2, . . . , N . Following the
framework discussed in Examples 3.1 and 3.4 on LMS adaptation in

407
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the real and complex domains, each agent, k, receives streaming data
{dk(i),uk,i, i ≥ 0}, where we are using the subscript k to index the
data at agent k. We treat the real and complex data cases uniformly
by using the data-type variable in the expressions that follow:

h
∆=
{

1 (real data)
2 (complex data) (5.1)

We assume the data at each agent satisfies the same statistical proper-
ties as in Examples 3.1 and 3.4, and the same linear regression model
(3.119) with a common wo albeit with noise vk(i):

dk(i) = uk,iw
o + vk(i), k = 1, 2, . . . , N (5.2)

We denote the statistical moments of the data at agent k by

σ2
v,k = E |vk(i)|2 (5.3)

and
Ru,k

∆=
{

EuT
k,iuk,i > 0 (real data)

Eu∗k,iuk,i > 0 (complex data) (5.4)

We further assume in this motivating section that the Ru,k are uniform
across the agents so that

Ru,k ≡ Ru, k = 1, 2, . . . , N (5.5)

In this way, the mean-square-error cost,

Jk(w) ∆= E |dk(i)− uk,iw|2 (5.6)

which is associated with agent k, will satisfy a condition similar to
(3.114), namely,

0 < ν

h
IhM ≤ ∇2

w Jk(w) ≤ δ

h
IhM (5.7)

with the corresponding parameters {ν, δ} given by (cf. (2.19)):

ν = 2λmin(Ru), δ = 2λmax(Ru) (5.8)

Now, assume each agent estimates wo by running the LMS learning
rule, say, (3.13) for real data or (3.125) for complex data, which we can
describe uniformly in terms of the single recursion:

wk,i = wk,i−1 + 2µ
h
u∗k,i[dk(i)− uk,iwk,i−1], i ≥ 0 (5.9)
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using the data-type variable, h, and with the understanding that com-
plex conjugation, u∗k,i, is replaced by real transposition, uT

k,i, when the
data are real. Then, according to (4.146) and (4.186), each agent k will
attain an individual MSD level that is given by

MSDncop,k = µ

h
M σ2

v,k, k = 1, 2, . . . , N (5.10)

Moreover, according to (3.38) and (3.142), each agent k will converge
towards this level at a rate dictated by:

αncop,k = 1− 4µ
h
λmin(Ru) (5.11)

If we average the performance level (5.10) across the N agents, we find
that the average MSD metric is given by

MSDncop,av = µ

h
M

(
1
N

N∑
k=1

σ2
v,k

)
(5.12)

in terms of the average noise power across the agents.
The subscript “ncop” is used in (5.10)–(5.12) to indicate that these

expressions are for the non-cooperative mode of operation. It is seen
from (5.10) that agents with noisier data (i.e., larger σ2

v,k) will perform
worse and have larger MSD levels than agents with cleaner data. In
other words, whenever adaptive agents act individually, the quality of
their solution will be as good as the quality of their noisy data.

This is a sensible conclusion and it is illustrated numerically in
Figure 5.1. The figure plots the ensemble-average learning curves,
E‖w̃k,i‖2, for two agents. The curves are generated by averaging the
trajectories {‖w̃k,i‖2} over 2000 repeated experiments. The label on
the vertical axis in the figure refers to the learning curves by writ-
ing MSD(i), with an iteration index i. Each experiment involves run-
ning the non-cooperative LMS recursion (5.9) on complex-valued data
{dk(i),uk,i} generated according to the model dk(i) = uk,iw

o + vk(i)
with M = 10, Ru = 2IM , and µ = 0.005. The noise variances are set
to σ2

v,1 = 0.032 and σ2
v,2 = 0.010. The noise and regressor processes

are both Gaussian distributed in this simulation. The unknown vector
wo is generated randomly and its norm is normalized to one. It is seen
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in the figure that the learning curves by the agents tend to the MSD
levels predicted by the theoretical expression (5.10).

We are going to show in later chapters that cooperation among
agents, whereby agents share information with their neighbors, can help
enhance their individual performance levels. The analysis will show that
both types of agents can benefit from cooperation: agents with “bad”
data and agents with “good” data; this is because all data carry infor-
mation about wo. However, for these conclusions to hold, it is necessary
for cooperation to be carried out in proper ways — see Chapter 12.
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Figure 5.1: Learning curves for two non-cooperative agents running (5.9)
on complex data. The curves are obtained by averaging over 2000 repeated
experiments using M = 10, σ2

v,1 = 0.032, σ2
v,2 = 0.010, Ru = 2IM and

µ = 0.005. The horizontal dashed lines indicate the steady-state MSD levels
predicted by the theoretical expression (5.10) for complex data (h = 2).
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5.2 Centralized Processing

Let us now contrast the above non-cooperative solution with a cen-
tralized implementation whereby, at every iteration i, the N agents
transmit their raw data {dk(i),uk,i} to a fusion center for processing.
One could also consider situations where agents transmit processed
data, e.g., as happens with useful techniques for combining adaptive
filter outputs [10]. Once the fusion center receives the raw data, we
assume it runs a stochastic-gradient update of the form:

wi = wi−1 + µ

(
1
N

N∑
k=1

2
h
u∗k,i(dk(i)− uk,iwi−1)

)
(5.13)

where the term between parentheses multiplying µ can be interpreted
as corresponding to the sample average of several approximate gradient
vectors; one for the data originating from each agent, since

∇̂wTJk(wi−1) = 2uT
k,i(dk(i)− uk,iwi−1) (real data) (5.14)

and

∇̂w∗Jk(wi−1) = u∗k,i(dk(i)− uk,iwi−1) (complex data) (5.15)

The analysis in the sequel will show that the MSD performance that
results from implementation (5.13) is given by (using future expression
(5.65) with the identifications Hk = 2Ru/h and Rs,k = 4σ2

v,kRu/h
2):

MSDcent = µ

h
M

1
N

(
1
N

N∑
k=1

σ2
v,k

)
(5.16)

Moreover, using expression (5.60) given further ahead, this centralized
solution will converge towards the above MSD level at the same rate
(5.11) as the non-cooperative solution:

αcent = 1− 4µ
h
λmin(Ru) (5.17)

Observe from (5.16) that the MSD level attained by the centralized
solution is proportional to 1/N times the average noise power across
all non-cooperative agents in (5.10). At least two conclusions follow
from this observation.
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First, comparing (5.16) with the average performance (5.12) in the
non-cooperative case, we observe that the centralized solution provides
an N−fold improvement in MSD performance in the mean-square-
error case. Figure 5.2 illustrates this situation numerically.
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Figure 5.2: Learning curves for the centralized LMS solution (5.13) and for the
average of the non-cooperative solution (5.9) over N = 20 agents. The curves
are obtained by averaging over 2000 repeated experiments using M = 10,
σ2
v ∈ [0.010, 0.032], Ru = σ2

u,kIM with σ2
u,k ∈ [1, 2], and µ = 0.005. The

horizontal dashed lines indicate the steady-state MSD levels predicted by the
theoretical expressions (5.12) and (5.16) for complex data (h = 2).

The figure plots two ensemble-average learning curves. One curve
represents the evolution of the variance E‖w̃i‖2 for the centralized so-
lution and is generated by averaging the trajectories {‖w̃i‖2} over 200
repeated experiments. The second ensemble-average curve is obtained
by averaging the individual learning curves, E‖w̃k,i‖2, of all N non-
cooperative agents. Again, a total of 2000 repeated experiments are
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used to generate each individual learning curve. The label on the ver-
tical axis in the figure refers to the learning curves by writing MSD(i),
with an iteration index i. Each experiment involves running either the
centralized LMS recursion (5.13) or the non-cooperative recursion (5.9)
on complex-valued data {dk(i),uk,i} generated according to the model
dk(i) = uk,iw

o + vk(i) with N = 20 agents, M = 10, and µ = 0.005.
The noise variances, {σ2

v,k}, are chosen randomly from within the range
[0.010, 0.032], while the covariance matrices are chosen of the form
Ru,k = σ2

u,kIM with σ2
u,k chosen randomly within the range [1, 2]. The

noise and regressor processes are both Gaussian distributed in this sim-
ulation. The unknown vector wo is generated randomly and its norm
is normalized to one. It is seen in the figure that the learning curve by
the centralized solution tends to an MSD level that is N−fold superior
to the average non-cooperative solution; this translates into the differ-
ence of 10 log10(N) ≈ 13dB seen in the figure between the two dashed
horizontal lines.

The second observation that follows from (5.16) is that, although
the centralized solution outperforms the averaged non-cooperative per-
formance, it does not generally hold that the centralized solution out-
performs each individual non-cooperative agent [276]. This is because
the average noise power is scaled by 1/N in (5.16), and this scaled
power can be larger than some of the individual noise variances and
smaller than the remaining noise variances. For example, consider a
situation with N = 2 agents, σ2

v,2 = 5σ2
v and σ2

v,1 = σ2
v . Then,

1
N

(
1
N

N∑
k=1

σ2
v,k

)
= 1.5σ2

v (5.18)

which is larger than σ2
v,1 and smaller than σ2

v,2. In this case, the cen-
tralized solution (5.16) performs better than non-cooperative agent 2
(i.e., leads to a smaller MSD) but worse than non-cooperative agent 1.

5.3 Stochastic-Gradient Centralized Solution

The last two sections focused on mean-square-error adaptation. Next,
we extend the conclusions to more general costs. Thus, consider a col-
lection of N agents, each with an individual twice-differentiable convex
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cost function, Jk(w). The objective is to determine the unique mini-
mizer wo of the aggregate cost:

Jglob(w) ∆=
N∑
k=1

Jk(w) (5.19)

It is now the above aggregate cost, Jglob(w), that will be required to
satisfy conditions similar to (4.4) and (4.18) relative to some parameters
{νc, δc, κc}, with the subscript “c” used to indicate that these factors
correspond to the centralized implementation.

Assumption 5.1 (Conditions on aggregate cost function). The aggregate cost
function, Jglob(w), is twice-differentiable and satisfies

0 < νc
h
IhM ≤ ∇2

w J
glob(w) ≤ δc

h
IhM (5.20)

for some positive parameters νc ≤ δc. Condition (5.20) is equivalent to re-
quiring Jglob(w) to be νc−strongly convex and for its gradient vector to be
δc−Lipschitz. In addition, it is assumed that the aggregate cost is smooth
enough so that its Hessian matrix is locally Lipschitz continuous in a small
neighborhood around w = wo, i.e.,∥∥∇2

w J
glob(wo + ∆w)−∇2

w J
glob(wo)

∥∥ ≤ κc ‖∆w‖ (5.21)

for small perturbations ‖∆w‖ ≤ ε and for some κc ≥ 0.

Under these conditions, the cost Jglob(w) will have a unique min-
imizer, which we continue to denote by wo. We will not be requiring
each individual cost, Jk(w), to be strongly convex. It is sufficient for
at least one of these costs to be strongly convex while the remaining
costs can be simply convex; this condition ensures the strong convexity
of Jglob(w). Moreover, minimizers of the individual costs {Jk(w)} need
not coincide with each other or with wo; we shall write wok to refer to
a minimizer of Jk(w).

There are many centralized solutions that can be used to determine
the unique minimizer wo of (5.19), with some solution techniques being
more powerful than other techniques. Nevertheless, we shall focus on
centralized implementations of the stochastic gradient type. The reason
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we consider the same class of stochastic gradient algorithms for non-
cooperative, centralized, and distributed solutions in this work is to
enable a meaningful comparison among the various implementations.
Thus, we consider a centralized strategy of the following form:

wi = wi−1 −
µ

N

N∑
k=1
∇̂w∗Jk(wi−1), i ≥ 0 (5.22)

in terms of approximations for the individual gradient vectors at wi−1.
Here, again, we will be treating the case of real and complex data
jointly. For this reason, although we are computing the gradient vector
relative to w∗ in the above recursion, it is to be understood that this
step should be replaced by differentiation relative to w

T in the real
case; i.e., complex conjugation should be replaced by real transposition
when the data are real in which case the update would take the form:

wi = wi−1 −
µ

N

N∑
k=1
∇̂wTJk(wi−1), i ≥ 0 (5.23)

5.4 Gradient Noise Model

Continuing with the general form (5.22), we note that the sum multi-
plying µ/N is an approximation for the true gradient vector of Jglob(w);
the scaling of µ by N in (5.22) is meant to ensure similar convergence
rates for the non-cooperative and centralized solutions — as explained
further ahead in (5.78). We introduce the individual gradient noise pro-
cesses:

sk,i(wi−1) ∆= ∇̂w∗Jk(wi−1) − ∇w∗Jk(wi−1) (5.24)

for k = 1, 2, . . . , N , and note that the overall gradient noise correspond-
ing to (5.22) is given by:

si(wi−1) =
N∑
k=1

sk,i(wi−1) (5.25)

We also introduce the covariance matrices of the individual noise pro-
cesses. Specifically, for any w ∈ F i−1 and for every k = 1, 2, . . . , N , we
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define the extended gradient noise vector of size 2M × 1:

sek,i(w) ∆=

 sk,i(w)(
s∗k,i(w)

)T

 (5.26)

and denote its conditional covariance matrix by

Res,k,i(w) ∆= E
[
sek,i(w)se∗k,i(w) |F i−1

]
(5.27)

We further assume that, in the limit, the following moment matrices
tend to constant values when evaluated at wo:

Rs,k
∆= lim

i→∞
E
[
sk,i(wo)s∗k,i(wo) |F i−1

]
(5.28)

Rq,k
∆= lim

i→∞
E
[
sk,i(wo)sT

k,i(wo) |F i−1
]

(5.29)

We define similar quantities for the aggregate noise process (5.25) and
denote them by

Res,i(w) ∆= E [ sei (w)se∗i (w) |F i−1 ] (5.30)

Rs
∆= lim

i→∞
E [ si(wo)s∗i (wo) |F i−1 ] (5.31)

Rq
∆= lim

i→∞
E
[
si(wo)sT

i (wo) |F i−1
]

(5.32)

Now since the centralized iteration (5.22) has the form of a stochas-
tic gradient recursion, we should be able to infer its mean-square-error
behavior from Lemma 3.5 and Theorem 4.8 if the aggregate noise pro-
cess (5.25) satisfies conditions similar to Assumption 3.4. It is straight-
forward to verify that this is possible, for example, if the individual
components satisfy conditions similar to Assumption 3.4 and condition
(4.67) and when, additionally, these individual components are uncor-
related with each other and second-order circular as described by the
following statement.

Assumption 5.2 (Conditions on gradient noise). It is assumed that the first and
fourth-order conditional moments of the individual gradient noise processes,
sk,i(w), defined by (5.24) satisfy the following conditions for any iterates
w ∈ F i−1 and for all k, ` = 1, 2, . . . , N :
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E [ sk,i(w) |F i−1 ] = 0 (5.33)
E
[
sk,i(w)s∗`,i(w)|F i−1

]
= 0, k 6= ` (5.34)

E
[
sk,i(w)sT

`,i(w)|F i−1
]

= 0, k 6= ` (5.35)

E
[
‖sk,i(w)‖4 |F i−1

]
≤

(
β̄k/h

)4 ‖w‖4 + σ̄4
s,k (5.36)

almost surely, for some nonnegative scalars β̄4
k and σ̄4

s,k and where h = 2 for
complex data and h = 1 for real data. We also assume that the conditional
second-order moments of the aggregate noise process satisfies a smoothness
condition similar to (4.166), namely,∥∥Res,i(wo + ∆w)−Res,i(wo)

∥∥ ≤ κc,2 ‖∆w‖γ (5.37)

in terms of the extended covariance matrix, for small perturbations ‖∆w‖ ≤ ε,
and for some constants κc,2 ≥ 0 and exponent 0 < γ ≤ 4.

It is straightforward to verify from conditions (5.34)–(5.35) that

Rs =
N∑
k=1

Rs,k (5.38)

Rq =
N∑
k=1

Rq,k (5.39)

Moreover, in a manner similar to (3.134), we conclude from (5.36) that
the second-order moments of the individual gradient noise processes
satisfy:

E
[
‖sk,i(w)‖2 |F i−1

]
≤

(
β̄k/h

)2
‖w‖2 + σ̄2

s,k (5.40)

Using this condition, along with (5.33), it is again straightforward to
verify that the aggregate noise satisfies

E [ si(w) | F i−1 ] = 0 (5.41)

E
[
‖si(w)‖2 |F i−1

]
≤ 1

h2

(
N∑
k=1

β̄2
k

)
‖w‖2 +

N∑
k=1

σ̄2
s,k (5.42)

so that repeating argument (3.28) we can deduce that

E
[
‖si(wi−1)‖2 |F i−1

]
≤ (βc/h)2‖w̃i−1‖2 + σ2

s (5.43)
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where w̃i−1 = wo −wi−1, and

β2
c

∆= 2
(

N∑
k=1

β̄2
k

)
(5.44)

σ2
s

∆= 2
(

N∑
k=1

β̄2
k

)
‖wo‖2 +

N∑
k=1

σ̄2
s,k (5.45)

Likewise, we can conclude from (5.36) that

E
[
‖sk,i(wi−1)‖4 |F i−1

]
≤ (β4,k/h)4 ‖w̃i−1‖4 + σ4

s4,k (5.46)
in terms of the scalars

β4
4,k

∆= 8β̄4
k (5.47)

σ4
s4,k

∆= 8(β̄4
4,k/h

4)‖wo‖4 + σ̄4
s,k (5.48)

By extrapolation, we also conclude that the fourth-order moment of
the aggregate noise, si(wi−1), is similarly bounded. More explicitly, it
will hold that

E
[
‖si(wi−1)‖4|F i−1

]
≤ N3

(
N∑
k=1

(β4
4,k/h

4)

)
‖w̃i−1‖4 +N3

(
N∑
k=1

σ4
s4,k

)
∆= (βa/h)4‖w̃i−1‖4 + σ4

a (5.49)

for some nonnegative constants β4
a and σ4

a. This can be seen as follows.
Exploiting the convexity of the norm function f(x) = ‖x‖4 and using
Jensen’s inequality (F.26) we can write

‖si(wi−1)‖4 (5.25)=
∥∥∥∥∥
N∑
k=1

sk,i(wi−1)
∥∥∥∥∥

4

=
∥∥∥∥∥
N∑
k=1

1
N
N sk,i(wi−1)

∥∥∥∥∥
4

(F.26)

≤ 1
N

N∑
k=1

N4 ‖sk,i(wi−1)‖4

≤ N3
(

N∑
k=1
‖sk,i(wi−1)‖4

)
(5.50)
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from which we conclude that

E
[
‖si(wi−1)‖4 |F i−1

]
≤ N3

(
N∑
k=1

E
[
‖sk,i(wi−1)‖4 |F i−1

])
(5.51)

and result (5.49) follows.

5.5 Performance of Centralized Solution

Motivated by the discussion that led to expressions (4.94) and (4.95) for
the MSD and ER metrics in the single agent case, we similarly define
the MSD and ER performance measures for the centralized solution as
follows:

MSDcent
∆= µ ·

(
lim
µ→0

lim sup
i→∞

1
µ
E‖w̃i‖2

)
(5.52)

ERcent
∆= µ

N
·
(

lim
µ→0

lim sup
i→∞

1
µ
E
{
Jglob(wi−1)− Jglob(wo)

})
(5.53)

where the scaling by 1/N in (5.53) is meant to ensure that ERcent
is compatible with the definition used for non-cooperative agents in
(4.95) and later for multi-agent networks in (11.34). For example,
when the individual costs happen to coincide, say, Jk(w) ≡ J(w) for
k = 1, 2, . . . , N , then the aggregate cost (5.19) reduces to Jglob(w) =
N J(w) and expression (5.53) becomes consistent with the earlier ex-
pression (4.95). Note that we are adding the subscript “cent” to indicate
that the above MSD and ER measures are associated with the central-
ized solution. As explained earlier in Sec. 4.5, we sometimes rewrite the
above definitions for the MSD and ER measures more compactly (but
less rigorously) as

MSDcent = lim
i→∞

E‖w̃i‖2 (5.54)

ERcent = lim
i→∞

1
N

E
{
Jglob(wi−1)− Jglob(wo)

}
(5.55)

with the understanding that the limits on the right-hand side in the
above two expressions are computed according to the definitions (5.52)–
(5.53).
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The conclusions in the next theorem now follow from Lemma 3.5
and Theorem 4.8. The performance expressions given in the theorem
are expressed in terms of the following quantities, defined for both cases
of real or complex data.

Definition 5.1 (Hessian and moment matrices). We associate with each agent
k a pair of matrices {Hk, Gk}, both of which are evaluated at the location of
the minimizer w = wo. The matrices are defined as follows:

Hk
∆= ∇2

w Jk(wo), Gk
∆=


Rs,k (real case)[

Rs,k Rq,k
R∗q,k RT

s,k

]
(complex case) (5.56)

Both matrices are dependent on the data type (whether real or complex);
in particular, each is 2M × 2M for complex data and M ×M for real data.
Note that Hk ≥ 0 and Gk ≥ 0.

In view of the lower bound condition in (5.20), it follows that
N∑
k=1

Hk > 0 (5.57)

so that the sum of the {Hk} matrices is invertible. This matrix sum
appears in the performance expressions below.

Theorem 5.1 (Performance of centralized solution). Assume the aggregate cost
(5.19) satisfies condition (5.20) for some parameters 0 < νc ≤ δc. Assume also
that the gradient noise processes satisfy conditions (5.40)–(5.33). For any µ
satisfying

µ

hN
<

2νc
δ2
c + β2

c

(5.58)

it holds that
E‖w̃i‖2 ≤ αE‖w̃i−1‖2 +

( µ
N

)2
σ2
s (5.59)

where the parameters {σ2
s , β

2
c} are defined by (5.44)–(5.45), and where the

scalar α satisfies 0 ≤ α < 1 and is given by

α = 1− 2νc
( µ

hN

)
+ (δ2

c + β2
c )
( µ

hN

)2
(5.60)
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It follows from (5.59) that for sufficiently small step-sizes:

lim sup
i→∞

E‖w̃i‖2 = O(µ) (5.61)

Moreover, under the additional smoothness conditions (5.21) on Jglob(w) and
(5.37) on the individual noise covariance matrices, it holds that

lim sup
i→∞

E‖w̃i‖2 = MSDcent +O
(
µ1+γm

)
(5.62)

lim sup
i→∞

1
N

E
{
Jglob(wi−1)− Jglob(wo)

}
= ERcent +O

(
µ1+γm

)
(5.63)

where
γm

∆= 1
2 min {1, γ} > 0 (5.64)

with γ ∈ (0, 4] from (5.37), and where

MSDcent = µ

2hN Tr

( N∑
k=1

Hk

)−1( N∑
k=1

Gk

) (5.65)

ERcent = µh

4N2 Tr
(

N∑
k=1

Rs,k

)
(5.66)

The N2 factor in the denominator of (5.66) is because of the normaliza-
tion by 1/N in the definition (5.53). Moreover, for i � 1, the rate at which
the error variance, E‖w̃i‖2, approaches its steady-state region (5.62) is well-
approximated to first-order in µ by

α = 1− 2µ
N
λmin

(
N∑
k=1

Hk

)
(5.67)

If desired, we can relax conditions (5.33)–(5.36) and replace them by
requirements on the aggregate noise process (5.25) directly, such as
requiring:

E [ si(w) |F i−1 ] = 0 (5.68)
E
[
‖si(w)‖4 |F i−1

]
≤ (βc/h)4 ‖w‖4 + σ4

s (5.69)

for some nonnegative constants β4
c and σ4

s . Note in particular that these
assumptions do not impose the uncorrelatedness and circularity condi-
tions (5.34)–(5.35) on the individual noise processes. We also replace
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condition (5.37), which involves the individual agents, by the require-
ment ∥∥∥Res,i(wo + ∆w)−Res,i(wo)

∥∥∥ ≤ κc,2 ‖∆w‖γ (5.70)
in terms of the covariance matrix of the extended aggregate noise vec-
tor, sei (w). Then, the conclusions of Theorem 5.1 will continue to hold
using {β2

c , σ
2
s} from (5.69), and with the sum of the {Gk} appearing in

(5.65) replaced by

Gc
∆=


Rs (real case)[

Rs Rq
R∗q RT

s

]
(complex case) (5.71)

in terms of the moment matrices (5.31)–(5.32) for the aggregate noise
process. More specifically, let

Hc
∆=

N∑
k=1

Hk (5.72)

denote the aggregate Hessian matrix. It will then hold that

MSDcent = µ

2hN Tr
(
H−1
c Gc

)
(5.73)

ERcent = µh

8N2 Tr (Gc) (5.74)

When the individual gradient noise processes satisfy conditions (5.34)–
(5.35), it is easy to verify that the moment matrix Gc will be given by

Gc =
N∑
k=1

Gk (5.75)

so that the above MSD and ER expressions reduce to (5.65)–(5.66).

5.6 Comparison with Single Agents

Continuing with the conditions in Assumption 5.2, we now compare
the performance of the centralized solution (5.22) to that of non-
cooperative processing where agents act independently of each other
and run the recursion:

wk,i = wk,i−1 − µ ∇̂w∗Jk(wk,i−1), i ≥ 0 (5.76)
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This comparison is meaningful only when all agents share the same
minimizer, i.e., when

wok = wo, k = 1, 2, . . . , N (5.77)

so that we can compare how well the individual agents are able to
recover the same wo as the centralized solution. For this reason, we need
to re-introduce in this section only the requirement that all individual
costs {Jk(w)} are ν−strongly convex with a uniform parameter ν. Since
Jglob(w) is the aggregate sum of the individual costs, then we can
set the lower bound νc for the Hessian of Jglob(w) in (5.20) at νc =
Nν. From expressions (3.142) and (5.60) we then conclude that, for a
sufficiently small µ, the convergence rates of the non-cooperative and
centralized solutions will be similar to first-order in µ:

αcent
(5.60)
≈ 1 − 2νc

(
µ

hN

)
= 1− 2ν

(
µ

h

)
(3.142)
≈ αncop,k (5.78)

where the symbol ≈ signifies (here and elsewhere) that we are ignoring
higher-order terms in µ. Moreover, we observe from (4.170) that the
average MSD level across N non-cooperative agents is given by

MSDncop,av
∆= 1

N

N∑
k=1

MSDncop,k

= 1
N

N∑
k=1

µ

2hTr
(
H−1
k Gk

)

= µ

2hN Tr
(

N∑
k=1

H−1
k Gk

)
(5.79)

so that comparing with (5.65), some simple algebra allows us to con-
clude the following statement.
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Lemma 5.2 (Centralized MSD is superior to non-cooperative MSD). Comparing
the MSD performance levels (5.79) and (5.65) it holds that for sufficiently
small step-sizes:

MSDcent < MSDncop,av (5.80)

Proof. First recall thatHk > 0 andGk ≥ 0 for each k; note that the individual
{Hk} are now positive-definite in view of the strong convexity assumption on
the individual costs in this section. Let

Gk = LkL
∗
k, k = 1, 2, . . . , N (5.81)

denote a square-root factorization for Gk where the Lk are full-rank matrices.
Then, using the property Tr(AB) = Tr(BA) for any matrices A and B of
compatible dimensions, the MSD expressions can be re-written as (using Hc

from (5.72)):

MSDncop,av = µ

2Nh Tr
[

N∑
k=1

L∗kH
−1
k Lk

]
(5.82)

MSDcent = µ

2Nh Tr
[

N∑
k=1

L∗kH
−1
c Lk

]
(5.83)

so that

MSDncop,av −MSDcent = µ

2Nh Tr
[

N∑
k=1

L∗k(H−1
k −H

−1
c )Lk

]
(5.84)

The result follows by noting that H−1
c < H−1

k for any k.

That is, while the centralized solution need not outperform every indi-
vidual non-cooperative agent in general, its performance outperforms
the average performance across all non-cooperative agents. The next
example illustrates the above result by considering the scenario where
all agents have the same Hessian matrices at w = wo, namely,

Hk ≡ H, k = 1, 2, . . . , N (5.85)

This situation occurs, for example, when the individual costs are iden-
tical across the agents, say, Jk(w) ≡ J(w), as is common in machine
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learning applications. This situation also occurs for mean-square-error
costs of the form described by (5.5)–(5.6), when the regression covari-
ance matrices, {Ru,k}, are uniform across all agents. In these cases
when the Hessian matrices Hk are uniform, the example below estab-
lishes that the centralized solution actually improves over the average
MSD performance of the non-cooperative solution by a factor of N
[207].
Example 5.1 (N -fold improvement in performance). Consider a collection of
N agents whose individual cost functions, Jk(w), are ν−strongly convex and
are minimized at the same location w = wo. The costs are also assumed to
have identical Hessian matrices at w = wo, i.e., Hk ≡ H. Then, using (5.65),
the MSD of the centralized implementation is given by

MSDcent = 1
N

(
µ

2Nh

N∑
k=1

Tr(H−1Gk)
)

(5.79)= 1
N

MSDncop,av (5.86)

�

Example 5.2 (Multi-fold improvement in performance). Assume in this example
that all data are real-valued, and consider a situation in which the matrices
{Rs,k} are uniform across all agents so that Rs,k ≡ Rs, while Hk = αkIM > 0
for some scalars {αk}. This situation arises, for instance, in the mean-square-
error case (5.6) when Ru,k = σ2

u,kIM and the noise variances σ2
v,k across the

agents are such that the product σ2
v,kσ

2
u,k ≡ σ2/4 remains invariant over the

agents. Then, in this case,

Hk
(2.8)= 2Ru,k = 2σ2

u,kIM ≡ αkIM (5.87)

Rs,k
(4.14)= 4σ2

v,kRu,k = 4σ2
v,kσ

2
u,kIM = σ2IM ≡ Rs (5.88)

Let αA and αH denote the arithmetic and harmonic means of the scalars
{αk}:

αA
∆= 1

N

N∑
k=1

αk, αH
∆=
(

1
N

N∑
k=1

α−1
k

)−1

(5.89)

Then, expressions (5.79) and (5.65) give

MSDncop,av = µ
1
αH

Mσ2, MSDcent = µ

N

1
αA

Mσ2 (5.90)

so that
MSDcent

MSDncop,av
= 1

N

(
αH
αA

)
(5.91)
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in terms of the ratio of the harmonic mean to the arithmetic mean of the {αk}.
Recall that the harmonic mean of a set of numbers is always smaller than or
equal to the arithmetic mean of these numbers (and, moreover, its value tends
to be close to the smaller numbers), it then holds that, for sufficiently small
step-sizes:

MSDcent

MSDncop,av
≤ 1

N
(5.92)

�

Example 5.3 (Centralized learner). We revisit Example 4.5 and consider now
a collection of N learners labeled k = 1, 2, . . . , N . As before, each learner k
receives a streaming sequence of real-valued vector samples {xk,i, i = 1, 2, . . .}
arising from some fixed distribution X . The goal is to determine the M × 1
minimizer wo of the ν−strongly convex risk function J(w) in (4.151). In Exam-
ple 4.5 we examined the non-cooperative solution (4.152) where agents worked
independently of each other to estimate wo. In this example, we examine a
centralized solution of the following stochastic-gradient form:

wi = wi−1 −
µ

N

N∑
k=1
∇wTQ(wi−1;xk,i), i ≥ 0 (5.93)

The gradient noise vector corresponding to each individual agent k is given
by

sk,i(wi−1) = ∇wTQ(wi−1;xk,i) − ∇wTJ(wi−1) (5.94)
so that evaluating the expression for sk,i(w) at w = wo, and using the fact
that ∇wJ(wo) = 0, we get

sk,i(wo) = ∇wTQ(wo;xk,i) (5.95)

Since we are assuming the distribution of the random process xk,i is stationary
and fixed across all agents, it follows that the covariance matrix of sk,i(wo) is
constant across all agents:

Rs,k
∆= Esk,i(wo)sT

k,i(wo) ≡ Rs, k = 1, 2, . . . , N (5.96)

Moreover, since all data are real-valued, it follows that the moment matrix
Gk is M ×M and given by

Gk = Rs, k = 1, 2, . . . , N (5.97)

Substituting into (5.66), and using h = 1 for real data, we conclude that the
excess-risk of the centralized solution (per unit agent) is given by

ERcent = µ

4N2 Tr(NRs) = µ

4N Tr(Rs) (5.98)
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which is N−fold superior to the performance of the non-cooperative agent
given by (4.155) when µk ≡ µ. Similarly, using (5.65) we find that the MSD
performance of the centralized solution is given by

MSDcent = µ

2N Tr(H−1Rs) (5.99)

�

Example 5.4 (Fully-connected networks). In preparation for the discussion on
networked agents, it is useful to describe one extreme situation where a col-
lection of N agents are fully connected to each other — see Figure 5.3. In this
case, each agent is able to access the data from all other agents and, therefore,
each agent can run a centralized implementation of the same form as (5.22),
namely,

wk,i = wk,i−1 −
µ

N

N∑
`=1
∇̂w∗J`(wk,i−1), i ≥ 0 (5.100)

1

2

3

4

5

6

7

N

Figure 5.3: Example of a fully-connected network, where each agent can ac-
cess information from all other agents.
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When this happens, each agent will attain the same performance level as
that of the centralized solution. Two observations are in place [207]. First,
note from (5.100) that the information that agent k is receiving from all
other agents is their gradient vector approximations. Obviously, other pieces
of information could be shared among the agents, such as their iterates
{w`,i−1}. Second, note that the right-most term multiplying µ in (5.100)
corresponds to a convex combination of the approximate gradients from
the various agents, with the combination coefficients being uniform and
equal to 1/N . In general, there is no need for these combination weights to
be identical. Even more importantly, agents do not need to have access to
information from all other agents in the network. We are going to see in
the future chapters that interactions with a limited number of neighbors is
sufficient for the agents to attain performance that is comparable to that of
the centralized solution.

Figure 5.4: Examples of connected networks, with the left-most panel on the
first row representing a collection of non-cooperative agents.

Figure 5.4 shows a sample selection of connected topologies for five agents.
The panels in the first row correspond to the non-cooperative case (left) and
the fully-connected case (right). The panels in the bottom row illustrate some
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other topologies. In the coming chapters, we are going to present results that
allow us to answer useful questions about such networked agents such as
[207]: (a) which topology has best performance in terms of mean-square er-
ror and convergence rate? (b) Given any connected topology, can it be made
to approach the performance of the centralized stochastic-gradient solution?
(c) Which aspects of the topology influence performance? (d) Which aspects
of the combination weights (policy) influence performance? (e) Can differ-
ent topologies deliver similar performance levels? (f) Is cooperation always
beneficial? (g) If the individual agents are able to solve the inference task in-
dividually in a stable manner, does it follow that the connected network will
remain stable regardless of the topology and regardless of the cooperation
strategy?

�

5.7 Decaying Step-Size Sequences

We finally examine the convergence and performance of the centralized
solution (5.22) with a decaying step-size sequence, namely,

wi = wi−1 −
µ(i)
N

N∑
k=1
∇̂w∗Jk(wi−1), i ≥ 0 (5.101)

where µ(i) > 0 satisfies either of the following two sets of conditions:
∞∑
i=0

µ(i) =∞, lim
i→∞

µ(i) = 0 (5.102)

or
∞∑
i=0

µ(i) =∞,
∞∑
i=0

µ2(i) <∞ (5.103)

The following statement follows from the results of Lemmas 3.7 and 3.8
applied to the stochastic-gradient recursion (5.101).

Lemma 5.3 (Performance with decaying step-size). Assume the aggregate cost
(5.19) satisfies condition (5.20) for some parameters 0 < νc ≤ δc. Assume
also that the individual gradient noise processes defined by (5.24) satisfy
conditions (5.40)–(5.33). Then, the following convergence properties hold for
(5.101):
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(a) If the step-size sequence µ(i) satisfies (5.103), then wi converges almost
surely to wo, written as wi → wo a.s.

(b) If the step-size sequence µ(i) satisfies (5.102), then wi converges in the
mean-square-error sense to wo, i.e., E‖w̃i‖2 → 0.

(c) If the step-size sequence is selected as µ(i) = τc/(i+1), where τc > 0, then
three convergence rates are possible. Specifically, for large enough i, it holds
that:

E‖w̃i‖2 ≤
(

(τc/N)2σ2
s

(νc/h)(τc/N)−1

)
1
i + o

( 1
i

)
, νcτc/hN > 1

E‖w̃i‖2 = O
(

log i
i

)
, νcτc/hN = 1

E‖w̃i‖2 = O
( 1
i(νc/h)(τc/N)

)
, νcτc/hN < 1

(5.104)

where h = 2 for complex data and h = 1 for real data. The fastest convergence
rate occurs when νcτc/hN > 1 (i.e., for large enough τc) and is in the order
of O(1/i).



6
Multi-Agent Network Model

Moving forward, we shall study several distributed strategies for the
solution of adaptation, learning, and optimization problems by net-
worked agents. In preparation for these discussions, we describe in this
chapter the network model and comment on some of its properties.

6.1 Connected Networks

We focus in our treatment on connected networks with N agents. In
a connected network, there always exists at least one path connecting
any two agents: the agents may be connected directly by an edge if
they are neighbors, or they may be connected by a path that passes
through other intermediate agents. The topology of a network can be
described in terms of graphs, vertices, and edges (e.g., [256]).

Definition 6.1 (Graphs, vertices, and edges). A network of size N is generally
represented by a graph consisting of N vertices (which we will refer to more
frequently as nodes or agents), and a set of edges connecting the vertices
to each other. An edge that connects a vertex to itself is called a self-loop.
Vertices connected by edges are called neighbors.

431



432 Multi-Agent Network Model

We assume the graph is undirected so that if agent k is a neighbor of
agent `, then agent ` is also a neighbor of agent k. Any two neighbors
can share information both ways over the edge connecting them. This
fact does not necessarily mean that the flow of information between
the agents is symmetrical [208]. This is because we shall assign a pair
of nonnegative weights, {ak`, a`k}, to the edge connecting agents k and
`. The scalar a`k will be used by agent k to scale data it receives from
agent `; this scaling can be interpreted as a measure of the confidence
that agent k assigns to its interaction with agent `. The subscripts `
and k in a`k, with ` coming before k, designate agent ` as the source
and agent k as the sink. Likewise, the scalar ak` will be used by agent
` to scale the data it receives from agent k. In this case, agent k is the
source and agent ` is the sink. The weights {ak`, a`k} can be different,
and one or both weights can also be zero. We can therefore refer to
the graph representing the network as a weighted graph with weights
{a`k, ak`} attached to the edges.

Figure 6.1 shows one example of a connected network. For emphasis
in the figure, each edge between two neighboring agents is being rep-
resented (for now) by two directed arrows to indicate that information
can flow both ways between the agents. The neighborhood of any agent
k is denoted by Nk and it consists of all agents that are connected to k
by edges; we assume by default that this set includes agent k regardless
of whether agent k has a self-loop or not.

Definition 6.2 (Neighborhoods over weighted graphs). The neighborhood of
an agent k is denoted by Nk and it consists of all agents that are connected
to k by an edge, in addition to agent k itself. Any two neighboring agents
k and ` have the ability to share information over the edge connecting
them. Whether this exchange of information occurs, and whether it is
uni-directional, bi-directional, or non-existent, will depend on the values of
the weighting scalars {ak`, a`k} assigned to the edge.

When at least one akk is positive for some agent k, the connected net-
work will be said to be strongly-connected. In other words, a strongly-
connected network contains at least one self-loop, as is the case with
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Figure 6.1: Agents that are linked by edges can share information. The neigh-
borhood of agent k is marked by the broken line and consists of the set
Nk = {4, 7, `, k}. Likewise, the neighborhood of agent 2 consists of the set
N2 = {2, 3, `}. For emphasis in the figure, we are representing edges between
agents by two separate directed arrows with weights {ak`, a`k}. In future net-
work representations, we will replace the two arrows by a single bi-directional
edge.

agent 2 in Figure 6.1. More formally, we adopt the following terminol-
ogy and define connected networks over weighted graphs as follows.

Definition 6.3 (Connected networks). We distinguish between three types of
connected networks; the third class of strongly-connected networks will be
the focus of our study:

(a) Weakly-connected network: A network is said to be weakly connected if
paths with nonzero scaling weights can be found linking any two distinct
vertices in at least one direction either directly when they are neighbors or by
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passing through intermediate vertices when they are not neighbors. In this
way, it is possible for information to flow in at least one direction between
any two distinct vertices in the network.

(b) Connected network: A network is said to be connected if paths with
nonzero scaling weights can be found linking any two distinct vertices in
both directions either directly when they are neighbors or by passing through
intermediate vertices when they are not neighbors. In this way, information
can flow in both directions between any two distinct vertices in the network,
although the forward path from a vertex k to some other vertex ` need not
be the same as the backward path from ` to k.

(c) Strongly-connected network: A network is said to be strongly-connected
if it is a connected network with at least one self-loop with a positive scaling
weight, meaning that akk > 0 for some vertex k. In this way, information can
flow in both directions between any two distinct vertices in the network and,
moreover, some vertices possess self-loops with positive weights.

Figure 6.2 illustrates these definitions by means of an example. The
graph on the left represents a strongly-connected network: if we select
any two agents k and `, we can find paths linking them in both direc-
tions with positive weights on the edges along these paths. In the figure,
we continue to represent edges between agents by two arrows. However,
in order not to overwhelm the figure with combination weights, we are
not showing arrows that correspond to zero weights on them; we are
only showing arrows that correspond to positive weights. Thus, observe
in the graph on the left that for agents 2 and 4, a valid path from 2 to 4
goes through agent 3 and one valid path for the reverse direction from
4 to 2 goes through agents 8 and 1. Similarly, paths can be determined
linking all other combinations of agents in both directions.

Consider now the graph on the right in Figure 6.2. In this graph, we
simply reversed the direction of the arrow that emanated from agent
1 towards agent 2 in the graph on the left (and which is represented
in broken form for emphasis). Observe that now information cannot
reach agent 2 from any of the other agents in the network, even though
information from agent 2 can reach all other agents. At the same time,
the information from agent 1 cannot reach any other agent in the
network and agent 1 is only at the receiving end. This graph therefore
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corresponds to a weakly-connected network. When some agents (like
agent 2) are never able to receive information from other agents in the
network, then these isolated agents will not be able to benefit from
network interactions.

Strongly-connected network Weakly-connected network

2
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6

1

7

3

4

2
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5

6

1

7

3

4

Figure 6.2: The graph on the left represents a strongly-connected network,
while the graph on the right represents a weakly-connected network. The
difference between both graphs is the reversal of the arrow connecting agents
1 and 2 (represented in broken form for emphasis). In the graph on the right,
agent 2 is incapable of receiving (sensing) information from any of the other
agents in the network, even though information from agent 2 can reach all
other agents (directly or indirectly).

6.2 Strongly-Connected Networks

Observe that since we will be dealing with weighted graphs, we are
therefore defining connected networks not in terms of whether paths
can be found connecting their vertices but in terms of whether these
paths allow for themeaningful exchange of information between the ver-
tices. This fact is reflected by the requirement that all scaling weights
must be positive over at least one of the paths connecting any two dis-
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tinct vertices. This is a useful condition for the study of adaptation and
learning over networks. As we are going to see in future chapters, agents
will exchange information over the edges linking them. The informa-
tion will be scaled by weights {ak`, a`k}. Therefore, for information to
flow between agents, it is not sufficient for paths to exist linking these
agents. It is also necessary that the information is not annihilated by
zero scaling while it traverses the path. If information is never able
to arrive at some particular agent, `o, because scaling is annihilating
it before reaching `o then, for all practical (adaptation and learning)
purposes, agent `o is disconnected from the other agents in the network
even if information can still flow in the other direction from agent `o
to the other agents. In this situation, agent `o will not benefit from
cooperation with other agents in the network, while the other agents
will benefit from information provided by agent `o. The assumption of
a connected network therefore ensures that information will be flowing
between any two arbitrary agents in the network and that this flow of
information is bi-directional: information flows from k to ` and from `

to k, although the paths over which the flows occur need not be the
same and the manner by which information is scaled over these paths
can also be different.

The condition of a strongly-connected network implies that the net-
work is connected and, additionally, there is at least one agent in the
network that trusts its own information and will assign some positive
weight to it. This is a reasonable condition and is characteristic of
many real networks, especially biological networks. If akk = 0 for all k,
then this means that all agents will be ignoring their individual infor-
mation and will be relying instead on information received from other
agents. The terminology of “strongly-connected networks” is perhaps
somewhat excessive because it may unnecessarily convey the impres-
sion that the network needs to have more connectivity than is actually
necessary.

The strong connectivity of a network translates into a useful prop-
erty to be satisfied by the scaling weights {a`k}; this property will be
exploited to great effect in our analysis so we derive it here. Assume
we collect the coefficients {a`k} into an N ×N matrix A = [a`k], such
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Figure 6.3: We associate an N×N combination matrix A with every network
of N agents. The (`, k)−th entry of A contains the combination weight a`k,
which scales the data arriving at agent k and originating from agent `.

that the entries on the k−th column of A contain the coefficients used
by agent k to scale data arriving from its neighbors ` ∈ Nk; we set
a`k = 0 if ` /∈ Nk — see Figure 6.3. In this way, the row index in
(`, k) designates the source agent and the column index designates the
sink agent (or destination). We refer to A as the combination matrix
or combination policy. Even though the entries of A are non-negative
(and several of them can be zero), it turns out that for combination
matrices A that originate from strongly-connected networks, there ex-
ists an integer power of A such that all its entries are strictly positive,
i.e., there exists some finite integer no > 0 such that

[Ano ]`k > 0 (6.1)

for all 1 ≤ `, k ≤ N . Combination matrices that satisfy this property
are called primitive matrices.

Lemma 6.1 (Combination matrices of strongly-connected networks). The
combination matrix of a strongly-connected network is a primitive matrix.

Proof. Pick two arbitrary agents ` and k. Since the network is assumed to
be connected, then this implies that there exists a sequence of agent indices
(`,m1,m2, . . . ,mn`k−1, k) of shortest length that forms a path from agent ` to
agent k, say, with n`k nonzero scaling weights {a`m1 , am1,m2 , . . . , amn`k−1,k} :
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`
a`m1−→ m1

am1,m2−→ m2 −→ . . . −→ mn`k−1
amn`k

−1,k
−→ k [n`k edges]

(6.2)
From the rules of matrix multiplication, the (`, k)−th entry of the n`k−th
power of A is given by:

[An`k ]`k =
N∑

m1=1

N∑
m2=1

. . .

N∑
mn`k−1=1

a`m1am1m2 . . . amn`k−1k (6.3)

We already know that the sum in (6.3) should be nonzero because of the
existence of the aforementioned path linking agents ` and k with nonzero
scaling weights. It follows that [An`k ]`k > 0. This means that the matrix
A is irreducible; a matrix A with nonnegative entries is said to irreducible
if, and only if, for every pair of indices (`, k), there exists a finite integer
n`k > 0 such that [An`k ]`k > 0; which is what we have established so far.
We assume that n`k is the smallest integer that satisfies this property. Note
that under irreducibility, the power n`k is allowed to be dependent on the
indices (`, k). Therefore, network connectivity ensures the irreducibility of A.
We now go a step further and show that strong network connectivity ensures
the primitiveness of A. Recall from Definition 6.3 in the text that a strongly
connected network is a connected network with the additional requirement
that there exists at least one agent with a self-loop. We now verify that an
irreducible matrix A with at least one positive diagonal element is necessarily
primitive so that a common power no satisfies (6.1) for all (`, k) (see, e.g.,
[168, p. 678] and [220]).

Since the network is strongly connected, this means that there exists at
least one agent ko with ako,ko > 0. We know from (6.3) that for any agent `
in the network, it holds that [An`ko ]`ko > 0. Then,[

A(n`ko+1)
]
`ko

= [An`koA]`ko

=
N∑
m=1

[An`ko ]`m amko

≥ [An`ko ]`ko ako,ko
> 0 (6.4)

so that the positivity of the (`, ko)−th entry is maintained at higher powers
of A once it is satisfied at power n`ko . The integers {n`ko} are bounded by N .
Let

mo
∆= max

1≤`≤N
{n`ko} (6.5)
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Then, the above result implies that

[Amo ]`ko > 0, for all ` (6.6)

so that the entries on the ko−th column of Amo are all positive. Similarly,
repeating the argument (6.3) we can verify that for arbitrary agents (k, `),
with the roles of k and ` now reversed, there exists a path of length nk` such
that [Ank` ]k` > 0. For the same agent ko with ako,ko > 0 as above, it holds
that [

A(nko`+1)
]
ko`

= [AAnko` ]ko`

=
N∑
m=1

akom [Anko` ]m`

≥ ako,ko [Anko` ]ko`
> 0 (6.7)

so that the positivity of the (ko, `)−th entry is maintained at higher powers of
A once it is satisfied at power nko`. Likewise, the integers {nko`} are bounded
by N . Let

m′o
∆= max

1≤`≤N
{nko`} (6.8)

Then, the above result implies that[
Am

′
o

]
ko`

> 0, for all ` (6.9)

so that the entries on the ko−th row of Am′o are all positive.
Now, let no = mo +m′o and let us examine the entries of the matrix Ano .

We can write schematically

Ano = AmoAm
′
o =


× × + ×
× × + ×
× × + ×
× × + ×



× × × ×
× × × ×
+ + + +
× × × ×

 (6.10)

where the plus signs are used to refer to the positive entries on the ko−th col-
umn and row of Amo and Am′o , respectively, and the × signs are used to refer
to the remaining entries of Amo and Am′o , which are necessarily nonnegative.
It is clear from the above equality that the resulting entries of Ano will all be
positive, and we conclude that A is primitive.
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One important consequence of the primitiveness of A is that a fa-
mous result in matrix theory, known as the Perron-Frobenius Theorem
[27, 113, 189] allows us to characterize the eigen-structure of A in the
following manner — see Lemma F.4 in the appendix:

(a) The matrix A has a single eigenvalue at one.

(b) All other eigenvalues of A are strictly inside the unit circle (and,
hence, have magnitude strictly less than one). Therefore, the spec-
tral radius of A is equal to one, ρ(A) = 1.

(c) With proper sign scaling, all entries of the right-eigenvector of A
corresponding to the single eigenvalue at one are positive. Let p
denote this right-eigenvector, with its entries {pk} normalized to
add up to one, i.e.,

Ap = p, 1Tp = 1, pk > 0, k = 1, 2, . . . , N (6.11)

We refer to p as the Perron eigenvector of A. All other eigenvec-
tors of A associated with the other eigenvalues will have at least
one negative or complex entry.

6.3 Network Objective

In the remaining chapters of this treatment we are interested in show-
ing how network cooperation can be exploited to solve a variety of
problems in an advantageous manner. We are particularly interested
in formulations that can solve adaptation, learning, and optimization
problems in a decentralized and online manner in response to streaming
data. It turns out that useful commonalities run across these three do-
main problems. For this reason, we shall keep the development general
enough and then show, by means of examples, how the results can be
used to handle many situations of interest as special cases.

Thus, consider a connected network consisting of a total of N
agents, labeled k = 1, 2, . . . , N . We associate with each agent a
twice-differentiable individual cost function, denoted by Jk(w) ∈ R.
This function is sometimes called the utility function in applications



6.3. Network Objective 441

involving resource management issues and the risk function in machine
learning applications; it may be called by other names in other
domains. We adopt the generic terminology of a “cost” function. The
function Jk(w) ∈ R is itself real-valued. However, for generality, its
argument w ∈ CM is assumed to be possibly complex-valued, say, of
size M × 1. This set-up is illustrated in Figure 6.4 where we are now
representing the bi-directional edges between agents by single segment
lines for ease of representation.
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of node    .

Figure 6.4: A cost function Jk(w) is associated with each individual agent k
in the network. The bi-directional edges between agents are being represented
by single segment lines for ease of representation. Information can flow both
ways over these edges with scalings {ak`, a`k}.
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The objective of the network of agents is still to seek the unique
minimizer of the aggregate cost function, Jglob(w), defined earlier by
(5.19) and which we repeat below

Jglob(w) ∆=
N∑
k=1

Jk(w) (6.12)

Now, however, we seek a distributed (as opposed to a centralized) so-
lution. In a distributed implementation, each agent k can only rely on
its own data and on data from its neighbors. We continue to assume
that Jglob(w) satisfies the conditions of Assumption 5.1 with parame-
ters {νd, δd, κd}, with the subscript “d” now used to indicate that these
parameters are related to the distributed implementation.

Assumption 6.1 (Conditions on aggregate and individual costs). It is assumed
that the individual cost functions, Jk(w), are each twice-differentiable and
convex, with at least one of them being νd−strongly convex. Moreover, the
aggregate cost function, Jglob(w), is also twice-differentiable and satisfies

0 < νd
h
IhM ≤ ∇2

w J
glob(w) ≤ δd

h
IhM (6.13)

for some positive parameters νd ≤ δd.

Under these conditions, the cost Jglob(w) will have a unique minimizer,
which we continue to denote by wo. Note that we are not requiring the
individual costs Jk(w) to be strongly convex. As mentioned earlier, it
is sufficient to assume that at least one of these costs is νd−strongly
convex while the remaining costs are simply convex; this condition
ensures that Jglob(w) will be strongly convex.

The individual costs {Jk(w)} can be distinct across the agents or
they can all be identical, i.e., Jk(w) ≡ J(w) for k = 1, 2, . . . , N ; in the
latter situation, the problem of minimizing (6.12) would correspond to
the case in which the agents work together to optimize the same cost
function. Moreover, when they exist, the minimizers of the individual
costs, {Jk(w)}, need not coincide with each other or with wo; we
shall write wok to refer to a minimizer of Jk(w). There are important



6.3. Network Objective 443

situations in practice where all minimizers {wok} happen to coincide
with each other. For instance, examples abound where agents need
to work cooperatively to attain a common objective such as tracking
a target, locating a food source, or evading a predator (see, e.g.,
[56, 208, 214, 246]). This scenario is also common in machine learning
problems [4, 37, 85, 192, 233, 239] when data samples at the various
agents are generated by a common distribution parameterized by some
vector, wo. One such situation is illustrated in the next example.

Example 6.1 (Common minimizer). Consider the same setting of Example 3.4
except that we now have N agents observing streaming data {dk(i),uk,i}
that satisfy the regression model (3.119) with regression covariance matrices
Ru,k = Eu∗k,iuk,i > 0 and with the same unknown wo, i.e.,

dk(i) = uk,iw
o + vk(i) (6.14)

where the noise process, vk(i), is independent of the regression data, uk,i.
The individual mean-square-error costs are defined by

Jk(w) = E |dk(i)− uk,iw|2 (6.15)

and are strongly convex in this case, with the minimizer of each Jk(w) occur-
ring at

wok = R−1
u,krdu,k, k = 1, 2, . . . , N (6.16)

If we multiply both sides of (6.14) by u∗k,i from the left, and take expectations,
we find that wo satisfies

rdu,k = Ru,kw
o (6.17)

This relation shows that the unknown wo from (6.14) satisfies the same ex-
pression as wok in (6.16), for any k = 1, 2, . . . , N , so that we must have

wo = wok, k = 1, 2, . . . , N (6.18)

Therefore, this example amounts to a situation where all costs {Jk(w)} attain
their minima at the same location, wo, even though the moments {rdu,k, Ru,k}
and, therefore, the individual costs {Jk(w)}, may be different from each other.
This example highlights one convenience of working with mean-square-error
(MSE) costs: under linear regression models of the form (6.14), the MSE
formulation (6.15) allows each agent to recover wo exactly.

�
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One natural question that arises in the case of a common minimizer
is to inquire why agents should cooperate to determine wo when each
one of them is capable of determining wo on its own through (6.16)?
There are at least two good reasons to justify cooperation even in this
case. First, agents will rarely have access to the full information they
need to determine wo independently. For example, in many situations,
agents may not know fully their own costs Jk(w). For instance, agents
may not know beforehand the statistical moments {rdu,k, Ru,k} of the
data that they are sensing; this is the situation we encountered earlier in
Examples 3.1 and 3.4 when we developed recursive adaptation schemes
to address this lack of information. When this occurs, agents would
not be able to use (6.16) to determine wo. Instead, they would need to
replace the unavailable moments {rdu,k, Ru,k} by some approximations
before attempting (6.16). Moreover, different agents will generally be
subject to different noise conditions and the quality of their moment
approximations will therefore vary. In that case, their estimates for wo
will be as good as the quality of their data, as we already remarked
earlier following result (5.10). Through cooperation with each other,
not only agents with “bad” noise conditions will benefit, but also agents
with “good” noise conditions can benefit and improve the accuracy of
their estimation (see, e.g., Chapter 12 and also [208, 214]).

A second reason to motivate cooperation among the agents is that
even when they know the moments {rdu,k, Ru,k}, the individual costs
need not be strongly convex and the agents may not be able to recover
wo on their own due to ambiguities or ill-conditioning. For example,
if some of the covariance matrices {Ru,k} in Example 6.1 are singular,
then the corresponding cost functions {Jk(w)} will not be strongly con-
vex and the individual agents will not be able to determine wo uniquely.
In that case, cooperation among agents would help them resolve the
ambiguity about wo.

Example 6.2 (Linear regression models). Linear data models of the form (6.14)
are common in practice. We provide two examples from [208]. Consider first
a situation in which agents are spread over a geographical region and observe
realizations of an auto-regressive (AR) random process {dk(i)} of order M .
The AR process observed by agent k satisfies the model:
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dk(i) =
M∑
m=1

βmdk(i−m) + vk(i), k = 1, 2, . . . , N (6.19)

where i is the time index, the scalars {βm} represent the model parameters
that the agents wish to identify, and vk(i) represents the additive noise pro-
cess. If we collect the {βm} into an M × 1 column vector:

wo
∆= col {β1, β2, . . . , βM} (6.20)

and the past data into a 1×M regression vector:

uk,i
∆=
[
dk(i− 1) dk(i− 2) . . . dk(i−M)

]
(6.21)

then we can rewrite the measurement equation (6.19) in the form (6.14) for
each time instant i.

Consider a second example where the agents are now interested in es-
timating the taps of a communications channel or the parameters of some
physical model of interest. Assume the agents are able to independently probe
the unknown model and observe its response to excitations in the presence
of additive noise. Each agent k probes the model with an input sequence
{uk(i)} and measures the response sequence, {dk(i)}, in the presence of addi-
tive noise. The system dynamics for each agent k is assumed to be described
by a moving-average (MA) model of the form:

dk(i) =
M−1∑
m=0

βmuk(i−m) + vk(i) (6.22)

If we again collect the parameters {βm} into an M ×1 column vector wo, and
the input data into a 1×M regression vector:

uk,i =
[
uk(i) uk(i− 1) . . . uk(i−M + 1)

]
(6.23)

then we arrive again at the same linear model (6.14).
�

Example 6.3 (Mean-square-error (MSE) networks). The data model introduced
in Example 6.1 will be called upon frequently in our presentation to illustrate
various concepts and results. We shall refer to strongly-connected networks
with agents receiving data according to model (6.14) and seeking to estimate
wo by adopting the mean-square-error costs Jk(w) defined by (6.15), as mean-
square-error (MSE) networks.

We find it useful to collect in this example the details of the model for ease
of reference whenever necessary. Thus, refer to Figure 6.5. The plot shows a
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Figure 6.5: Illustration of mean-square-error (MSE) networks. The plot shows
a strongly-connected network where each agent is subjected to streaming data
{dk(i),uk,i} that satisfy the linear regression model (6.24). The cost associ-
ated with each agent is the mean-square-error cost defined by (6.25).

strongly-connected network where each agent is subjected to streaming data
{dk(i),uk,i} that are assumed to satisfy the linear regression model:

dk(i) = uk,iw
o + vk(i), i ≥ 0, k = 1, 2, . . . , N (6.24)

for some unknown M × 1 vector wo. A mean-square-error cost is associated
with each agent k, namely,

Jk(w) = E |dk(i)− uk,iw|2, k = 1, 2, . . . , N (6.25)

The processes {dk(i),uk,i,vk(i)} that appear in (6.24) are assumed to
represent zero-mean jointly wide-sense stationary random processes that
satisfy the following three conditions (these conditions help facilitate the
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analysis of such networks):

(a) The regression data {uk,i} are temporally white and independent over
space with

Eu∗k,iu`,j
∆= Ru,k δk,` δi,j (6.26)

where Ru,k > 0 and the symbol δm,n denotes the Kronecker delta sequence:
its value is equal to one when m = n and its value is equal to zero otherwise.
(b) The noise process {vk(i)} is temporally white and independent over space
with variance

Evk(i)v∗` (j)
∆= σ2

v,k δk,` δi,j (6.27)

(c) The regression and noise processes {u`,j ,vk(i)} are independent of each
other for all k, `, i, j.

�



7
Multi-Agent Distributed Strategies

There are several distributed strategies that can be used to seek the
minimizer of (6.12), namely,

wo
∆= arg min

w

N∑
k=1

Jk(w) (7.1)

In this chapter, we describe three prominent strategies, namely,

(a) incremental strategies — see, e.g., [30, 31, 38, 55, 109, 129, 156,
161, 172, 193, 194, 209, 210];

(b) consensus strategies — see, e.g., [18, 26, 32, 46, 84, 87, 128, 137,
138, 174, 175, 185, 198, 204, 208, 214, 224, 241, 242, 265, 267];

(c) diffusion strategies — see, e.g., [62, 66, 69, 70, 86, 152, 163, 207,
208, 211, 214, 232, 238, 248, 276, 277].

While these algorithms can be motivated in alternative ways, some
more formal than others, we opt to present them by using the central-
ized implementation (5.22) as a starting point, which we repeat below
for ease of reference:

wi = wi−1 −
µ

N

N∑
k=1
∇̂w∗Jk(wi−1), i ≥ 0 (7.2)

448
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7.1 Incremental Strategy

We start with the incremental strategy. The centralized algorithm
(7.2) is obviously not distributed since it requires that all information
from the agents be aggregated at the fusion center to compute the
sum of the gradient approximations. We can rewrite the algorithm
in an equivalent manner that will motivate a particular distributed
solution as follows.
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Figure 7.1: Starting from the given network on the left, a cyclic path is
defined that visits all agents and is shown on the right. The agents are then
re-numbered with agent 1 referring to the start of the cyclic path and agent
N referring to its end. The diagram in the bottom illustrates the incremental
calculations that are carried out by agent 6.
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Referring to Figure 7.1, starting from a given network topology, we
first determine a cyclic trajectory that covers all agents in the network
in succession, one after the other. To facilitate the description of this
construction, once a cycle has been selected, we re-number the agents
along the trajectory from 1 to N with #1 designating the agent at the
start of the trajectory and #N designating the agent at the end of the
trajectory. Then, at each iteration i, the centralized update (7.2) can
be split into N consecutive incremental steps, with each step performed
locally at one of the agents:

w1,i = wi−1 − µ
N ∇̂w∗J1(wi−1)

w2,i = w1,i − µ
N ∇̂w∗J2(wi−1)

w3,i = w2,i − µ
N ∇̂w∗J3(wi−1)

... =
...

wi = wN−1,i − µ
N ∇̂w∗JN (wi−1)

(7.3)

In this implementation, information is passed from one agent to the
next over the cyclic path until all agents are visited and the process is
then repeated. Agent 1 starts with the existing iterate wi−1 and up-
dates it to w1,i using its approximation for its own gradient vector.
Agent 2 then receives the updated iterate w1,i from agent 1 and up-
dates it to w2,i using its approximate gradient vector, and so on. More
generally, each agent k receives an intermediate variable, denoted by
wk−1,i, from its predecessor agent k − 1, incrementally adds one term
from the gradient sum in (7.2) to this variable, and then computes its
iterate, wk,i:

wk,i = wk−1,i −
µ

N
∇̂w∗Jk(wi−1) (7.4)

At the end of the cycle of N−steps in (7.3), the iterate wN,i at agent
N coincides with the iterate wi that would have resulted from (7.2).

Although recursion (7.3) is cooperative in nature, in that each agent
is using some information from its preceding neighbor, this implemen-
tation still requires all agents to have access to one global piece of infor-
mation represented by the vector wi−1. This is because this vector is
used by all agents to evaluate the approximate gradient vectors in (7.3).
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Consequently, implementation (7.3) is still not distributed. A fully dis-
tributed solution can only involve sharing of, and access to, information
from local neighbors. At this point, we resort to a useful incremental
construction, which has been widely studied in the literature (see, e.g.,
[30, 31, 38, 55, 109, 129, 156, 161, 172, 193, 194, 209, 210]). Accord-
ing to this construction, each agent k replaces the unavailable global
variable wi−1 in (7.3) by the incremental variable it receives from its
predecessor, which we denoted by wk−1,i. The approximate gradient
vector is then evaluated at this intermediate variable, wk−1,i rather
than at the global variable wi−1, namely, equation (7.4) is replaced by

wk,i = wk−1,i −
µ

N
∇̂w∗Jk(wk−1,i) (7.5)

Obviously, the factor 1/N can be absorbed into the step-size µ. We leave
it explicit to enable comparisons later with other distributed strategies.
The resulting incremental implementation is summarized as follows.

Incremental strategy for adaptation and learning
for each time instant i ≥ 0:
set the fictitious boundary condition at w0,i ← wi−1.
cycle over agents k = 1, 2, . . . , N :

agent k receives wk−1,i from its preceding neighbor k − 1.
agent k performs: wk,i = wk−1,i − µ

N ∇̂w∗Jk(wk−1,i)
end
wi ← wN,i

end

(7.6)

Example 7.1 (Incremental LMS networks). For the MSE network of Exam-
ple 6.3, once a cyclic path has been determined and the agents renumbered
from 1 to N , the incremental strategy (7.6) reduces to the following incre-
mental LMS algorithm from [55, 156, 161, 209]:

wk,i = wk−1,i + 2µ
Nh

u∗k,i[dk(i)− uk,iwk−1,i] (7.7)

where h = 1 for real data and h = 2 for complex data. It is understood that
when the data are real-valued, the complex-conjugate transposition appearing
on u∗k,i should be replaced by the standard transposition, uT

k,i.
�
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The incremental solution (7.6) suffers from a number of limitations for
applications involving adaptation and learning from streaming data.
First, the incremental strategy is sensitive to agent or link failures. If
an agent or link over the cyclic path fails, then the information flow
over the network is interrupted. Second, starting from an arbitrary
topology, determining a cyclic path that visits all agents is generally
an NP-hard problem [139]. Third, cooperation between agents is limited
with each agent allowed to receive data from one preceding agent and
to share data with one successor agent. Fourth, for every iteration i, it
is necessary to perform N incremental steps and to cycle through all
agents in order to update wi−1 to wi; this means that the processing
at the agents needs to be fast enough so that the N update steps can
be completed before the next cycle begins. For these reasons, we shall
not comment further on incremental strategies in this work. Readers
can refer to more detailed studies that appear, for example, in [30, 31,
38, 55, 109, 129, 156, 161, 172, 193, 194, 209, 210].

We move on to motivate two other distributed strategies based on
consensus and diffusion techniques that do not suffer from these lim-
itations. These techniques take advantage of the following flexibility:
(a) First, there is no reason why agents should only receive informa-
tion from one neighbor at a time and pass information to only one
other neighbor; (b) second, there is also no reason why the global vari-
able wi−1 in (7.4) cannot be replaced by some other choice, other than
wk−1,i, to attain decentralization; and (c) third, there is no reason why
agents cannot adapt and learn simultaneously with other agents rather
than wait for each cycle to complete.

7.2 Consensus Strategy

Examining description (7.6) for the incremental solution, we observe
that the two objectives of cooperation and decentralization are attained
by means of two artifacts. First, each agent k receives the incremental
variablewk−1,i from its predecessor and updates it towk,i using its own
gradient vector approximation. This step, although limited, enforces
one form of cooperation between two adjacent neighbors. Second, each
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agent uses the iterate wk−1,i received from its neighbor to replace the
global variable wi−1 appearing in (7.4) by wk−1,i. This step allows the
implementation to become decentralized with agents now relying solely
on local data that are available to them. We highlight these two factors
by rewriting the incremental step (7.4) at agent k as follows:

wk,i = wk−1,i︸ ︷︷ ︸
(coop)

− µ

N
∇̂w∗Jk(wk−1,i︸ ︷︷ ︸

(decen)

) (7.8)

where the term marked by the letters (coop) assists with cooperation
and the term marked by the letters (decen) assists with decentralization.
Both terms involve the same iterate wk−1,i, which appears twice on the
right-hand side of the incremental update (7.8).

In the consensus strategy, the first wk−1,i that agent k uses as the
cooperation factor (coop) is replaced by a convex combination of the
iterates that are available at the neighbors of agent k — see the first
term on the right-hand side of (7.9). With regards to the second wk−1,i
on the right-hand side of (7.8), it is replaced by wk,i−1; this quantity
is the iterate that is already available at agent k. In this manner, the
consensus iteration at each agent k is given by:

wk,i =
∑
`∈Nk

a`k w`,i−1 − µk∇̂w∗Jk(wk,i−1) (7.9)

where we are further replacing the step-size µ/N in the incremental
implementation by µk in the consensus implementation and allowing it
to be agent-dependent for generality. This is because, as we are going
to see, each agent will now be able to run its update simultaneously
with the other agents. Moreover, it can be verified that by employing
µ/N for incremental (and centralized solutions) and µk ≡ µ for con-
sensus, the convergence rates of these strategies will be similar (see
future expression (11.141) in Example 11.2. Observe that the consen-
sus update (7.9) can also be motivated by starting instead from the
non-cooperative step (5.76) and replacing the first iterate wk,i−1 by
the convex combination used in (7.9).

The combination coefficients {a`k} that appear in (7.9) are nonneg-
ative scalars that are chosen to satisfy the following conditions for each
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agent k = 1, 2, . . . , N :

a`k ≥ 0,
N∑
`=1

a`k = 1, and a`k = 0 if ` /∈ Nk (7.10)

Condition (7.10) means that for every agent k, the sum of the weights
{a`k} on the edges that arrive at it from its neighbors is one: the scalar
a`k represents the weight that agent k assigns to the iterate w`,i−1
that it receives from agent `. The coefficients {a`k} are free weighting
parameters that are chosen by the designer; obviously, their selection
will influence the performance of the algorithm (see Chapter 11). If we
collect the entries {a`k} into an N ×N matrix A, such that the k−th
column of A consists of {a`k, ` = 1, 2, . . . , N}, then the second condi-
tion in (7.10) translates into saying that the entries on each column of
A add up to one, i.e.,

AT1 = 1 (7.11)

We say that A is a left-stochastic matrix. One useful property of left-
stochastic matrices is that the spectral radius of every such matrix is
equal to one (so that the magnitude of any of the eigenvalues of A
is bounded by one), i.e., ρ(A) = 1 (see [27, 104, 113, 189, 208] and
Lemma F.4 in the appendix).

Now observe the following important fact from the consensus up-
date (7.9). The information that is used by agent k from its neighbors
are the iterates {w`,i−1} and these iterates are already available for
use from the previous iteration i − 1. As such, there is no need any
longer to cycle through the agents. At every iteration i, all agents in
the network can run their consensus update (7.9) simultaneously by us-
ing iterates that are available from iteration i− 1 at their neighbors to
update their weight vectors. Accordingly, the consensus strategy (7.9)
can be applied to a given network topology using its existing agent
numbering (or labeling) scheme without the need to select a cycle and
to re-number the agents, as was the case with the incremental strategy.
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Figure 7.2: The diagram in the bottom shows the operations involved in the
consensus implementation (7.9) at agent k, whose neighbors are agents are
assumed to be {4, 7, `, k}.

Consensus strategy for adaptation and learning
for each time instant i ≥ 0:
each agent k = 1, 2, . . . , N performs the update: ψk,i−1 =

∑
`∈Nk

a`k w`,i−1

wk,i = ψk,i−1 − µk ∇̂w∗Jk (wk,i−1)
end

(7.12)
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In the consensus implementation (7.9), at each iteration i, every
agent k performs two steps: it aggregates the iterates from its neighbors
and, subsequently, updates this aggregate value by the (negative of
the conjugate) gradient vector evaluated at its existing iterate — see
Figure 7.2. An equivalent representation that is useful for later analysis
is to rewrite the consensus iteration (7.9) as shown in (7.12), where the
intermediate iterate that results from the neighborhood combination is
denoted by ψk,i−1. Observe that the gradient vector in the consensus
implementation (7.12) is evaluated at wk,i−1 and not ψk,i−1.

Example 7.2 (Consensus LMS networks). For the MSE network of Exam-
ple 6.3, the consensus strategy (7.12) reduces to the following equivalent forms:

wk,i =
∑
`∈Nk

a`k w`,i−1 + 2µk
h
u∗k,i[dk(i)− uk,iwk,i−1] (7.13)

or 
ψk,i−1 =

∑
`∈Nk

a`k w`,i−1

wk,i = ψk,i−1 + 2µk
h
u∗k,i[dk(i)− uk,iwk,i−1]

(7.14)

where again h = 1 for real data and h = 2 for complex data. Moreover, when
the data are real-valued, the complex-conjugate transposition appearing on
u∗k,i should be replaced by the standard transposition, uT

k,i.
�

7.3 Diffusion Strategy

For ease of comparison, we repeat the incremental and consensus iter-
ations (7.8) and (7.9) below:

wk,i = wk−1,i︸ ︷︷ ︸
(coop)

− µ

N
∇̂w∗Jk( wk−1,i︸ ︷︷ ︸

(decen)

) (incremental) (7.15)

wk,i =
∑
`∈Nk

a`k w`,i−1︸ ︷︷ ︸
(coop)

− µk∇̂w∗Jk( wk,i−1︸ ︷︷ ︸
(decen)

) (consensus) (7.16)
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If we examine these updates, we observe that the cooperation and
decentralization terms (coop) and (decen) in the incremental imple-
mentation (7.15) are identical to each other and equal to wk−1,i. On
the other hand, the consensus construction (7.16) treats the factors
“coop” and “decen” asymmetrically: the decentralization term (decen)
is wk,i−1 while the cooperation term (coop) is different and involves a
convex combination. This asymmetry is also clear from the equivalent
form (7.12), where it is seen that the gradient vector in (7.12) is evalu-
ated at wk,i−1 and not at the updated iterate ψk,i−1. The asymmetry
in the consensus update will be shown later in Sec. 10.6, and also
in Examples 8.4 and 10.1, to be problematic when the strategy is
used for adaptation and learning over networks. This is because the
asymmetry can cause an unstable growth in the state of the network
[248]. Diffusion strategies remove the asymmetry problem.

Combine-then-Adapt (CTA) Diffusion Strategy
There are several variations of the distributed diffusion strategy. The
first diffusion variant can be motivated by requiring the same convex
combination to be used for both the cooperation (coop) and decen-
tralization (decen) factors. Doing so leads to the following algorithm
known as the Combine-then-Adapt (CTA) diffusion strategy:

wk,i =
∑
`∈Nk

a`k w`,i−1︸ ︷︷ ︸
(coop)

− µk∇̂w∗Jk

 ∑
`∈Nk

a`kw`,i−1


︸ ︷︷ ︸

(decen)

(7.17)

This implementation has exactly the same computational complexity
as the consensus implementation (7.16). To see why, we rewrite (7.17)
in a more revealing form in (7.18), where the convex combination term
is first evaluated into an intermediate state variable, ψk,i−1, and subse-
quently used to perform the gradient update — see Figure 7.3. Observe
that in this form, and compared with (7.12), the gradient vector is now
evaluated at ψk,i−1.
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Diffusion strategy for adaptation and learning (CTA)
for each time instant i ≥ 0:

each agent k = 1, 2, . . . , N performs the update: ψk,i−1 =
∑
`∈Nk

a`k w`,i−1

wk,i = ψk,i−1 − µk ∇̂w∗Jk
(
ψk,i−1

)
end

(7.18)
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Figure 7.3: The diagram in the bottom shows the operations involved in the
CTA diffusion implementation (7.18) at agent k, whose neighbors are agents
{4, 7, `, k}.
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At every iteration i, the strategy (7.18) performs two operations.
The first operation is an aggregation step where agent k combines the
existing iterates from its neighbors to obtain the intermediate iterate
ψk,i−1. All other agents in the network are simultaneously performing a
similar step and aggregating the iterates of their neighbors. The second
operation in (7.18) is an adaptation step where agent k approximates
its gradient vector and uses it to update its intermediate iterate to
wk,i. Again, all other agents in the network are simultaneously per-
forming a similar information exchange step. The reason for the name
“Combine-then-Adapt” (CTA) strategy is that the first step in (7.18)
involves a combination step, while the second step involves an adap-
tation step. The reason for the qualification “diffusion” is that the use
of the intermediate state ψk,i−1 in both steps in (7.18) allows informa-
tion to diffuse more thoroughly through the network. This is because
information is not only being diffused through the aggregation of the
neighborhood iterates, but also through the evaluation of the gradient
vector at the aggregate state value.

Adapt-then-Combine (ATC) Diffusion Strategy
A similar implementation can be obtained by switching the order of
the combination and adaptation steps in (7.18), as shown in the listing
(7.19) — see Figure 7.4. The structure of the CTA and ATC strategies
are fundamentally identical: the difference lies in which variable we
choose to correspond to the updated iterate wk,i. In ATC, we choose
the result of the combination step to bewk,i, whereas in CTA we choose
the result of the adaptation step to be wk,i.

Diffusion strategy for adaptation and learning (ATC)
for each time instant i ≥ 0:

each agent k = 1, 2, . . . , N performs the update: ψk,i = wk,i−1 − µk ∇̂w∗Jk(wk,i−1)
wk,i =

∑
`∈Nk

a`k ψ`,i

end

(7.19)
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Figure 7.4: The diagram on the right shows the operations involved in the
ATC diffusion implementation (7.19) at agent k, whose neighbors are agents
{4, 7, `, k}.

In the ATC implementation, the first operation is the adaptation
step where agent k uses its approximate gradient vector to update
wk,i−1 to the intermediate state ψk,i. All other agents in the network
are performing a similar step simultaneously and updating their exist-
ing iterates {w`,i−1} into intermediate iterates {ψ`,i} by using informa-
tion from their neighbors. The second step in (7.19) is an aggregation
or consultation step where agent k combines the intermediate iterates
from its neighbors to obtain its updated iterate wk,i. Again, all other
agents in the network are simultaneously performing a similar step.
The reason for the name “Adapt-then-Combine” (ATC) strategy is
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that the first step (7.19) is an adaptation step, while the second step is
a combination step. Again, this implementation has exactly the same
computational complexity as the consensus implementation (7.16). If
desired, both steps in (7.19) can be combined into a single update as:

wk,i =
∑
`∈Nk

a`k
(
w`,i−1 − µ`∇̂w∗J `(w`,i−1)

)
(7.20)

or, equivalently,

wk,i =
∑
`∈Nk

a`kw`,i−1 −
∑
`∈Nk

a`k µ`∇̂w∗J `(w`,i−1) (7.21)

where it is seen that the gradient vectors of the neighbors are also
being combined by the ATC update, with each gradient evaluated at
the respective iterate w`,i−1.

Example 7.3 (Diffusion LMS networks). For the MSE network of Example 6.3,
the CTA and ATC diffusion strategies (7.18) and (7.19) reduce to the following
updates:

ψk,i−1 =
∑
`∈Nk

a`k w`,i−1

wk,i = ψk,i−1 + 2µk
h
u∗k,i

[
dk(i)− uk,iψk,i−1

] (CTA) (7.22)

and
ψk,i = wk,i−1 + 2µk

h
u∗k,i [dk(i)− uk,iwk,i−1]

wk,i =
∑
`∈Nk

a`k ψ`,i

(ATC) (7.23)

where for real data and h = 2 for complex data. Again, when the data are
real-valued, the complex-conjugate transposition appearing on u∗k,i should be
replaced by the standard transposition, uT

k,i.
�

Example 7.4 (Diffusion logistic network). We reconsider the pattern classifi-
cation problem from Example 3.2 where we now allow N agents to cooperate
with each other over a connected network topology to solve the logistic re-
gression problem — see Figure 7.5.
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Figure 7.5: Each agent k receives streaming data {γk(i),hk,i}. The agents
cooperate to minimize the regularized logistic cost (7.24).

Each agent k is assumed to receive streaming data {γk(i),hk,i} at time
i. The variable γk(i) assumes the values ±1 and designates the class that
feature vector hk,i belongs to. The objective is to use the training data to
determine the vector wo that minimizes the regularized logistic cost under
the assumption of joint wide-sense stationarity over the random data:

J(w) ∆= ρ

2‖w‖
2 + E

{
ln
(

1 + e−γk(i)hT
k,iw
)}

(7.24)

where J(w) is the same for all agents. The corresponding loss function is

Q(w;γk(i),hk,i)
∆= ρ

2‖w‖
2 + ln

(
1 + e−γk(i)hT

k,iw
)

(7.25)

By using the gradient vector of Q(·) relative to wT to approximate ∇wTJ(w),
we arrive at the following ATC diffusion implementation of a distributed strat-
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egy for solving the logistic regression problem cooperatively:
ψk,i = (1− ρµk)wk,i−1 + µkγk(i)hk,i

(
1

1 + eγk(i)hT
k,i

wk,i−1

)
wk,i =

∑
`∈Nk

a`k ψ`,i
(7.26)

�

Diffusion Strategies with Enlarged Cooperation
Other forms of diffusion strategies are possible by allowing for enlarged
cooperation and exchange of information among the agents, such as
exchanging gradient vector approximations in addition to the iterates.
For example, the following two forms of CTA and ATC employ an
additional set of combination coefficients {c`k} to aggregate gradient
information [62, 66, 208]:

ψk,i−1 =
∑
`∈Nk

a`k w`,i−1

wk,i = ψk,i−1 − µk
∑
`∈Nk

c`k∇̂w∗J `(ψk,i−1)
(CTA) (7.27)

and
ψk,i = wk,i−1 − µk

∑
`∈Nk

c`k∇̂w∗J `(wk,i−1)

wk,i =
∑
`∈Nk

a`k ψ`,i
(ATC) (7.28)

where the {c`k} are nonnegative scalars that satisfy the following con-
ditions for all agents k = 1, 2, . . . , N :

c`k ≥ 0,
N∑
k=1

c`k = 1, and c`k = 0 if ` /∈ Nk (7.29)

The coefficients {c`k} are free parameters that are chosen by the de-
signer. If we collect the entries {c`k} into an N ×N matrix C, so that
the `−th row of C is formed of {c`k, k = 1, 2, . . . , N}, then the second
condition in (7.29) corresponds to the requirement that the entries on
each row of C should add up to one, i.e.,

C1 = 1 (7.30)
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We say that C is a right-stochastic matrix. Observe that the above
enlarged diffusion strategies are equivalent to associating with each
agent k the weighted neighborhood cost function:

J ′k(w) ∆=
∑
`∈Nk

c`kJ`(w) (7.31)

and then applying (7.18) or (7.19). Our discussion in the sequel focuses
on the case C = IN . Additional details on the case C 6= IN appear in
[62, 66, 208].

Discussion and Related Literature
As remarked in [207, 208], there has been extensive work on consen-
sus techniques in the literature, starting with the foundational results
by [26, 84], which were of a different nature and did not respond to
streaming data arriving continuously at the agents, as is the case, for
instance, with the continuous arrival of data {dk(i),uk,i} in Exam-
ples 7.2–7.4. The original consensus formulation deals instead with the
problem of computing averages over graphs. This can be explained as
follows [26, 84, 241, 242]. Consider a collection of (scalar or vector)
measurements denoted by {w`, ` = 1, 2, . . . , N} available at the ver-
tices of a connected graph with N agents. The objective is to devise a
distributed algorithm that enables every agent to determine the average
value:

w
∆= 1

N

N∑
k=1

wk (7.32)

by interacting solely with its neighbors. When this occurs, we say that
the agents have reached consensus (or agreement) about w. We select
an N × N doubly-stochastic combination matrix A = [a`k]; a doubly-
stochastic matrix is one that has nonnegative elements and satisfies

AT1 = 1, A1 = 1 (7.33)

We assume the second largest-magnitude eigenvalue of A satisfies

|λ2(A)| < 1 (7.34)
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Using the combination coefficients {a`k}, each agent k then iterates
repeatedly on the data of its neighbors:

wk,i =
∑
`∈Nk

a`k w`,i−1, i ≥ 0, k = 1, 2, . . . , N (7.35)

starting from the boundary conditions w`,−1 = w` for all ` ∈ Nk.
The superscript i continues to denote the iteration index. Every agent
k in the network performs the same calculation, which amounts to
combining repeatedly, and in a convex manner, the state values of its
neighbors. It can then be shown that (see [26, 84] and [208, App.E]):

lim
i→∞

wk,i = w, k = 1, 2, . . . , N (7.36)

In this way, through the localized iterative process (7.35), the agents
are able to converge to the global average value, w.

Motivated by this elegant result, several works in the literature
(e.g., [8, 32, 52, 83, 128, 137, 138, 142, 174, 175, 179, 224, 242, 265])
proposed useful extensions of the original consensus construction (7.35)
to minimize aggregate costs of the form (5.19) or to solve distributed
estimation problems of the least-squares or Kalman filtering type. Some
of the earlier extensions involved the use of two separate time-scales: one
faster time-scale for performing multiple consensus iterations similar to
(7.35) over the states of the neighbors, and a second slower time-scale
for performing gradient vector updates or for updating the estimators
by using the result of the consensus iterations (e.g., [52, 83, 128, 138,
142, 179, 265]). An example of a two-time scale implementation would
be an algorithm of the following form:

w
(−1)
`,i−1 ←− w`,i−1, for all agents ` at iteration i− 1

for n = 0, 1, 2, . . . , J − 1 iterate:
w

(n)
k,i−1 =

∑
`∈Nk

a`kw
(n−1)
`,i−1 , for all k = 1, 2, . . . , N

end
wk,i = w

(J−1)
k,i−1 − µk ∇̂w∗Jk(wk,i−1)

(7.37)

If we compare the last equation in (7.37) with (7.9), we observe that the
variable w(J−1)

k,i−1 that is used in (7.37) to obtain wk,i is the result of J
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repeated applications of a consensus operation of the form (7.35) on the
iterates {w`,i−1}. The purpose of these repeated calculations is to ap-
proximate well the average of the iterates in the neighborhood of agent
k. These J repeated averaging operations need to be completed before
the availability of the gradient information for the last update step in
(7.37). In other words, the J averaging operations need to performed
at a faster rate than the last step in (7.37). Such two time-scale im-
plementations are a hindrance for real-time adaptation from streaming
data. The separate time-scales turn out to be unnecessary and this fact
was one of the motivations for the introduction of the single time-scale
diffusion strategies in [57, 58, 60, 61, 159, 160, 162, 163, 211].

Building upon a useful procedure for distributed optimization from
[242, Eq. (2.1)] and [32, Eq. (7.1)], more recent works proposed single
time-scale implementations for consensus strategies as well by using
an implementation similar to (7.9) — see, e.g., [46, Eq. (3)], [174, Eq.
(3)], [87, Eq. (19)], and [137, Eq.(9)]. These references, however, gener-
ally employ decaying step-sizes, µk(i) → 0, to ensure that the iterates
{wk,i} across all agents will converge almost-surely to the same value
(thus, reaching agreement or consensus), namely, they employ recur-
sions of the form:

wk,i =
∑
`∈Nk

a`k w`,i−1 − µk(i)∇̂w∗Jk(wk,i−1) (7.38)

or variations thereof, such as replacing µk(i) by some time-variant gain
matrix sequence, say, Kk,i:

wk,i =
∑
`∈Nk

a`k w`,i−1 − Kk,i · ∇̂w∗Jk(wk,i−1) (7.39)

As noted before, when diminishing step-sizes are used, adaptation is
turned off over time, which is prejudicial for learning purposes. For
this reason, we are instead setting the step-sizes to constant values in
(7.9) in order to endow the consensus iteration with continuous adap-
tation and learning abilities (and to enhance the convergence rate).
It turns out that some care is needed for consensus implementations
when constant step-sizes are used. The main reason is that, as explained
later in Sec. 10.6 and also Examples 8.4 and 10.1, and as alluded to
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earlier, instability can occur in consensus networks due to an inherent
asymmetry in the dynamics of the consensus iteration.

A second main reason for the introduction of cooperative strategies
of the diffusion type (7.22) and (7.23) has been to show that single
time-scale distributed learning from streaming data is possible, and
that this objective can be achieved under constant step-size adaptation
in a stable manner [60, 62, 69, 70, 159, 160, 162, 163, 211, 277] — see
also Chapters 9–11 further ahead; the diffusion strategies further allow
A to be left-stochastic and permit larger modes of cooperation than
doubly-stochastic policies. The CTA diffusion strategy (7.22) was first
introduced for mean-square-error estimation problems in [159, 160, 163,
211]. The ATC diffusion structure (7.23), with adaptation preceding
combination, appeared in the work [57] on adaptive distributed least-
squares schemes and also in the works [58, 60–62] on distributed mean-
square-error and state-space estimation methods. The CTA structure
(7.18) with an iteration dependent step-size that decays to zero, µ(i)→
0, was employed in [153, 196, 226] to solve distributed optimization
problems that require all agents to reach agreement. The ATC form
(7.23), also with an iteration dependent sequence µ(i) that decays to
zero, was employed in [34, 227] to ensure almost-sure convergence and
agreement among agents.

There has also been works on applying instead the alternating di-
rection method of multipliers (ADMM) [44] to the design of consensus-
type algorithms in [165, 216]. To enforce agreement among the agents,
these last two references impose the requirement that the iterates at
the agents should match each other. By doing so, the authors arrive
at an implementation that necessitates the fine tuning of several pa-
rameters and whose performance is sensitive to the values of these pa-
rameters. Specifically, reference [216] considers networks where agents
sense real-valued data {dk(i),uk,i} that are related via the regression
model dk(i) = uk,iw

o+vk(i). The individual cost associated with each
agent is again the mean-square-error cost, Jk(w) = E (dk(i)− uk,iw)2.
The network model used in [216] is not homogeneous and assumes a
special structure. The network is assumed to consist of two types of
nodes. One type involves “regular” agents, indexed by k, where data
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samples {dk(i),uk,i} arrive sequentially. The second type of nodes in-
volves “bridge” agents, indexed by b, which do not receive data and
their purpose is to connect the regular agents. The set of bridge nodes
is denoted by B. The two classes of nodes are required to be placed in
a particular manner in the network, namely, (i) for every regular agent
k, there should exist at least one bridge node b ∈ B such that b ∈ Nk,
and (ii) for every two bridge nodes, b1 and b2, there should exist a path
connecting them that is devoid of edges that link two non-bridge nodes.
Then, the problem of optimizing (7.1) is transformed into the following
equivalent problem on this particular topology:

min
{wk,wb}

N∑
k=1

Jk(w)

subject to wk = wb, b ∈ B, k ∈ Nb
(7.40)

This problem is subsequently solved using an augmented Lagrangian
(or ADMM) technique and it leads to the following distributed algo-
rithm, which involves the propagation of an additional dual variable,
denoted here by zbk,i:

yk,i−1 = µζ|Nk|wk,i−1 + µ
∑
b∈Nk

(
zbk,i−1 − ζwb,i−1

)
(7.41)

wk,i = wk,i−1 + 2µuT
k,i(dk(i)− uk,iwk,i−1)− yk,i−1 (7.42)

wb,i = 1
ζ|Nb|

∑
k∈Nb

(zbk,i−1 + ζwk,i) (7.43)

zbk,i = zbk,i−1 + µb(wk,i −wb,i) (7.44)

where {µ, µb, ζ} are step-size parameters and |Nk| denotes the cardi-
nality of set Nk. It is clear from the above equations that the struc-
ture of the resulting solution is more complex than the consensus
and diffusion solutions from Examples 7.2 and 7.3. Observe in par-
ticular that the above algorithm requires the careful tuning of three
parameters {µ, µb, ζ}, as well as the propagation of several vectors,
{yk,i−1,wb,i, z

b
k,i,wk,i}. Moreover, the implementation requires a par-

ticular network structure with both regular and bridge nodes satisfying
certain topological constraints. All these requirements are not needed in
the consensus and diffusion solutions discussed earlier in Examples 7.2
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and 7.3. More importantly, by explicitly incorporating the equality con-
straints (7.40) into the problem formulation, the resulting effect ends
up limiting the learning abilities of the agents in general. This is be-
cause if data sensed by one agent is already reflecting drifts in the
model while the data at the other agents is not, then by requiring the
iterates to be matching can hinder the ability of the better informed
agent to learn more thoroughly. One of the advantages of the consensus
(7.9) and diffusion strategies (7.18)–(7.19) studied in this work is that,
as the discussion in future chapters will reveal, they naturally lead to
an equalization effect across the agents without added complexity —
see, e.g., the explanation after future expression (11.138).

Finally, we remark that the distributed strategies described so far in
this work are well-suited for cooperative networks where agents interact
with each other to optimize an aggregate cost function. There are of
course situations in which agents may behave in a selfish manner. In
these cases, agents would participate in the collaborative process and
share information with their neighbors only if cooperation is deemed
beneficial to them (e.g., [102, 271]). We do not study this situation in
the current work and focus instead on cooperative networks.



8
Evolution of Multi-Agent Networks

In this chapter we initiate our examination of the behavior and perfor-
mance of multi-agent networks for adaptation, learning, and optimiza-
tion. We divide the analysis in several consecutive chapters in order to
emphasize in each chapter some relevant aspects that are unique to the
networked solution. As the presentation will reveal, the study of the be-
havior of networked agents is more challenging than in the single-agent
and centralized modes of operation due to at least two factors: (a) the
coupling among interacting agents and (b) the fact that the networks
are generally sparsely connected. When all is said and done, the results
will help clarify the effect of network topology on performance and will
present tools that enable the designer to compare various strategies
against each other and against the centralized solution.

8.1 State Recursion for Network Errors

We pursue the performance analysis of networked solutions by
examining how the error vectors across all agents evolve over time
by means of a state recursion. We shall arrive at the network state
evolution by collecting the error vectors from across all agents into

470
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a single vector and by studying how the first, second, and fourth-
order moments of this vector evolves over time. We shall carry out
the analysis in a unified manner for both classes of consensus and
diffusion algorithms by following the energy conservation arguments
of [70, 71, 205, 206, 208, 277, 278]. We motivate the analysis by
considering first, in this initial section, an illustrative example from
[207, 208] dealing with MSE networks of the form described earlier
in Example 6.3; these networks involve quadratic costs that share a
common minimizer. Following the example, we extend the framework
to more general costs in subsequent sections and chapters.

Example 8.1 (Error dynamics over MSE networks). We consider the MSE net-
work of Example 6.3, where each agent k observes realizations of zero-mean
wide-sense jointly stationary data {dk(i),uk,i}. The regression process uk,i
is 1 × M and its covariance matrix is denoted by Ru,k = Eu∗k,iuk,i > 0.
The measured data are assumed to be related to each other via the linear
regression model:

dk(i) = uk,iw
o + vk(i), k = 1, 2, . . . , N (8.1)

where wo ∈ CM is the unknown M × 1 column vector that the agents wish
to estimate. Moreover, the process vk(i) is a zero-mean wide-sense stationary
noise process with power σ2

v,k and assumed to be independent of u`,j for all
i, j, k, and `. We associate with each agent the mean-square-error (quadratic)
cost

Jk(w) = E |dk(i)− uk,iw|2 (8.2)

We explained in Example 6.1 that this case corresponds to a situation where
all individual costs, Jk(w), have the same minimizer, which occurs at the
location

wok = wo = R−1
u,krdu,k (8.3)

Moreover, the Hessian matrix of each Jk(w) is block diagonal and given by

∇2
wJk(w) =

[
Ru,k 0

0 RT
u,k

]
(8.4)

We shall comment on the significance of this block diagonal structure after
the example when we explain how to handle situations involving more general
cost functions with Hessian matrices that are not necessarily block diagonal
(or even independent of w, as is the case with (8.4)).
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The update equations for the non-cooperative, consensus, and diffusion
strategies are given by (3.13), (7.13), and (7.22)–(7.23). We list them in
Table 8.1 for ease of reference.

Table 8.1: Update equations for non-cooperative, diffusion, and consensus
strategies over MSE networks.

algorithm update equations

non-cooperative wk,i = wk,i−1 + µku
∗
k,i[dk(i)− uk,iwk,i−1]

consensus

 ψk,i−1 =
∑
`∈Nk

a`k w`,i−1

wk,i = ψk,i−1 + µku
∗
k,i[dk(i)− uk,iwk,i−1]

CTA diffusion

 ψk,i−1 =
∑
`∈Nk

a`k w`,i−1

wk,i = ψk,i−1 + µku
∗
k,i[dk(i)− uk,iψk,i−1]

ATC diffusion


ψk,i = wk,i−1 + µku

∗
k,i[dk(i)− uk,iwk,i−1]

wk,i =
∑
`∈Nk

a`k ψ`,i

We capture the various strategies by a single unifying description by con-
sidering the following general algorithmic structure in terms of three sets of
combination coefficients denoted by {ao,`k, a1,`k, a2,`k}:

φk,i−1 =
∑
`∈Nk

a1,`kw`,i−1

ψk,i =
∑
`∈Nk

ao,`k φ`,i−1 + µku
∗
k,i

[
dk(i)− uk,iφk,i−1

]
wk,i =

∑
`∈Nk

a2,`kψ`,i

(8.5)

In (8.5), the quantities {φk,i−1,ψk,i} denote M × 1 intermediate variables,
while the nonnegative entries of the N ×N matrices:

Ao
∆= [ao,`k], A1

∆= [a1,`k], A2
∆= [a2,`k] (8.6)

are assumed to satisfy the same conditions (7.10) and, hence, the ma-
trices {Ao, A1, A2} are left-stochastic. Any of the combination weights
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{ao,`k, a1,`k, a2,`k} is zero whenever ` /∈ Nk, where Nk denotes the set of
neighbors of agent k. Different choices for {Ao, A1, A2} correspond to differ-
ent strategies, as the following list reveals and where we are introducing the
matrix product P = A1AoA2:

non-cooperative: A1 = Ao = A2 = IN −→ P = IN (8.7)
consensus: Ao = A, A1 = IN = A2 −→ P = A (8.8)

CTA diffusion: A1 = A, A2 = IN = Ao −→ P = A (8.9)
ATC diffusion: A2 = A, A1 = IN = Ao −→ P = A (8.10)

We associate with each agent k the following three errors:

w̃k,i
∆= wo −wk,i (8.11)

ψ̃k,i
∆= wo −ψk,i (8.12)

φ̃k,i−1
∆= wo − φk,i−1 (8.13)

which measure the deviations from the desired solution wo. Subtracting wo
from both sides of the equations in (8.5) and using (8.1) we get

φ̃k,i−1 =
∑
`∈Nk

a1,`k w̃`,i−1

ψ̃k,i =
∑
`∈Nk

ao,`k φ̃`,i−1 − µku∗k,iuk,iφ̃k,i−1 − µku∗k,ivk(i)

w̃k,i =
∑
`∈Nk

a2,`k ψ̃`,i

(8.14)

In a manner similar to (3.126), the gradient noise process at each agent k is
given by

sk,i(φk,i−1) =
(
Ru,k − u∗k,iuk,i

)
φ̃k,i−1 − u∗k,ivk(i) (8.15)

In order to examine the evolution of the error dynamics across the entire
network, we collect the error vectors from all agents into N × 1 block error
vectors (whose individual entries are of size M × 1 each):

w̃i
∆=


w̃1,i
w̃2,i
...

w̃N,i

 , ψ̃i
∆=


ψ̃1,i
ψ̃2,i
...

ψ̃N,i

 , φ̃i−1
∆=


φ̃1,i−1
φ̃2,i−1

...
φ̃N,i−1

 (8.16)

The block quantities {ψ̃i, φ̃i−1, w̃i} represent the state of the errors across
the network at time i. Motivated by the last term in the second equation in
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(8.14), and by the gradient noise terms (8.15), we also introduce the following
N × 1 column vectors whose entries are of size M × 1 each:

zi
∆=


u∗1,iv1(i)
u∗2,iv2(i)

...
u∗N,ivN (i)

 , si
∆=


s1,i(φ1,i−1)
s2,i(φ2,i−1)

...
sN,i(φN,i−1)

 (8.17)

We further introduce the Kronecker products

Ao
∆= Ao ⊗ IM , A1

∆= A1 ⊗ IM , A2
∆= A2 ⊗ IM (8.18)

The matrix Ao is an N × N block matrix whose (`, k)−th block is equal
to ao,`kIM . Likewise, for A1 and A2. In other words, the Kronecker product
transformations defined by (8.18) simply replace the matrices {Ao, A1, A2} by
block matrices {Ao,A1,A2} where each entry {ao,`k, a1,`k, a2,`k} in the origi-
nal matrices is replaced by the diagonal matrices {ao,`kIM , a1,`kIM , a2,`kIM}.

We also introduce the following N × N block diagonal matrices, whose
individual entries are of size M ×M each:

M ∆= diag{ µ1IM , µ2IM , . . . , µNIM } (8.19)

Ri
∆= diag

{
u∗1,iu1,i, u

∗
2,iu2,i, . . . , u

∗
N,iuN,i

}
(8.20)

From (8.14), we can easily conclude that the block network variables (8.16)
satisfy the relations:

φ̃i−1 = AT
1 w̃i−1

ψ̃i =
[
AT
o − MRi

]
φ̃i−1 − Mzi

w̃i = AT
2 ψ̃i

(8.21)

so that the network weight error vector, w̃i, ends up evolving according to
the following stochastic state-space recursion:

w̃i = AT
2
(
AT
o −MRi

)
AT

1 w̃i−1 − AT
2Mzi, i ≥ 0 (distributed) (8.22)

For comparison purposes, if each agent operates individually and uses the non-
cooperative strategy (3.13), then the weight error vector across all N agents
would instead evolve according to the following recursion:

w̃i = (IMN −MRi) w̃i−1 − Mzi, i ≥ 0 (non-cooperative) (8.23)

where the matrices {Ao,A1,A2} do not appear any longer, and with a block
diagonal coefficient matrix (IMN −MRi).
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For later reference, it is straightforward to verify from (8.15) that

si = (R−Ri)φ̃i−1 − zi (8.24)

so that recursion (8.22) can be equivalently rewritten in the following form in
terms of the gradient noise vector, si, defined by (8.17):

w̃i = B w̃i−1 + AT
2Msi (8.25)

where we introduced the constant matrices

B ∆= AT
2
(
AT
o −MR

)
AT

1 (8.26)

R ∆= ERi = diag{Ru,1, Ru,2, . . . , Ru,N} (8.27)

�

Example 8.2 (Mean error behavior). We continue with the formulation of Ex-
ample 8.1. In mean-square-error analysis, we are interested in examining how
the mean and variance of the weight-error vector evolve over time, namely,
the quantities E w̃i and E‖w̃i‖2. If we refer back to the MSE data model de-
scribed in Example 6.3, where the regression data {uk,i} were assumed to be
temporally white and independent over space, then the stochastic matrix Ri

appearing in (8.22)–(8.23) becomes statistically independent of w̃i−1. There-
fore, taking expectations of both sides of these recursions, and invoking the
fact that uk,i and vk(i) are also independent of each other and have zero
means (so that Ezi = 0), we conclude that the mean-error vectors evolve
according to the following recursions [207]:

E w̃i = B (E w̃i−1) (distributed) (8.28)
E w̃i = (IMN −MR) (E w̃i−1) (non-cooperative) (8.29)

The matrix B controls the dynamics of the mean weight-error vector for the
distributed strategies. Observe, in particular, from (8.7)–(8.10) that B reduces
to the following forms for the various strategies (non-cooperative (3.13), con-
sensus (7.13), CTA diffusion (7.22), and ATC diffusion (7.23)):

Bncop = IMN −MR (8.30)
Bcons = AT −MR (8.31)
Batc = AT (IMN −MR) (8.32)
Bcta = (IMN −MR)AT (8.33)

where A = A⊗ IM . �
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Example 8.3 (MSE networks with uniform agents). We continue with Exam-
ple 8.2 and show how the results simplify when all agents employ the same
step-size, µk ≡ µ, and observe regression data with the same covariance ma-
trix, Ru,k ≡ Ru. Note first that, in this case, we can expressM and R from
(8.19) and (8.27) in Kronecker product form as follows:

M = µIN ⊗ IM , R = IN ⊗Ru (8.34)

so that expressions (8.30)–(8.33) reduce to
Bncop = IN ⊗ (IM − µRu)
Bcons = AT ⊗ IM − µ(IM ⊗Ru)
Batc = AT ⊗ (IM − µRu)
Bcta = AT ⊗ (IM − µRu)

(8.35)

For example, starting from (8.32) we have

Batc = AT (IMN −MR)
= (A⊗ IM )T [(IN ⊗ IM ) − (µIN ⊗ IM )(IN ⊗Ru)]
= (A⊗ IM )T [(IN ⊗ IM ) − µ(IN ⊗ IM )(IN ⊗Ru)]
= (A⊗ IM )T [(IN ⊗ IM ) − µ(IN ⊗Ru)]
= (AT ⊗ IM ) [IN ⊗ (IM − µRu)]
= AT ⊗ (IM − µRu) (8.36)

where we used properties of the Kronecker product operation from Table F.1
in the appendix. Observe from (8.35) that Batc = Bcta, so we denote these
matrices by Bdiff whenever appropriate. Furthermore, using properties of the
eigenvalues of Kronecker products of matrices, it can be verified that theMN
eigenvalues of the above B matrices are given by the following expressions in
terms of the eigenvalues of the component matrices {A,Ru} for k = 1, 2, . . . N
and m = 1, 2, . . . ,M :

λ(Bdiff) = λk(A) [1− µλm(Ru)] (8.37)
λ(Bcons) = λk(A)− µλm(Ru) (8.38)
λ(Bncop) = 1− µλm(Ru) (8.39)

The expressions for λ(Bdiff) and λ(Bncop) follow directly from the properties
of Kronecker products — see Table F.1. The expression for λ(Bcons) can be
justified as follows. Let xk and ym denote right eigenvectors for AT and Ru
corresponding to the eigenvalues λk(A) and λm(Ru), respectively. Then, we
again invoke properties of Kronecker products from Table F.1 in the appendix
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to note that

Bcons(xk ⊗ ym) =
[
AT ⊗ IM − µ(IM ⊗Ru)

]
(xk ⊗ ym)

= (ATxk ⊗ ym) − µ(xk ⊗Ruym)
= (λk(A)xk ⊗ ym) − µ(xk ⊗ λm(Ru)ym)
= λk(A)(xk ⊗ ym) − µλm(Ru)(xk ⊗ ym)
= (λk(A)− µλm(Ru))(xk ⊗ ym) (8.40)

so that xk⊗ ym is an eigenvector for Bcons with eigenvalue λk(A)−µλm(Ru),
as claimed.

�

Example 8.4 (Potential mean instability of consensus networks). Consensus
strategies can become unstable when used for adaptation purposes [207, 248].
This undesirable effect is already reflected in expressions (8.37)–(8.39). In par-
ticular, observe that the eigenvalues of A appear multiplying (1− µλm(Ru))
in expression (8.37) for diffusion. As such, and since ρ(A) = 1 for any left-
stochastic matrix, we conclude for this case of uniform agents that

ρ(Bdiff) = ρ(Bncop) (8.41)

It follows that, regardless of the choice of the combination policy A, the dif-
fusion strategies will be stable in the mean (i.e., E w̃i will converge asymp-
totically to zero) whenever the individual non-cooperative agents are stable
in the mean:

individual agents stable =⇒ diffusion networks stable (8.42)

The same conclusion is not true for consensus networks; the individual agents
can be stable and yet the consensus network can become unstable. This is
because λk(A) appears as an additive (rather than multiplicative) term in
(8.38) (see [214, 248] and also future Examples 10.1 and 10.2):

individual agents stable ; consensus networks stable (8.43)

The fact that the combination matrix AT appears in an additive form in (8.31)
is the result of the asymmetry that was mentioned earlier following (7.16)
in the update equation for the consensus strategy. In contrast, the update
equations for the diffusion strategies lead to AT appearing in a multiplicative
form in (8.32)–(8.33). A more detailed example with a supporting simulation
is discussed later in Example 10.2.

�
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8.2 Network Limit Point and Pareto Optimality

Motivated by the discussion in the previous section on MSE networks,
we now examine the evolution of distributed networks for the mini-
mization of aggregate costs of the form

Jglob(w) ∆=
N∑
k=1

Jk(w) (8.44)

where the individual costs, Jk(w), and the aggregate cost are assumed
to satisfy the conditions stated earlier in Assumption 6.1. We denote
the unique minimizer of Jglob(w) by wo; it is the unique solution to the
algebraic equation:

∇w Jglob(wo) = 0 ⇐⇒
N∑
k=1
∇w Jk(wo) = 0 (8.45)

In the general case when the Jk(w) are not necessarily quadratic in
w, the Hessian matrices,∇2

wJk(w), need not be block diagonal anymore,
as was the case with (8.4). Moreover, minimizers, wok, of the individ-
ual costs, Jk(w), need not agree with the global minimizer, wo. Two
complications arise as a result of these facts and they will need to be
addressed. First, because the Hessian matrices are not generally block
diagonal, it will turn out that the error quantities {w̃k,i, ψ̃k,i, φ̃k,i−1},
which were introduced in Example 8.1 and used to arrive at the state-
space recursion (8.22), will not be sufficient anymore to fully capture
the dynamics of the network in the general case for complex data. Ex-
tended versions of these vectors will need to be introduced. Second, and
because the individual minimizers and the global minimizer are gen-
erally different, the distributed strategies will not converge to wo but
to another limit point, which we shall denote by w? and whose value
will be seen to be dependent on the network topology in an interesting
way. We will identify w? and explain under what conditions w? and wo
agree with each other.

Unified Description
To begin with, and for ease of reference, we collect in Table 8.2 the
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Table 8.2: Update equations for non-cooperative, diffusion, and consensus
strategies.

algorithm update equations

non-cooperative wk,i = wk,i−1 − µk∇̂w∗Jk (wk,i−1)

consensus

 ψk,i−1 =
∑
`∈Nk

a`k w`,i−1

wk,i = ψk,i−1 − µk∇̂w∗Jk (wk,i−1)

CTA diffusion

 ψk,i−1 =
∑
`∈Nk

a`k w`,i−1

wk,i = ψk,i−1 − µk∇̂w∗Jk
(
ψk,i−1

)
ATC diffusion

 ψk,i = wk,i−1 − µk∇̂w∗Jk(wk,i−1)
wk,i =

∑
`∈Nk

a`k ψ`,i

equations that describe the non-cooperative (5.76), consensus (7.9),
and diffusion strategies (7.18) and (7.19).

In a manner similar to (8.5), we can again describe these strategies
by means of a single unifying description as follows:

φk,i−1 =
∑
`∈Nk

a1,`k w`,i−1

ψk,i =
∑
`∈Nk

ao,`k φ`,i−1 − µk ∇̂w∗Jk
(
φk,i−1

)
wk,i =

∑
`∈Nk

a2,`k ψ`,i

(8.46)

where {φk,i−1,ψk,i} denote M × 1 intermediate variables, while the
nonnegative entries of the N × N matrices Ao = [ao,`k], A1 = [a1,`k],
and A2 = [a2,`k] satisfy the same conditions (7.10) and, hence, the
matrices {Ao, A1, A2} are left-stochastic

AT
o 1 = 1, AT

1 1 = 1, AT
2 1 = 1 (8.47)

We assume that each of these combination matrices defines an underly-
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ing connected network topology so that none of their rows are identically
zero. Again, different choices for {Ao, A1, A2} correspond to different
distributed strategies, as indicated earlier by (8.7)–(8.10), and where
the left-stochastic matrix P represents the product:

P
∆= A1AoA2 (8.48)

Perron Eigenvector
We assume that P is a primitive matrix. For example, this condition
is automatically guaranteed if the combination matrix A in the selec-
tions (8.8)–(8.10) is primitive, which in turn is guaranteed for strongly-
connected networks. It then follows from the Perron-Frobenius Theo-
rem [27, 113, 189] that we can characterize the eigen-structure of P in
the following manner — see Lemma F.4 in the appendix:

(a) The matrix P has a single eigenvalue at one.

(b) All other eigenvalues of P are strictly inside the unit circle so
that ρ(P ) = 1.

(c) With proper sign scaling, all entries of the right-eigenvector of P
corresponding to the single eigenvalue at one are positive. Let p
denote this right-eigenvector, with its entries {pk} normalized to
add up to one, i.e.,

Pp = p, 1Tp = 1, pk > 0, k = 1, 2, . . . , N (8.49)

We refer to p as the Perron eigenvector of P .

Weighted Aggregate Cost
Following [68–70], we next introduce the vector:

q
∆= diag{µ1, µ2, . . . , µN}A2p (8.50)

It is clear that all entries of q are strictly positive since each µk > 0 and
the entries of A2p are all positive. The latter statement follows from
the fact that each entry of A2p is a linear combination of the positive
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entries of p. Therefore, if we denote the individual entries of the vector
q by {qk}, then it holds that

qk > 0, k = 1, 2, . . . , N (8.51)

We also represent the step-sizes as scaled multiples of the same factor
µmax, namely,

µk
∆= τk µmax, k = 1, 2, . . . , N (8.52)

where 0 < τk ≤ 1. In this way, it becomes clear that all step-sizes
become smaller as µmax is reduced in size.

We further introduce the weighted aggregate cost

Jglob,?(w) ∆=
N∑
k=1

qkJk(w) (8.53)

Since all the Jk(w) are convex in w, then the strong convexity of
Jglob(w) guarantees the strong convexity of Jglob,?(w). Indeed, note
that

∇2
w J

glob,?(w) =
N∑
k=1

qk∇2
wJk(w)

≥ qmin ·
(

N∑
k=1
∇2
wJk(w)

)
(6.13)
≥ qmin

νd
h
IhM > 0 (8.54)

where qmin is the smallest entry of q and is strictly positive; moreover,
h = 1 for real data and h = 2 for complex data. It follows that Jglob,?(w)
will have a unique global minimum, which we denote by w? and it
satisfies:

∇w Jglob,?(w?) = 0 ⇐⇒
N∑
k=1

qk∇w Jk(w?) = 0 (8.55)

In general, the minimizers {wo, w?} of Jglob(w) and Jglob,?(w), respec-
tively, are different. However, they will coincide in some important cases
such as:
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(a) When the {qk} are equal to each other. This situation occurs,
for example, when µk ≡ µ across all agents and the matri-
ces {Ao, A1, A2} are doubly-stochastic (in which case the Perron
eigenvector is given by p = 1/N). A second situation is discussed
in Example 8.10.

(b) When the individual costs, Jk(w), are all minimized at the same
location, as was the case with the MSE networks of Example 8.1.

The arguments in future chapters will establish that the location w?

serves as the limit point for the networked solution in the mean-square-
error sense. Specifically, if we now measure (or define) the errors relative
to w?, say, as:

w̃k,i
∆= w? −wk,i, k = 1, 2, . . . , N (8.56)

then we will be arguing later (see future expression (9.11)) that:

lim sup
i→∞

E‖w̃k,i‖2 = O(µmax) (8.57)

so that the size of the (variance of the) error is in the order of µmax
and can be made arbitrarily small for smaller step-sizes. In particular,
by calling upon Markov’s inequality and using an argument similar to
(4.53), we would be able to conclude that each wk,i approaches w?
asymptotically with high probability for sufficiently small step-sizes.

Example 8.5 (Normalization of weights in aggregate cost). If desired, we may
normalize the positive weighting coefficients {qk} defined by (8.50) to have
their sum add up to one, say, by introducing instead the coefficients:

q̄k
∆= qk/

N∑
k=1

qk (8.58)

and replacing (8.53) by the convex combination:

J̄glob,?(w) ∆=
N∑
k=1

q̄kJk(w) (8.59)

Clearly, both aggregate functions, Jglob,?(w) defined by (8.53) and J̄glob,?(w),
are scaled multiples of each other and, hence, their unique minimizers occur
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at the same location w?. One advantage of working with the normalized ag-
gregate cost (8.59) is that when all individual costs happen to coincide, say,
Jk(w) ≡ J(w), then expression (8.59) reduces to

J̄glob,?(w) = J(w) (8.60)

whereas Jglob,?(w) will be a scaled multiple of J(w).
Since Jglob,?(w) and J̄glob,?(w) have the same global minimizer w?, we will

continue to work with the un-normalized definition (8.53) for the remainder
of this chapter, and also in Chapters 9 and 10 where we examine the stability
of multi-agent networks and the convergence of their iterates towards w?. We
will find it more convenient to employ the normalized representation (8.59) in
Chapter 11 when we examine the excess-risk performance of these networks.

�

Example 8.6 (Weighted aggregate cost for consensus and diffusion). The ex-
pression for q simplifies for the particular choices of {Ao, A1, A2} shown in
(8.7)–(8.10) for consensus and diffusion, which involve a single left-stochastic
and primitive combination matrix A. In all three cases we obtain P = A so
that the vector p is the Perron eigenvector that is associated with A:

Ap = p, 1Tp = 1, pk > 0 (8.61)

Moreover, expression (8.50) reduces to

qk
∆= µkpk > 0, k = 1, 2, . . . , N (8.62)

so that each qk is simply a scaled multiple of the corresponding pk. The
weighted aggregate cost (8.53) then becomes

Jglob,?(w) ∆=
N∑
k=1

µkpkJk(w) (8.63)

When A is doubly stochastic so that pk = 1/N , we obtain

Jglob,?(w) ∆= µmax

N

(
N∑
k=1

τkJk(w)
)

(8.64)

where we used µk = τk µmax. It is seen that even the use of different step-sizes
across the agents is sufficient to steer the limit point away from wo.

�

Interpretation as Pareto Solution
As already explained in [67, 69], the unique vector w? that solves (8.55)
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can be interpreted as corresponding to a Pareto optimal solution for
the collection of convex functions {Jk(w)}. To explain why this is the
case, let us first review briefly the concept of Pareto optimality.

Recall that we are denoting by wok the minimizers for the individual
costs, Jk(w). In general, the minimizers {wok, k = 1, 2, . . . , N} are
distinct from each other. In order for cooperation among the agents
to be meaningful, we need to seek some solution vector w? that is
“optimal” in some sense for the entire network. One useful concept of
optimality is the one known as Pareto optimality (see, e.g., [45, 120,
272]). A solution w? is said to be Pareto optimal for all N agents if
there does not exist any other vector, w•, that dominates w?, i.e., that
satisfies the following two conditions:

Jk(w•) ≤ Jk(w?), for all k ∈ {1, 2, . . . , N} (8.65)
Jko(w•) < Jko(w?), for at least one ko ∈ {1, 2, . . . , N} (8.66)

In other words, any other vector w• that improves one of the costs, say,
Jko(w•) < Jko(w?), will necessarily degrade the performance of some
other cost, i.e., Jk(w•) > Jk(w?) for some k 6= ko. In this way, solutions
w? that are Pareto optimal are such that no agent in the cooperative
network can have its performance improved by moving away from w?

without degrading the performance of some other agent.
To illustrate this concept, let us consider an example from [69]

corresponding to N = 2 agents with the argument w ∈ R being real-
valued and scalar. Let the set

S ∆= { J1(w), J2(w) } ⊂ R2 (8.67)

denote the achievable cost values over all feasible choices of w ∈ R;
each point S ∈ S belongs to the two-dimensional space R2 and
represents values attained by the cost functions {J1(w), J2(w)} for a
particular w. The shaded areas in Figure 8.1 represent the set S for
two situations of interest. The plot on the left represents the situation
in which the two cost functions J1(w) and J2(w) achieve their minima
at the same location, namely, wo1 = wo2. This location is indicated by
the point So = {J1(wo); J2(wo)} in the figure, where wo denotes the
common minimizer. In comparison, the plot on the right represents the
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situation in which the two cost functions J1(w) and J2(w) achieve their
minima at two distinct locations, wo1 and wo2. Point S1 in the figure
indicates the location where J1(w) attains its minimum value, while
point S2 indicates the location where J2(w) attains its minimum value.
In this case, the two cost functions do not have a common minimizer.
It is easy to verify that all points that lie on the heavy curve between
points S1 and S2 are Pareto optimal solutions for {J1(w), J2(w)}. For
example, starting at some arbitrary point B on the curve, if we want
to reduce the value of J1(w) without increasing the value of J2(w),
then we will need to move out of the achievable set S towards point
C, which is not feasible. The alternative choice to reducing the value
of J1(w) is to move from B on the curve to another Pareto optimal
point, such as point D. This move, while feasible, it would increase the
value of J2(w). In this way, we would need to trade the value of J2(w)
for J1(w). For this reason, the curve from S1 to S2 is called the opti-
mal tradeoff curve (or optimal tradeoff surface when N > 2) [45, p.183].

Figure 8.1: Pareto optimal points for the case N = 2. In the figure on the left,
point S denotes the optimal point where both cost functions are minimized
simultaneously. In the figure on the right, all points that lie on the heavy
boundary curve are Pareto optimal solutions.
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As we see from the tradeoff curve in Figure 8.1, Pareto optimal
solutions are generally non-unique. One useful method to determine a
Pareto optimal solution is a scalarization technique, whereby an aggre-
gate cost function is first formed as the weighted sum of the component
convex cost functions as follows [45, 272]:

Jglob,π(w) ∆=
N∑
k=1

πk Jk(w) (8.68)

where the {πk} are positive scalars. It is shown in [45, p.183] that the
unique minimizer, which we denote by wπ, for the above aggregate
cost corresponds to a Pareto optimal solution for the collection of
convex costs {Jk(w), k = 1, 2, . . . , N}. Moreover, by varying the
values of the {πk}, we are able to determine different Pareto optimal
solutions from the tradeoff curve. If we now compare expression (8.68)
with the earlier aggregate cost (8.53), we conclude that the solution
w? can be interpreted as the Pareto optimal solution that corresponds
to selecting the parameters πk = qk.

Example 8.7 (Pareto optimal solutions for mean-square-error costs). We illus-
trate the concept of Pareto optimality for quadratic cost functions of the form:

Jk(w) = σ2
d − r∗du,kw − w∗rdu,k + w∗Ru,kw, k = 1, 2, . . . , N (8.69)

where w ∈ CM , Ru,k > 0, and rdu,k ∈ CM . By setting ∇w Jk(w) = 0, we find
that the minimizer of each Jk(w) occurs at the vector location

wok = R−1
u,krdu,k (8.70)

Since the moments {rdu,k, Ru,k} can differ across the agents, these individ-
ual minimizers need not coincide. Pareto optimal solutions can be found by
minimizing the aggregate cost function (8.68) for any collection of weights
{πk > 0}. Setting the gradient vector of Jglob,π(w) to zero we arrive at the
following expression for Pareto optimal solutions in this case:

wπ =
(

N∑
k=1

πkRu,k

)−1( N∑
k=1

πk rdu,k

)
(8.71)
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Using (8.70), the above Pareto optimal solution can be expressed as the com-
bination:

wπ =
N∑
k=1

Bk w
o
k (8.72)

where

Bk
∆=
(

N∑
`=1

π`Ru,`

)−1

(πkRu,k) , k = 1, 2, . . . , N (8.73)

Observe that the matrix coefficients {Bk} satisfy:

Bk > 0,
N∑
k=1

Bk = IM (8.74)

so that expression (8.72) amounts to a convex combination calculation.

Figure 8.2: Two quadratic cost functions of a scalar real parameter w with
minima at locations w = wo1 and w = wo2. As shown by (8.75), the set of
Pareto optimal solutions in this case consists of all parameters w within the
interval w ∈ (wo1, wo2).

Figure 8.2 illustrates this conclusion for the case of two cost functions
(N = 2) and a scalar parameter w ∈ R. In this case, we denote the covariance
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matrices {Ru,1, Ru,2} by the positive scalars {σ2
u,1, σ

2
u,2} so that expression

(8.72) becomes

wπ =
(

π1σ
2
u,1

π1σ2
u,1 + π2σ2

u,2

)
wo1 +

(
π2σ

2
u,2

π1σ2
u,1 + π2σ2

u,2

)
wo2 (8.75)

Observe that the set of Pareto optimal solutions defined by (8.75) consists of
convex combinations of {wo1, wo2}.

�

Example 8.8 (Pareto optimal solutions for MSE networks). Let us consider a
variation of the MSE networks defined in Example 6.3 where the data model
at each agent is now assumed to be given by:

dk(i) = uk,iw
o
k + vk(i) (8.76)

with the model vector wok being possibly different at the various agents. If we
multiply both sides of the above equation by u∗k,i and take expectations, we
find that wok satisfies

rdu,k = Ru,kw
o
k, k = 1, 2, . . . , N (8.77)

in terms of the second-order moments:

rdu,k = Edk(i)u∗k,i, Ru,k = Eu∗k,iuk,i (8.78)

The individual cost function associated with each agent k continues to be the
mean-square-error cost, Jk(w) = E |dk(i)− uk,iw|2, so that

∇w Jk(w) = Ru,kw − rdu,k
(8.77)= Ru,k(w − wok) (8.79)

We assume that all agents in the network are running either the consensus
strategy (7.14) or the diffusion strategy (7.22) or (7.23). These strategies
correspond to the choices {Ao, A1, A2} shown earlier in (8.7)–(8.10) in terms
of a single combination matrix A, namely,

consensus: Ao = A, A1 = IN = A2 (8.80)
CTA diffusion: A1 = A, A2 = IN = Ao (8.81)
ATC diffusion: A2 = A, A1 = IN = Ao (8.82)

In these cases, the Perron eigenvector p defined by (8.49) will correspond to
the Perron eigenvector associated with A:

Ap = p, 1Tp = 1, pk > 0 (8.83)
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Consequently, the entries qk defined by (8.50) will reduce to

qk = µkpk (8.84)

The resulting Pareto optimal solution, w?, is given by the unique solution to
(8.55), which reduces to the following expression in the current scenario:

N∑
k=1

µkpkRu,k(w? − wok) = 0 (8.85)

or, equivalently,

w? =
(

N∑
k=1

µkpkRu,k

)−1 ( N∑
k=1

µkpkRu,kw
o
k

)
(8.86)

If we assume that the regression covariance matrices are of the form Ru,k =
σ2
u,kIM , for some variances σ2

u,k > 0, then the above expression simplifies to
the convex combination:

w? =
N∑
k=1

πkw
o
k (8.87)

where the scalar combination coefficients, {πk}, are nonnegative, add up to
one, and are given by:

πk
∆= µkpkσ

2
u,k

(
N∑
k=1

µkpkσ
2
u,k

)−1

, k = 1, 2, . . . , N (8.88)

We illustrate these results numerically for the case of the averaging (uniform)
combination policy with uniform step-sizes across the agents, µk ≡ µ. In the
uniform policy, the combination weights {a`k} are selected according to the
averaging rule:

a`k =
{

1/nk, ` ∈ Nk
0, otherwise (8.89)

where
nk

∆= |Nk| (8.90)

denotes the size of the neighborhood of agent k (or its degree). In this case,
all neighbors of agent k are assigned the same weight, 1/nk, and the matrix
A will be left-stochastic. The entries of the corresponding Perron eigenvector
can be verified to be

pk = nk

(
N∑
m=1

nm

)−1

(8.91)
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Then, expression (8.88) gives

πk
∆= nkσ

2
u,k

(
N∑
k=1

nkσ
2
u,k

)−1

, k = 1, 2, . . . , N (8.92)

1

2

3

4

56

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Figure 8.3: A connected network topology consisting of N = 20 agents em-
ploying the averaging rule (8.89). Each agent k is assumed to belong its neigh-
borhood Nk. It follows that the network is strongly-connected.

Figure 8.3 shows the connected network topology with N = 20 agents
used for this simulation, with the measurement noise variances, {σ2

v,k}, and
the power of the regression data, {σ2

u,kIM}, shown in the right and left plots of
Figure 8.4, respectively. All agents are assumed to have a non-trivial self-loop
so that the neighborhood of each agent includes the agent itself as well. The
resulting network is therefore strongly-connected.

Figure 8.5 plots the evolution of the ensemble-average learning curves,
1
NE‖w̃i‖2, relative to the Pareto optimal solution w? defined by (8.87) and
(8.92), for consensus, ATC diffusion, and CTA diffusion using µ = 0.001. The
measure 1

NE‖w̃i‖2 corresponds to the average mean-square-deviation (MSD)
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Figure 8.4: Measurement noise profile (right) and regression data power (left)
across all agents in the network. The covariance matrices are assumed to be
of the form Ru,k = σ2

u,kIM , and the noise and regression data are Gaussian
distributed in this simulation.

across all agents at time i since

1
N

E‖w̃i‖2 = 1
N

N∑
k=1

E‖w̃k,i‖2 (8.93)

and w̃k,i = w? − wk,i. The learning curves are obtained by averaging the
trajectories { 1

N ‖w̃i‖2} over 200 repeated experiments. The label on the ver-
tical axis in the figure refers to the learning curves 1

NE‖w̃i‖2 by writing
MSDdist,av(i), with an iteration index i and where the subscripts “dist”
and “av” are meant to indicate that this is an average performance mea-
sure for a distributed solution. Each experiment in this simulation involves
running the consensus (7.14) or diffusion (7.22)–(7.23) LMS recursions with
h = 2 on complex-valued data {dk(i),uk,i} generated according to the model
dk(i) = uk,iw

o
k + vk(i), with M = 10. The unknown vectors {wok} are gener-

ated randomly and their norms are normalized to one. It is observed in the
figure that the learning curves tend to the MSD value predicted by future
expression (11.175).

�

Example 8.9 (Controlling the limit point — Hastings rule). We observe from
(8.55) that the limit point w? is dependent on the scaling coefficients {qk},
which in turn depend on the choice of the combination matrices {Ao, A1, A2}
through their dependence on the Perron eigenvector, p. Therefore, once the
combination policies are selected, the limit point for the network is fixed at
the unique solution w? of (8.53).

Let us illustrate the reverse direction in which it is desirable to select the
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Figure 8.5: Evolution of the learning curves for three strategies: consensus
(7.14), CTA diffusion (7.22), and ATC diffusion (7.23), with all agents em-
ploying the same step-size µ = 0.001 and the averaging combination policy.

combination policy to attain a particular Pareto optimal solution. We illus-
trate the construction for the case of consensus and diffusion strategies, which
correspond to the choices {Ao, A1, A2} shown earlier in (8.7)–(8.10). Again,
in these cases, the Perron eigenvector p defined by (8.49) will correspond to
the Perron eigenvector associated with A:

Ap = p, 1Tp = 1, pk > 0 (8.94)

Consequently, the entries qk defined by (8.50) will reduce to

qk = µkpk (8.95)

Now assume we are given a collection of positive scaling coefficients {q′k}.
These coefficients define a unique solution, w?, to the algebraic equation (8.55)
defined in terms of these {q′k}. Assume further that we are given a connected
network topology and we would like to determine a left-stochastic combination
matrix, A, that would lead to the coefficients {q′k}, or to some scaled multiples
of them. That is, we would like to determine A such that the {qk} that result
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from the construction (8.94)–(8.95) would coincide with, or be multiples of, the
given {q′k}. To answer this question, we call upon the following useful result.
Given a set of positive scalars {q′k, k = 1, 2, . . . , N} and a connected network
with N agents, it is explained in [68, 276], using a construction procedure
from [35, 42, 106], that one way to construct a left-stochastic matrix A that
leads to (a scaled multiple of) the given coefficients {q′k} is as follows (we refer
to the resulting matrix A as the Hastings combination rule) — see also future
Lemma 12.2:

a`k =


µk/q

′
k

max{ nkµk/q′k, n`µ`/q′` }
, ` ∈ Nk\{k}

1−
∑

m∈Nk\{k}

amk, ` = k

(8.96)

where the {µk} represent step-size parameters, and the scalar nk in (8.96)
denotes the cardinality of Nk (also called the degree of agent k and is equal
to the number of neighbors that k has):

nk
∆= |Nk| (8.97)

It can be verified that the entries of the Perron eigenvector, p, of this matrix
A are given by — see the proof of Lemma 12.2:

pk = q′k
µk

(
N∑
`=1

q′`
µ`

)−1

(8.98)

so that the products µkpk are proportional to the given q′k, as desired.
A particular case of interest is when we want to determine a combination

matrix A that leads to a uniform value for the {q′k}, i.e., q′k ≡ q′ for k =
1, 2, . . . , N . In this case, the minimizers of Jglob(w) and Jglob,?(w) defined by
(8.44) and (8.53) will coincide, namely, w? = wo, and construction (8.96) will
reduce to

a`k =


µk

max{ nkµk, n`µ` }
, ` ∈ Nk\{k}

1−
∑

m∈Nk\{k}

amk, ` = k
(8.99)

In the special case when the step-sizes are uniform across all agents, µk ≡ µ
for k = 1, 2, . . . , N , then the step-sizes disappear from (8.99) and the above
expression reduces to the so-called Metropolis rule (e.g., [106, 167, 265]), which
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is doubly-stochastic:

a`k =


1

max{nk, n`}
, ` ∈ Nk\{k}

1−
∑

m∈Nk\{k}

amk, ` = k
(8.100)

�

Example 8.10 (Controlling the limit point — power iteration). We continue
with the setting of Example 8.9 for consensus or diffusion strategies, which
correspond to the choices {Ao, A1, A2} shown earlier in (8.7)–(8.10). Exam-
ple 8.9 showed one method to select the combination policy A according to
the Hastings rule (8.99)–(8.100) in order to ensure that the distributed im-
plementation (8.46) will converge towards the minimizer, wo, of the original
aggregate cost (8.44) and not towards the limit point w? from (8.55). This
method, however, assumes that the designer is free to select the combination
policy, A.

If, on the other hand, we are already given a combination policy that
cannot be modified, then we can resort to an alternative method that relies
on selecting the step-size parameters, µk [72]. Specifically, from (8.95) we
observe that the {qk} can be made uniform by selecting

µk = µo
pk
, k = 1, 2 . . . , N (8.101)

where µo > 0 is some positive scaling parameter. This construction results
in qk ≡ µo. Consequently, under (8.101), recursion (8.46) for ATC diffusion
becomes (similarly, for CTA diffusion or consensus): ψk,i = wk,i−1 − µo

pk
∇̂w∗Jk (wk,i−1)

wk,i =
∑
`∈Nk

a`k ψ`,i
(8.102)

By doing so, the above distributed solution will now converge in the mean-
square-error sense towards the minimizer of the weighted aggregate cost (8.53)
that results from replacing qk by µo so that

Jglob,?(w) = µo

(
N∑
k=1

Jk(w)
)

= µo · Jglob(w) (8.103)

and, hence, w? = wo, as desired.
The challenge in running (8.102) is that the implementation requires

knowledge of the Perron entries, {pk}. For some combination policies, this
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information is readily available. For example, for the averaging rule (8.89),
we can use expression (8.91) for pk to conclude that we can run the above
algorithm by using µo/nk instead of µo/pk, where nk is the degree of agent
k. The factor that appears in the denominator of pk in (8.89) is common
to all agents and can be incorporated into µo (in this way, recursion (8.102)
can run with knowledge of only the local information nk). For more general
left-stochastic combination matrices A, one can run a power iteration [104] in
parallel with the distributed implementation (8.102) in order to estimate the
entries pk. The power iteration involves a recursion of the following form:

ri = Ari−1, r−1 6= 0, i ≥ 0 (8.104)

with coefficient matrix equal to A and with an initial nonzero vector r−1 that
is selected randomly. We denote the entries of ri by {rk(i)} for k = 1, 2 . . . , N .

Since we are assuming A to be primitive, then it has a unique eigenvalue at
one and, moreover, this eigenvalue is dominant (i.e., its magnitude is strictly
larger than the magnitude of each of the other eigenvalues of A). Then, the
power iteration is known to converge towards a right-eigenvector of A that
corresponds to its largest-magnitude eigenvalue, which is the eigenvalue at one
[104, 263]. That is, the entries {rk(i)} converge towards a constant multiple
of the corresponding entries {pk}. Therefore, we may replace the scalars {pk}
in (8.102) by the values {rk(i)} estimated recursively and in a distributed
manner, as shown in the following listing for each agent k (the constant scaling
between the values of rk(i) and pk is incorporated into µo since the scaling is
common to all agents):

rk(i) =
∑
`∈Nk

ak` rk(i− 1)

ψk,i = wk,i−1 − µo
rk(i) ∇̂w∗Jk (wk,i−1)

wk,i =
∑
`∈Nk

a`k ψ`,i

(8.105)

Observe that implementation (8.105) employs two sets of coefficients: {ak`}
in the first line and {a`k} in the last line. The first set corresponds to the
entries on the k−th row of A, while the second set corresponds to the entries
on the k−th column of A; these latter entries add up to one and perform a
convex combination operation. Therefore, this second method assumes that
each agent k has access to both sets of coefficients {a`k, ak`}, which is feasible
for undirected graphs. This construction is related to, albeit different from, a
push-sum protocol used for computing the average value of distributed mea-
surements over directed graphs in, e.g., [23, 78, 140, 173, 240].

�
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8.3 Gradient Noise Model

From this point onwards, we shall therefore measure the performance
of the distributed strategy (8.46) by using w? as the reference vector
(instead of wo) and define the error vectors as:

w̃k,i
∆= w? −wk,i (8.106)

ψ̃k,i
∆= w? −ψk,i (8.107)

φ̃k,i−1
∆= w? − φk,i−1 (8.108)

Moreover, with each agent k, we associate a gradient noise vector in
addition to a mismatch (or bias) vector, namely,

sk,i(φk,i−1) ∆= ∇̂w∗Jk(φk,i−1) − ∇w∗Jk(φk,i−1) (8.109)

and

bk
∆= −∇w∗Jk(w?) (8.110)

In the special case when all individual costs, Jk(w), have the same
minimizer at wok ≡ wo (which is the situation considered in Example 8.1
over MSE networks), then w? = wo and the vector bk will be identically
zero. In general, though, the vector bk is nonzero. Let F i−1 represent
the collection of all random events generated by the processes {wk,j}
at all agents k = 1, 2, . . . , N up to time i− 1:

F i−1
∆= filtration{wk,−1,wk,0,wk,1, . . . ,wk,i−1, all k} (8.111)

Similarly to Assumption 5.2, we assume that the gradient noise pro-
cesses across the agents satisfy the following conditions.

Assumption 8.1 (Conditions on gradient noise). It is assumed that the first and
second-order conditional moments of the individual gradient noise processes,
sk,i(φ), satisfy the following conditions for any iterates φ ∈ F i−1 and for all
k, ` = 1, 2, . . . , N :

E [ sk,i(φ) |F i−1 ] = 0 (8.112)
E
[
sk,i(φ)s∗`,i(φ)|F i−1

]
= 0, k 6= ` (8.113)

E
[
sk,i(φ)sT

`,i(φ)|F i−1
]

= 0, k 6= ` (8.114)

E
[
‖sk,i(φ)‖2 |F i−1

]
≤

(
β̄k/h

)2 ‖φ‖2 + σ̄2
s,k (8.115)
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almost surely, for some nonnegative scalars β̄2
k and σ̄2

s,k and where h = 1 for
real data and h = 2 for complex data.

Using the above conditions, and in a manner similar to the derivation
(3.28), it is straightforward to verify that the gradient noise processes
satisfy:

E
[
sk,i(φk,i−1) | F i−1

]
= 0 (8.116)

E
[
‖sk,i(φk,i−1)‖2 |F i−1

]
≤ (β2

k/h
2)‖φ̃k,i−1‖2 + σ2

s,k (8.117)

E‖sk,i(φk,i−1)‖2 ≤ (β2
k/h

2)E‖φ̃k,i−1‖2 + σ2
s,k (8.118)

in terms of the scalars

β2
k

∆= 2β̄2
k (8.119)

σ2
s,k

∆= 2(β̄k/h)2‖w?‖2 + σ̄2
s,k (8.120)

We shall use conditions (8.116)–(8.118) more frequently in lieu of
(8.112)–(8.115). We could have required these conditions directly in
the statement of Assumption 8.1. We instead opted to state conditions
(8.112)–(8.115) in that manner, in terms of a generic φ ∈ F i−1 rather
than w̃k,i−1, so that the upper bound in (8.115) is independent of the
unknown w?.

Conditions (8.116)–(8.118) will be useful in establishing the mean-
square stability of the second-order moment of the error vector,
E‖w̃k,i‖2, in the next chapter. Later, in Sec. 9.2, when we examine the
stability of the fourth-order moment of the same error vector, E‖w̃k,i‖4,
we will need to replace the bound (8.115) by a condition similar to
(5.36) on the fourth-order moments of the individual gradient noise
processes, namely, by the following condition:

E
[
‖sk,i(φ)‖4 |F i−1

]
≤ (β̄k/h)4 ‖φ‖4 + σ̄4

s,k (8.121)

almost surely, for nonnegative scalars {β̄4
k, σ̄

4
s,k}. Using an argument

similar to (3.56), we can similarly conclude from these conditions that

E
[
‖sk,i(φk,i−1)‖4 |F i−1

]
≤ (β4

4,k/h
4) ‖φ̃k,i−1‖4 + σ4

s4,k (8.122)
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for some non-negative parameters defined by:

β4
4,k

∆= 8β̄4
k (8.123)

σ4
s4,k

∆= 8(β̄k/h)4 ‖w?‖4 + σ̄4
s4,k (8.124)

We will not need to introduce condition (8.121) in addition to the
second-order moment condition (8.115). This is because, as explained
earlier following (3.50), condition (8.121) implies that condition (8.115)
also holds, namely, it follows from (8.121) that

E
[
‖sk,i(φ)‖2 |F i−1

]
≤ (β̄k/h)2 ‖φ‖2 + σ̄2

s,k (8.125)

Example 8.11 (Gradient noise over MSE networks). Let us continue with the
setting of Example 8.8, which deals with a variation of MSE networks where
the data model at each agent is instead assumed to be given by

dk(i) = uk,iw
o
k + vk(i) (8.126)

with the model vectors, wok, being possibly different at the various agents. In
a manner similar to (8.15), we can verify that if the distributed strategy (8.5)
is employed at the agents, then the resulting gradient noise process at each
agent k is now given by:

sk,i(φk,i−1) = 2
h

(
Ru,k − u∗k,iuk,i

)
(wok − φk,i−1) − 2

h
u∗k,ivk(i) (8.127)

where h = 2 for complex data and h = 1 for real data (in the latter case,
it is understood that complex conjugation should be replaced by standard
transposition so that u∗k,i becomes uT

k,i). Observe that (8.127) is written in
terms of the difference wok−φk,i−1 and not in terms of the error vector φ̃k,i−1.

�

8.4 Extended Network Error Dynamics

We explained earlier after (8.45) that because the Hessian matrices,
∇2
w Jk(w), are not generally block diagonal, we will need to introduce

extended versions of the error quantities {w̃k,i, ψ̃k,i, φ̃k,i−1} in order to
fully capture the dynamics of the network in the general case. This is
in contrast to the mean-square-error case studied in Example 8.1 where
these errors were sufficient to arrive at the state recursions (8.22) or
(8.25) for the evolution of the network dynamics.
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To motivate the need for extended error vectors, let us first intro-
duce some notation. Thus, note that if we express any column vector
w ∈ CM in terms of its real and imaginary parts x, y ∈ RM , then

w = x + jy (a column vector) (8.128)
w∗ = xT − jyT (a row vector) (8.129)

(w∗)T = x− jy (a column vector) (8.130)
In other words, the quantity (w∗)T is again a column vector, just like w,
except that its complex representation is obtained by replacing j by −j.
The reason why we need to introduce the quantity (w∗)T is because, as
the discussion will reveal, we will need to track the evolution of both
quantities wk,i and (w∗k,i)T in the general case in order to examine
how the network is performing. Thus, using equations (8.46), we can
deduce similar relations for the evolution of the complex conjugate
iterates, namely,

(
φ∗k,i−1

)T
=

∑
`∈Nk

a1,`k
(
w∗`,i−1

)T

(
ψ∗k,i

)T
=

∑
`∈Nk

ao,`k
(
φ∗`,i−1

)T
− µk∇̂wTJk

(
φk,i−1

)
(
w∗k,i

)T
=

∑
`∈Nk

a2,`k
(
ψ∗`,i

)T

(8.131)
Observe how the gradient vector approximation that appears in the
second equation now involves differentiation relative to wT and not
w∗. Representations (8.46) and (8.131) can be grouped together into a
single set of equations by introducing extended vectors of dimensions
2M × 1 as follows:


[
φk,i−1(
φ∗k,i−1

)T

]
=

∑
`∈Nk

a1,`k

[
w`,i−1(
w∗`,i−1

)T

]
[

ψk,i(
ψ∗k,i

)T

]
=

∑
`∈Nk

ao,`k

[
φ`,i−1(
φ∗`,i−1

)T

]
− µk

[
∇̂w∗Jk(φk,i−1)
∇̂wTJk

(
φk,i−1

) ][
wk,i(
w∗k,i

)T

]
=

∑
`∈Nk

a2,`k

[
ψ`,i(
ψ∗`,i

)T

]
(8.132)
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We therefore extend the error vectors into size 2M × 1 and introduce

w̃e
k,i

∆=
[

w̃k,i(
w̃∗k,i

)T

]
, ψ̃

e

k,i
∆=

 ψ̃k,i(
ψ̃
∗
k,i

)T

 , φ̃ek,i−1
∆=

 φ̃k,i−1(
φ̃
∗
k,i−1

)T


(8.133)

where we are using the superscript “e” to refer to extended quantities
of size 2M ×1. We also introduce extended versions of the limit vector,
the gradient noise vector, and the bias vector:

(w?)e ∆=
[

w?(
(w?)∗

)T

]
, sek,i

∆=
[

sk,i(φk,i−1)(
s∗k,i(φk,i−1)

)T

]
, bek

∆=
[

bk
(b∗k)T

]
(8.134)

where the vector sek,i in (8.134) should have been written more explic-
itly as sek,i(φk,i−1); we are dropping the argument for compactness of
notation. Now, subtracting (w?)e from both sides of the equations in
(8.132) and using (8.109) gives



φ̃
e

k,i−1 =
∑
`∈Nk

a1,`k w̃
e
`,i−1

ψ̃
e

k,i =
∑
`∈Nk

ao,`k φ̃
e

`,i−1 + µk


∇w∗Jk(φk,i−1)

∇wTJk

(
φk,i−1

)
+ µks

e
k,i

w̃e
k,i =

∑
`∈Nk

a2,`k ψ̃
e

`,i

(8.135)

We observe that the gradient vectors in (8.135) are being evaluated at
the intermediate variable, φk,i−1, and not at any of the error variables.
For this reason, equation (8.135) is still not an actual recursion. To
transform it into a recursion that only involves error variables, we call
upon the mean-value theorem (D.20) from the appendix, which allows
us to write:
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[ ∇w∗Jk(φk,i−1)

∇wTJk(φk,i−1)

]
=

[ ∇w∗Jk(w?)

∇wTJk(w?)

]
︸ ︷︷ ︸

∆
= −be

k

−
[∫ 1

0
∇2
wJk(w? − tφ̃k,i−1)dt

]
︸ ︷︷ ︸

∆
=Hk,i−1

φ̃
e

k,i−1

(8.136)

That is,  ∇w∗Jk(φk,i−1)

∇wTJk(φk,i−1)

 = −bek − Hk,i−1φ̃
e

k,i−1 (8.137)

in terms of a 2M × 2M stochastic matrix Hk,i−1 defined in terms of
the integral of the 2M × 2M Hessian matrix of agent k:

Hk,i−1
∆=
∫ 1

0
∇2
wJk(w? − tφ̃k,i−1)dt (8.138)

Substituting (8.137) into (8.135) leads to

φ̃
e

k,i−1 =
∑
`∈Nk

a1,`k w̃
e
`,i−1

ψ̃
e

k,i =
∑
`∈Nk

ao,`k φ̃
e

`,i−1 − µkHk,i−1φ̃
e

k,i−1 − µkbek + µks
e
k,i

w̃e
k,i =

∑
`∈Nk

a2,`k ψ̃
e

`,i

(8.139)
These equations describe the evolution of the error quantities at the
individual agents for k = 1, 2, . . . , N . Observe that when the matrix
Hk,i−1 happens to be block diagonal, which occurs when the Hessian
matrix function itself is block diagonal (as happened in (8.4) with the
quadratic costs in Example 8.1), then the last term in (8.137) decouples
into two separate terms in the variables{

φ̃k,i−1,
(
φ̃
∗
k,i−1

)T
}

(8.140)

since then

Hk,i−1φ̃
e

k,i−1 ≡
[
H11

k,i−1 0
0 H22

k,i−1

] φ̃k,i−1(
φ̃
∗
k,i−1

)T

 (8.141)
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In that case, it becomes unnecessary to propagate the extended vectors
{w̃e

k,i, ψ̃
e

k,i, φ̃
e

k,i−1} using (8.139); the dynamics of the network can be
studied by examining solely the evolution of the original error vectors
{w̃k,i, ψ̃k,i, φ̃k,i−1}, namely,



φ̃k,i−1 =
∑
`∈Nk

a1,`k w̃`,i−1

ψ̃k,i =
∑
`∈Nk

ao,`k φ̃`,i−1 − µkH11
k,i−1φ̃k,i−1 − µkbk + µksk,i

w̃k,i =
∑
`∈Nk

a2,`k ψ̃`,i

(8.142)
We continue our discussion by treating the general case (8.139). We
collect the extended error vectors from all agents into the following
N × 1 block error vectors (whose individual entries are of size 2M × 1
each):

w̃e
i

∆=


w̃e

1,i
w̃e

2,i
...

w̃e
N,i

 , φ̃
e

i−1
∆=


φ̃
e

1,i−1
φ̃
e

2,i−1
...

φ̃
e

N,i−1

 , ψ̃
e

i
∆=


ψ̃
e

1,i
ψ̃
e

2,i
...

ψ̃
e

N,i


(8.143)

We also define the following block gradient noise and bias vectors:

sei
∆=


se1,i
se2,i
...
seN,i

 , be
∆=


be1
be2
...
beN

 (8.144)

Now recall from the explanation after (8.134) that each entry, sek,i, in
(8.144) is dependent on φk,i−1. Recall also from the distributed algo-
rithm (8.46) that φk,i−1 is a combination of various {w`,i−1}. There-
fore, the block gradient vector, sei , defined in (8.144) is dependent on
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the network vector, we
i−1, namely,

we
i−1

∆=


we

1,i−1
we

2,i−1
...

we
N,i−1

 , we
k,i−1

∆=

 wk,i−1(
w∗k,i−1

)T

 (8.145)

For this reason, we shall also write sei (we
i−1) rather than simply sei

when it is desired to highlight the dependency of sei on we
i−1.

We further introduce the Kronecker products
Ao

∆= Ao ⊗ I2M

A1
∆= A1 ⊗ I2M

A2
∆= A2 ⊗ I2M

(8.146)

The matrix Ao is an N × N block matrix whose (`, k)−th block is
equal to ao,`kI2M . Similarly, for A1 and A2. Likewise, we introduce the
following N ×N block diagonal matrices, whose individual entries are
of size 2M × 2M each:

M ∆= diag{ µ1I2M , µ2I2M , . . . , µNI2M } (8.147)

Hi−1
∆= diag {H1,i−1, H2,i−1, . . . , HN,i−1 } (8.148)

We then conclude from (8.139) that the following relations hold for the
network variables:

φ̃
e

i−1 = AT
1 w̃

e
i−1

ψ̃
e

i =
[
AT
o − MHi−1

]
φ̃
e

i−1 + Msei (we
i−1) − Mbe

w̃e
i = AT

2 ψ̃
e

i

(8.149)
so that the network weight error vector, w̃e

i , ends up evolving according
to the following stochastic recursion over i ≥ 0:

w̃e
i = AT

2

(
AT
o −MHi−1

)
AT

1 w̃
e
i−1 + AT

2Msei (we
i−1) − AT

2Mbe

(8.150)
For comparison purposes, if each agent operates individually and uses
the non-cooperative strategy, then the weight error vectors across all
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N agents would instead evolve according to the following stochastic
recursion:

w̃e
i = (I2MN −MHi−1) w̃e

i−1 + Msei (we
i−1) − Mbe (8.151)

where the matrices {Ao,A1,A2} do not appear since, in this case, Ao =
A1 = A2 = IN . We summarize the discussion so far in the following
statement for complex data (we show how these results simplify for real
data in the example after the lemma).

Lemma 8.1 (Network error dynamics). Consider a network of N interacting
agents running the distributed strategy (8.46). The evolution of the error
dynamics across the network relative to the reference vector w? defined by
(8.55) is described by the following recursion:

w̃e
i = Bi−1w̃

e
i−1 + AT

2Msei (we
i−1) − AT

2Mbe, i ≥ 0 (8.152)

where

Bi−1
∆= AT

2
(
AT
o −MHi−1

)
AT

1 (8.153)

Ao
∆= Ao ⊗ I2M , A1

∆= A1 ⊗ I2M , A2
∆= A2 ⊗ I2M (8.154)

M ∆= diag{ µ1I2M , µ2I2M , . . . , µNI2M } (8.155)

Hi−1
∆= diag {H1,i−1, H2,i−1, . . . , HN,i−1 } (8.156)

Hk,i−1
∆=

∫ 1

0
∇2
wJk(w? − tφ̃k,i−1)dt (8.157)

where ∇2
wJk(w) denotes the 2M × 2M Hessian matrix of Jk(w) relative to w.

Moreover, the extended vectors {w̃e
i , s

e
i , b

e} are defined by (8.143) and (8.144).

Example 8.12 (Mean-square-error costs). Let us re-consider the scenario stud-
ied in Example 8.1 and verify that result (8.152) collapses to (8.25). Indeed, in
this case, we have w? = wo and the bias vector, bek, will be zero for all agents
k = 1, 2, . . . , N . Moreover since the Hessian matrix is now block diagonal, we
can easily verify from the definition (8.137) that

Hk,i−1 =
[
Ru,k 0

0 RT
u,k

]
(8.158)

Substituting these facts into the expressions in Lemma 8.1 we recover (8.25).
�
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Example 8.13 (Simplifications in the real case). The network error model of
Lemma 8.1 can be simplified in the case of real data. This is because when
w ∈ RM is real-valued, we do not need to introduce the extended vectors
(8.133) and (8.134) any longer. The simplifications that occur are described
below.

To begin with, the distributed strategy (8.46) will be given by

φk,i−1 =
∑
`∈Nk

a1,`kw`,i−1

ψk,i =
∑
`∈Nk

ao,`k φ`,i−1 − µk∇̂wTJk
(
φk,i−1

)
wk,i =

∑
`∈Nk

a2,`kψ`,i

(8.159)

where the gradient vector approximation in the second equation is now relative
to wT and not w∗. Subtracting the limit vector w? directly from both sides of
the above equations gives

φ̃k,i−1 =
∑
`∈Nk

a1,`kw̃`,i−1

ψ̃k,i =
∑
`∈Nk

ao,`kφ̃`,i−1 + µk∇wTJk(φk,i−1) + µksk,i

w̃k,i =
∑
`∈Nk

a2,`kψ̃`,i

(8.160)

where now
sk,i

∆= ∇̂wT Jk(φk,i−1) − ∇wT Jk(φk,i−1) (8.161)

and the error vectors are measured relative to the same limit vector w?:

w̃k,i = w? −wk,i, ψ̃k,i = w? −ψk,i, φ̃k,i−1 = w? − φk,i−1 (8.162)

We then call upon the real-version of the mean-value theorem, namely, ex-
pression (D.9) in the appendix, to write

∇wTJk(φk,i−1) = ∇wTJk(w?)︸ ︷︷ ︸
∆= −bk

−
[∫ 1

0
∇2
wJk(w? − tφ̃k,i−1)dt

]
︸ ︷︷ ︸

∆=Hk,i−1

φ̃k,i−1

= −bk − Hk,i−1φ̃k,i−1 (8.163)

where we introduced the M × 1 constant vector bk and the (now) M ×M
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stochastic matrix Hk,i. Substituting (8.163) into (8.160) leads to



φ̃k,i−1 =
∑
`∈Nk

a1,`kw̃`,i−1

ψ̃k,i =
∑
`∈Nk

ao,`kφ̃`,i−1 − µkHk,i−1φ̃k,i−1 − µkbk + µksk,i

w̃k,i =
∑
`∈Nk

a2,`kψ̃`,i

(8.164)
so that the network error vector

w̃i = col{w̃1,i, w̃2,i, . . . , w̃N,i} (8.165)

evolves according to the recursion

w̃i = Bi−1w̃i−1 + AT
2Msi(wi−1) − AT

2Mb, i ≥ 0 (8.166)

where now

Bi−1
∆= AT

2
(
AT
o −MHi−1

)
AT

1 (8.167)

Ao
∆= Ao ⊗ IM , A1

∆= A1 ⊗ IM , A2
∆= A2 ⊗ IM (8.168)

M ∆= diag{ µ1IM , µ2IM , . . . , µNIM } (8.169)

Hi−1
∆= diag {H1,i−1, H2,i−1, . . . , HN,i−1 } (8.170)

Hk,i−1
∆=

∫ 1

0
∇2
wJk(w? − tφ̃k,i−1)dt (8.171)

wi−1
∆= col{w1,i−1, w2,i−1, . . . , wN,i−1} (8.172)

and ∇2
wJk(w) denotes the M ×M Hessian matrix of Jk(w) relative to w.

�



9
Stability of Multi-Agent Networks

Building on the results from the previous chapter, we are now ready to
examine the stability of the mean-error process, E w̃i, the mean-square-
error, E‖w̃i‖2, and the fourth-order moment, E‖w̃i‖4, by using the
network error recursion (8.152). The key results proven in the current
chapter are that for sufficiently small step-sizes, and for each agent k,
it will hold that

lim sup
i→∞

‖E w̃k,i‖ = O(µmax) (9.1)

lim sup
i→∞

E‖w̃k,i‖2 = O(µmax) (9.2)

lim sup
i→∞

E‖w̃k,i‖4 = O(µ2
max) (9.3)

where µmax is an upper bound on the largest step-size parameter across
the network since, from (8.52), we parameterized all step-sizes as scaled
multiples of µmax, namely,

µk
∆= τk µmax, k = 1, 2, . . . , N (9.4)

where 0 < τk ≤ 1. The error vectors, {w̃k,i}, in the above expressions
are measured relative to the limit vector, w?:

w̃k,i = w? − wk,i (9.5)

507
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where w? was defined by (8.55) as the unique minimum of the weighted
aggregate cost function, Jglob,?(w), from (8.53), namely,

Jglob,?(w) ∆=
N∑
k=1

qkJk(w) (9.6)

and the {qk} are positive scalars corresponding to the entries of the
vector:

q
∆= diag{µ1, µ2, . . . , µN}A2p (9.7)

Here, the vector p refers to the Perron eigenvector of the matrix product

P
∆= A1AoA2 (9.8)

and is defined through the relations:

Pp = p, 1Tp = 1, pk > 0 (9.9)

For ease of reference, we recall the definition of the original aggregate
cost function (8.44), namely,

Jglob(w) ∆=
N∑
k=1

Jk(w) (9.10)

9.1 Stability of Second-Order Error Moment

The first result establishes the mean-square stability of the network er-
ror process and shows that its mean-square value tends asymptotically
to a bounded region in the order of O(µmax).

Theorem 9.1 (Network mean-square-error stability). Consider a network of N
interacting agents running the distributed strategy (8.46) with a primitive
matrix P = A1AoA2. Assume the aggregate cost (9.10) and the individual
costs, Jk(w), satisfy the conditions in Assumption 6.1. Assume further that
the first and second-order moments of the gradient noise process satisfy the
conditions in Assumption 8.1. Then, the network is mean-square stable for
sufficiently small step-sizes, namely, it holds that

lim sup
i→∞

E‖w̃k,i‖2 = O(µmax), k = 1, 2, . . . , N (9.11)

for any µmax < µo, for some small enough µo.
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Proof. The derivation is demanding. We follow arguments motivated by the
analysis in [70, 277] and they involve, as an initial step, transforming the
error recursion (9.12) shown below into a more convenient form shown later
in (9.60). We establish the result for the general case of complex data and,
therefore, h = 2 throughout this derivation.

We start from the network error recursion (8.152):

w̃e
i = Bi−1w̃

e
i−1 + AT

2Msei (we
i−1) − AT

2Mbe, i ≥ 0 (9.12)

where

Bi−1 = AT
2
(
AT
o −MHi−1

)
AT

1

= AT
2AT

oAT
1 − AT

2MHi−1AT
1

∆= PT − AT
2MHi−1AT

1 (9.13)

in terms of the matrix

PT ∆= AT
2AT

oAT
1

= (AT
2 ⊗ I2M )(AT

o ⊗ I2M )(AT
1 ⊗ I2M )

= (AT
2A

T
oA

T
1 ⊗ I2M )

= PT ⊗ I2M (9.14)

The matrix P = A1AoA2 is left-stochastic and assumed primitive. It follows
that it has a single eigenvalue at one while all other eigenvalues are strictly
inside the unit circle. We let p denote its Perron eigenvector, which is already
defined by (9.9). This vector determines the entries of q defined by (9.7). Note,
for later reference, that the k−entry of q can be extracted by computing the
inner product of q with the k−th basis vector, ek, which has a unit entry at
the k−th location and zeros elsewhere, i.e.,

qk = µk(eT
kA2p)

(9.4)= µmax τk(eT
kA2p) (9.15)

Obviously, it holds for the extended matrices {P,A2} that

P(p⊗ I2M ) = (p⊗ I2M ) (9.16)
MA2(p⊗ I2M ) = (q ⊗ I2M ) (9.17)

(1T ⊗ I2M )(p⊗ I2M ) = I2M (9.18)

Moreover, since A1 and A2 are left-stochastic, it holds that

AT
1 (1⊗ I2M ) = (1⊗ I2M ) (9.19)
AT

2 (1⊗ I2M ) = (1⊗ I2M ) (9.20)
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The derivation that follows exploits the eigen-structure of P . We start by
noting that the N ×N matrix P admits a Jordan canonical decomposition of
the form [113, p.128]:

P
∆= VεJV

−1
ε (9.21)

J =
[

1 0
0 Jε

]
(9.22)

Vε =
[
p VR

]
(9.23)

V −1
ε =

 1T

V T
L

 (9.24)

where the matrix Jε consists of Jordan blocks, with each one of them having
the generic form (say, for a Jordan block of size 4× 4):

λ
ε λ

ε λ
ε λ

 (9.25)

with ε > 0 appearing on the lower1 diagonal, and where the eigenvalue λ may
be complex but has magnitude strictly less than one. The scalar ε is any small
positive number that is independent of µmax. Obviously, since V −1

ε Vε = IN ,
it holds that

1TVR = 0 (9.26)
V T
L p = 0 (9.27)

V T
L VR = IN−1 (9.28)

The matrices {Vε, J, V −1
ε } have dimensions N × N while the matrices

{VL, Jε, VR} have dimensions (N − 1) × (N − 1). The Jordan decomposition
of the extended matrix P = P ⊗ I2M is given by

P = (Vε ⊗ I2M )(J ⊗ I2M )(V −1
ε ⊗ I2M ) (9.29)

so that substituting into (9.13) we obtain

Bi−1 =
(
(V −1
ε )T ⊗ I2M

){
(JT ⊗ I2M )−DT

i−1

}(
V T
ε ⊗ I2M

)
(9.30)

1For any N × N matrix A, the traditional Jordan decomposition A = TJ ′T−1

involves Jordan blocks in J ′ that have ones on the lower diagonal instead of ε.
However, if we introduce the diagonal matrix E = diag{1, ε, ε2, . . . , εN−1}, then
A = TE−1EJ ′E−1ET−1, which we rewrite as A = VεJV

−1
ε with Vε = TE−1 and

J = EJ ′E−1. The matrix J now has ε values instead of ones on the lower diagonal.
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where

DT
i−1

∆=
(
V T
ε ⊗ I2M

)
AT

2MHi−1AT
1
(
(V −1
ε )T ⊗ I2M

)
≡

[
DT

11,i−1 DT
21,i−1

DT
12,i−1 DT

22,i−1

]
(9.31)

Using the partitioning (9.23)–(9.24) and the fact that

A1 = A1 ⊗ I2M , A2 = A2 ⊗ I2M (9.32)

we find that the block entries {Dmn,i−1} in (9.31) are given by

D11,i−1 =
N∑
k=1

qkH
T
k,i−1 (9.33)

D12,i−1 = (1T ⊗ I2M )HT
i−1M(A2VR ⊗ I2M ) (9.34)

D21,i−1 = (V T
L A1 ⊗ I2M )HT

i−1(q ⊗ I2M ) (9.35)
D22,i−1 = (V T

L A1 ⊗ I2M )HT
i−1M(A2VR ⊗ I2M ) (9.36)

Let us now show that the entries in each of these matrices is in the order of
O(µmax), as well as verify that the matrix norm sequences of these matrices
are uniformly bounded from above for all i. To begin with, recall from (8.157)
that

Hk,i−1
∆=
∫ 1

0
∇2
wJk(w? − tφ̃k,i−1)dt (9.37)

and, moreover, by assumption, all individual costs Jk(w) are convex functions
with at least one of them, say, the cost function of index ko, being νd−strongly-
convex. This fact implies that, for any w,

∇2
wJko(w) ≥ νd

h
IhM > 0, ∇2

wJk(w) ≥ 0, k 6= ko (9.38)

Consequently,

Hko,i−1 ≥
νd
h
IhM > 0, Hk,i−1 ≥ 0, k 6= ko (9.39)

and, therefore, D11,i−1 > 0. More specifically, the matrix sequence D11,i−1 is
uniformly bounded from below as follows:

D11,i−1 ≥ qko
νd
h
IhM

(9.15)= µmax τko(eT
koA2p)

νd
h
IhM

= O(µmax) (9.40)
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On the other hand, from the upper bound on the sum of the Hessian matrices
in (6.13), and since each individual Hessian matrix is at least non-negative
definite, we get

Hk,i−1 ≤
δd
h
IhM (9.41)

so that the matrix sequenceD11,i−1 is uniformly bounded from above as well:

D11,i−1 ≤ qmaxN
δd
h
IhM

(9.15)= µmax τkmax(eT
kmax

A2p)N
δd
h
IhM

= O(µmax) (9.42)

where kmax denotes the k−index of the largest qk entry. Combining results
(9.40)–(9.42) we conclude that

D11,i−1 = O(µmax) (9.43)

Actually, since D11,i−1 is Hermitian positive-definite, we also conclude that
its eigenvalues (which are positive and real) are O(µmax). This is because from
the relation

µmax τko(eT
koA2p)

νd
h
IhM ≤ D11,i−1 ≤ µmax τkmax(eT

kmax
A2p)N

δd
h
IhM

(9.44)
we can write, more compactly,

c1µmaxIhM ≤ D11,i−1 ≤ c2µmaxIhM (9.45)

for some positive constants c1 and c2 that are independent of µmax and i.
Accordingly, for the eigenvalues of D11,i−1, we can write

c1µmax ≤ λ(D11,i−1) ≤ c2µmax (9.46)

It follows that the eigenvalues of I2M −DT
11,i−1 are 1 − O(µmax) so that, in

terms of the 2−induced norm and for sufficiently small µmax:

‖I2M −DT
11,i−1‖ = ρ(I2M −DT

11,i−1)
≤ 1− σ11µmax

= 1−O(µmax) (9.47)

for some positive constant σ11 that is independent of µmax and i.
Similarly, from (9.39) and (9.41), and since each Hk,i−1 is bounded from

below and from above, we can conclude that

D12,i−1 = O(µmax), D21,i−1 = O(µmax), D22,i−1 = O(µmax) (9.48)
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and that the norms of these matrix sequences are also uniformly bounded
from above. For example, using the 2−induced norm (i.e., maximum singular
value):

‖D21,i−1‖ ≤ ‖V T
L A1 ⊗ I2M‖ ‖q ⊗ I2M‖ ‖HT

i−1‖

≤ ‖V T
L A1 ⊗ I2M‖ ‖q ⊗ I2M‖

(
max

1≤k≤N
‖Hk,i−1‖

)
(9.41)
≤ ‖V T

L A1 ⊗ I2M‖ ‖q ⊗ I2M‖
(
δd
h

)
= ‖V T

L A1 ⊗ I2M‖ ‖q‖
(
δd
h

)
≤ ‖V T

L A1 ⊗ I2M‖
√
N q2

max

(
δd
h

)
= ‖V T

L A1 ⊗ I2M‖
√
N µmax τkmax(eT

kmax
A2p)

(
δd
h

)
(9.49)

so that
‖D21,i−1‖ ≤ σ21µmax = O(µmax) (9.50)

for some positive constant σ21. In the above derivation we used the fact that
‖q⊗ I2M‖ = ‖q‖ since, from Table F.1 in the appendix, the singular values of
a Kronecker product are given by all possible products of the singular values
of the individual matrices. A similar argument applies toD12,i−1 andD22,i−1
for which we can verify that

‖D12,i−1‖ ≤ σ12µmax = O(µmax), ‖D22,i−1‖ ≤ σ22µmax = O(µmax)
(9.51)

for some positive constants σ21 and σ22. Let

Vε
∆= Vε ⊗ I2M , Jε

∆= Jε ⊗ I2M (9.52)

Then, using (9.30), we can write

Bi−1 =
(
V−1
ε

)T
[
I2M −DT

11,i−1 −DT
21,i−1

−DT
12,i−1 J T

ε −D
T
22,i−1

]
VT
ε (9.53)

To simplify the notation, we drop the argument we
i−1 in (9.12) and write sei

instead of sei (we
i−1) from this point onwards. We now multiply both sides of

the error recursion (9.12) from the left by VT
ε :

VT
ε w̃

e
i = VT

ε Bi−1
(
V−1
ε

)T VT
ε w̃

e
i−1 + VT

ε AT
2Msei − VT

ε AT
2Mbe, i ≥ 0

(9.54)
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and let

VT
ε w̃

e
i =

[
(pT ⊗ I2M )w̃e

i

(V T
R ⊗ I2M )w̃e

i

]
∆=

[
w̄e
i

w̌e
i

]
(9.55)

VT
ε AT

2Msei =
[

(pT ⊗ I2M )AT
2Msei

(V T
R ⊗ I2M )AT

2Msei

]
∆=

[
s̄ei
šei

]
(9.56)

VT
ε AT

2Mbe =
[

(pT ⊗ I2M )AT
2Mbe

(V T
R ⊗ I2M )AT

2Mbe

]
∆=

[
0
b̌e

]
(9.57)

where the zero entry in the last equality is due to the fact that

(pT ⊗ I2M )AT
2Mbe = (qT ⊗ I2M )be

=
N∑
k=1

qkb
e
k

= −
N∑
k=1

qk

[
∇w∗Jk(w?)
∇wTJk(w?)

]

= −
N∑
k=1

qk

[
[∇wJk(w?)]∗

[∇wJk(w?)]T
]

(8.55)= 0 (9.58)

Moreover, from the expression for b̌e in (9.57), we note that it depends on
M and be. Recall from (8.110) and (8.144) that the entries of be are de-
fined in terms of the gradient vectors ∇w∗Jk(w?). Since each Jk(w) is twice-
differentiable from Assumption 6.1, then each gradient vector of Jk(w) is a
differentiable function and therefore bounded. It follows that be has bounded
norm and we conclude that

b̌e = O(µmax) (9.59)

Using the just introduced transformed variables, we can rewrite (9.54) in the
form[
w̄e
i

w̌e
i

]
=
[
I2M −DT

11,i−1 −DT
21,i−1

−DT
12,i−1 J T

ε −D
T
22,i−1

] [
w̄e
i−1

w̌e
i−1

]
+
[
s̄ei
šei

]
−
[

0
b̌e

]
(9.60)

or, in expanded form,

w̄e
i = (I2M −DT

11,i−1)w̄e
i−1 − DT

21,i−1w̌
e
i−1 + s̄ei (9.61)

w̌e
i = (J T

ε −D
T
22,i−1)w̌e

i−1 − DT
12,i−1w̄

e
i−1 + šei − b̌e (9.62)



9.1. Stability of Second-Order Error Moment 515

Conditioning both sides on F i−1, computing the conditional second-order
moments, and using the conditions from Assumption 8.1 on the gradient noise
process we get

E
[
‖w̄ei‖2 |F i−1

]
= ‖(I2M −DT

11,i−1)w̄ei−1 −DT
21,i−1w̌

e
i−1‖2 + E

[
‖s̄ei‖2 |F i−1

]
(9.63)

and

E
[
‖w̌e

i‖2 |F i−1
]

= ‖(J T
ε −D

T
22,i−1)w̌e

i−1 −D
T
12,i−1w̄

e
i−1 − b̌e‖2 +

E
[
‖šei‖2 |F i−1

]
(9.64)

Computing the expectations again we conclude that

E‖w̄e
i‖2 = E‖(I2M −DT

11,i−1)w̄e
i−1 −D

T
21,i−1w̌

e
i−1‖2 + E‖s̄ei‖2 (9.65)

and

E‖w̌e
i‖2 = E‖(J T

ε −D
T
22,i−1)w̌e

i−1 −D
T
12,i−1w̄

e
i−1 − b̌e‖2 + E‖šei‖2 (9.66)

Continuing with the first variance (9.65), we can appeal to Jensen’s inequality
(F.26) from the appendix and apply it to the function f(x) = ‖x‖2 to bound
the variance as follows:

E ‖w̄ei‖2

= E
∥∥∥(1− t) 1

1− t (I2M −D
T
11,i−1)w̄ei−1 − t

1
t
DT

21,i−1w̌
e
i−1

∥∥∥2
+ E ‖s̄ei‖2

≤ (1− t)E
∥∥∥ 1

1− t (I2M −D
T
11,i−1)w̄ei−1

∥∥∥2
+ tE

∥∥∥1
t
DT

21,i−1w̌
e
i−1

∥∥∥2
+ E ‖s̄ei‖2

≤ 1
1− tE

[
‖I2M −DT

11,i−1‖2 ‖w̄ei−1‖2
]

+ 1
t
E
[
‖DT

21,i−1‖2 ‖w̌ei−1‖2
]

+ E ‖s̄ei‖2

≤ (1− σ11µmax)2

1− t E ‖w̄ei−1‖2 + σ2
21µ

2
max

t
E ‖w̌ei−1‖2 + E ‖s̄ei‖2 (9.67)

for any arbitrary positive number t ∈ (0, 1). We select

t = σ11µmax (9.68)

Then, the last inequality can be written as

E‖w̄e
i‖2 ≤ (1− σ11µmax)E‖w̄e

i−1‖2 +
(
σ2

21µmax

σ11

)
E‖w̌e

i−1‖2 + E‖s̄ei‖2

(9.69)
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We now repeat a similar argument for the second variance relation (9.66).
Thus, using Jensen’s inequality again we have

E ‖w̌ei‖2 = (9.70)

= E
∥∥J T

ε w̌
e
i−1 −

[
DT

22,i−1w̌
e
i−1 +DT

12,i−1w̄
e
i−1 + b̌e

]∥∥2 + E ‖šei‖2

= E
∥∥∥t1
t
J T
ε w̌

e
i−1 − (1− t) 1

1− t
[
DT

22,i−1w̌
e
i−1 +DT

12,i−1w̄
e
i−1 + b̌e

]∥∥∥2
+ E ‖šei‖2

≤ 1
t
E
∥∥J T

ε w̌
e
i−1
∥∥2 + 1

1− tE
∥∥DT

22,i−1w̌
e
i−1 +DT

12,i−1w̄
e
i−1 + b̌e

∥∥2 + E ‖šei‖2

for any arbitrary positive number t ∈ (0, 1). Now note that∥∥J T
ε w̌

e
i−1
∥∥2 =

(
w̌e
i−1
)∗ (J T

ε

)∗ J T
ε w̌

e
i−1

=
(
w̌e
i−1
)∗ (JεJ ∗ε )T

w̌e
i−1

≤ ρ (JεJ ∗ε )
∥∥w̌e

i−1
∥∥2 (9.71)

where we called upon the Rayleigh-Ritz characterization of the eigenvalues of
Hermitian matrices [104, 113], namely,

λmin(C) ‖x‖2 ≤ x∗Cx ≤ λmax(C) ‖x‖2 (9.72)

for any Hermitian matrix C. Applying this result to the Hermitian and non-
negative definite matrix C = (JεJ ∗ε )T, and noting that ρ(C) = ρ(CT), we
obtain (9.71). From definition (9.52) for Jε we further get

ρ (JεJ ∗ε ) = ρ [(Jε ⊗ I2M )(J∗ε ⊗ I2M )]
= ρ [(JεJ∗ε ⊗ I2M )]
= ρ(JεJ∗ε ) (9.73)

The matrix Jε is block diagonal and consists of Jordan blocks. Assume initially
that it consists of a single Jordan block, say, of size 4 × 4, for illustration
purposes. Then, we can write:

JεJ
∗
ε =


λ
ε λ

ε λ
ε λ



λ∗ ε

λ∗ ε
λ∗ ε

λ∗



=


|λ|2 ελ
ελ∗ |λ|2 + ε2 ελ

ελ∗ |λ|2 + ε2 ελ
ελ∗ |λ|2 + ε2

 (9.74)
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Using the property that the spectral radius of a matrix is bounded by any of
its norms, and using the 1−norm (maximum absolute column sum), we get
for the above example

ρ(JεJ∗ε ) ≤ ‖JεJ∗ε ‖1
= |λ|2 + ε2 + ε|λ∗|+ ε|λ|
= (|λ|+ ε)2 (9.75)

If Jε consists of multiple Jordan blocks, say, L of them with eigenvalue λ`
each, then

ρ(JεJ∗ε ) ≤ max
1≤`≤L

(|λ`|+ ε)2 = (ρ(Jε) + ε)2 (9.76)

where ρ(Jε) does not depend on ε and is equal to the second largest eigenvalue
in magnitude in J , which we know is strictly less than one in magnitude.
Substituting this conclusion into (9.70) gives

E‖w̌e
i‖2 ≤ 1

t
(ρ(Jε) + ε)2 E

∥∥w̌e
i−1
∥∥2 +

1
1− tE

∥∥∥DT
22,i−1w̌

e
i−1 +DT

12,i−1w̄
e
i−1 + b̌e

∥∥∥2
+ E‖šei‖2

(9.77)

Since we know that ρ(Jε) ∈ (0, 1), then we can select ε small enough to ensure
ρ(Jε) + ε ∈ (0, 1). We then select

t = ρ(Jε) + ε (9.78)

and rewrite (9.77) as

E‖w̌e
i‖2 ≤ (ρ(Jε) + ε)E

∥∥w̌e
i−1
∥∥2 + E‖šei‖2 +(

1
1− ρ(Jε)− ε

)
E
∥∥∥DT

22,i−1w̌
e
i−1 +DT

12,i−1w̄
e
i−1 + b̌e

∥∥∥2

(9.79)

We can bound the last term on the right-hand side of the above expression
as follows:

E
∥∥∥DT

22,i−1w̌
e
i−1 +DT

12,i−1w̄
e
i−1 + b̌e

∥∥∥2
= (9.80)

= E
∥∥∥∥1

33DT
22,i−1w̌

e
i−1 + 1

33DT
12,i−1w̄

e
i−1 + 1

33b̌e
∥∥∥∥2

≤ 1
3E

∥∥∥3DT
22,i−1w̌

e
i−1

∥∥∥2
+ 1

3E
∥∥∥3DT

12,i−1w̄
e
i−1

∥∥∥2
+ 1

3‖3b̌
e‖2

≤ 3E
∥∥∥DT

22,i−1w̌
e
i−1

∥∥∥2
+ 3E

∥∥∥DT
12,i−1w̄

e
i−1

∥∥∥2
+ 3‖b̌e‖2

≤ 3σ2
22µ

2
maxE

∥∥w̌e
i−1
∥∥2 + 3σ2

12µ
2
maxE

∥∥w̄e
i−1
∥∥2 + 3‖b̌e‖2
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Substituting into (9.79) we obtain

E‖w̌e
i‖2 ≤

(
ρ(Jε) + ε+ 3σ2

22µ
2
max

1− ρ(Jε)− ε

)
E
∥∥w̌e

i−1
∥∥2 +(

3σ2
12µ

2
max

1− ρ(Jε)− ε

)
E
∥∥w̄e

i−1
∥∥2 +(

3
1− ρ(Jε)− ε

)
‖b̌e‖2 + E‖šei‖2 (9.81)

We now bound the noise terms, E‖s̄ei‖2 in (9.69) and E‖šei‖2 in (9.81). For
that purpose, we first note that

E‖s̄ei‖2 + E‖šei‖2 = E
∥∥∥∥[ s̄eišei

]∥∥∥∥2

= E
∥∥VT

ε AT
2Msei

∥∥2

≤
∥∥VT

ε AT
2
∥∥2 ‖M‖2 E‖sei‖2

≤ v2
1µ

2
maxE‖sei‖2 (9.82)

where the positive constant v1 is independent of µmax and is equal to the
following norm

v1
∆=
∥∥VT

ε AT
2
∥∥ (9.83)

On the other hand, using (8.113)–(8.114), we have

E‖sei‖2 =
N∑
k=1

E‖sek,i‖2

= 2
(

N∑
k=1

E‖sk,i‖2
)

(9.84)

in terms of the variances of the individual gradient noise processes, E‖sk,i‖2,
and where we used the fact that

‖sek,i‖2 = 2‖sk,i‖2 (9.85)
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Now, for each term sk,i we have

E‖sk,i‖2
(8.118)
≤ (β2

k/h
2)E‖φ̃k,i−1‖2 + σ2

s,k

= (β2
k/h

2)E

∥∥∥∥∥∑
`∈Nk

a1,`k w̃`,i−1

∥∥∥∥∥
2

+ σ2
s,k

(F.26)

≤ (β2
k/h

2)
∑
`∈Nk

a1,`k E ‖w̃`,i−1‖2 + σ2
s,k

≤ (β2
k/h

2)
N∑
`=1

E ‖w̃`,i−1‖2 + σ2
s,k

= (β2
k/2h2)E

∥∥w̃e
i−1
∥∥2 + σ2

s,k

= (β2
k/2h2)E

∥∥∥(V−1
ε

)T VT
ε w̃

e
i−1

∥∥∥2
+ σ2

s,k

≤ (β2
k/2h2)

∥∥∥(V−1
ε

)T
∥∥∥2

E
∥∥VT

ε w̃
e
i−1
∥∥2 + σ2

s,k

(9.55)= (β2
k/2h2) v2

2
[
E‖w̄e

i−1‖2 + E‖w̌e
i−1‖2

]
+ σ2

s,k

(9.86)

where h = 2 for complex data, while the positive constant v2 is independent
of µmax and denotes the norm

v2
∆=
∥∥∥(V−1

ε

)T
∥∥∥ (9.87)

In this way, we can bound the term E‖sei‖2 as follows:

E‖sei‖2 = 2
(

N∑
k=1

E‖sk,i‖2
)

≤ v2
2β

2
d

[
E‖w̄e

i−1‖2 + E‖w̌e
i−1‖2

]
+ σ2

s (9.88)

where we introduced the scalars:

β2
d

∆=
N∑
k=1

β2
k/h

2 (9.89)

σ2
s

∆=
N∑
k=1

2σ2
s,k (9.90)

Substituting into (9.82) we get

E‖s̄ei‖2 + E‖šei‖2 ≤ v2
1v

2
2β

2
dµ

2
max

[
E‖w̄e

i−1‖2 + E‖w̌e
i−1‖2

]
+ v2

1µ
2
maxσ

2
s

(9.91)
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Using this bound in (9.69) and (9.81) we find that

E‖w̄e
i‖2 ≤

(
1− σ11µmax + v2

1v
2
2β

2
dµ

2
max
)
E‖w̄e

i−1‖2 +(
σ2

21µmax

σ11
+ v2

1v
2
2β

2
dµ

2
max

)
E‖w̌e

i−1‖2 + v2
1µ

2
maxσ

2
s

(9.92)

and

E‖w̌e
i‖2 ≤

(
ρ(Jε) + ε+ 3σ2

22µ
2
max

1− ρ(Jε)− ε
+ v2

1v
2
2β

2
dµ

2
max

)
E
∥∥w̌e

i−1
∥∥2 +(

3σ2
12µ

2
max

1− ρ(Jε)− ε
+ v2

1v
2
2β

2
dµ

2
max

)
E
∥∥w̄e

i−1
∥∥2 +(

3
1− ρ(Jε)− ε

)
‖b̌e‖2 + v2

1µ
2
maxσ

2
s (9.93)

We introduce the scalar coefficients

a = 1− σ11µmax + v2
1v

2
2β

2
dµ

2
max = 1−O(µmax) (9.94)

b = σ2
21µmax

σ11
+ v2

1v
2
2β

2
dµ

2
max = O(µmax) (9.95)

c = 3σ2
12µ

2
max

1− ρ(Jε)− ε
+ v2

1v
2
2β

2
dµ

2
max = O(µ2

max) (9.96)

d = ρ(Jε) + ε+ 3σ2
22µ

2
max

1− ρ(Jε)− ε
+ v2

1v
2
2β

2
dµ

2
max

= ρ(Jε) + ε+O(µ2
max) (9.97)

e = v2
1µ

2
maxσ

2
s = O(µ2

max) (9.98)

f =
(

3
1− ρ(Jε)− ε

)
‖b̌e‖2 = O(µ2

max) (9.99)

since ‖b̌e‖ = O(µmax). Using these parameters, we can combine (9.92) and
(9.93) into a single compact inequality recursion as follows:[

E‖w̄e
i‖2

E‖w̌e
i‖2

]
�
[
a b
c d

]
︸ ︷︷ ︸

Γ

[
E‖w̄e

i−1‖2
E‖w̌e

i−1‖2
]

+
[

e
e+ f

]
(9.100)

in terms of the 2 × 2 coefficient matrix Γ indicated above and whose entries
are of the form

Γ =
[

1−O(µmax) O(µmax)
O(µ2

max) ρ(Jε) + ε+O(µ2
max)

]
(9.101)
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Now, we invoke again the property that the spectral radius of a matrix is
upper bounded by any of its norms, and use the 1−norm (maximum absolute
column sum), to conclude that

ρ(Γ) ≤ max
{

1−O(µmax) +O(µ2
max), ρ(Jε) + ε+O(µmax) +O(µ2

max)
}

(9.102)
Since ρ(Jε) < 1 is independent of µmax, and since ε and µmax are small positive
numbers that can be chosen arbitrarily small and independently of each other,
it is clear that the right-hand side of the above expression can be made strictly
smaller than one for sufficiently small ε and µmax. In that case, ρ(Γ) < 1 so
that Γ is stable. Moreover, it holds that

(I2 − Γ)−1 =
[

1− a −b
−c 1− d

]−1

= 1
(1− a)(1− d)− bc

[
1− d b
c 1− a

]
=

[
O(1/µmax) O(1)
O(µmax) O(1)

]
(9.103)

If we now iterate (9.100), and since Γ is stable, we conclude that

lim sup
i→∞

[
E‖w̄e

i‖2
E‖w̌e

i‖2
]
� (I2 − Γ)−1

[
e

e+ f

]
=

[
O(1/µmax) O(1)
O(µmax) O(1)

] [
O(µ2

max)
O(µ2

max)

]
=

[
O(µmax)
O(µ2

max)

]
(9.104)

from which we conclude that

lim sup
i→∞

E‖w̄e
i‖2 = O(µmax), lim sup

i→∞
E‖w̌e

i‖2 = O(µ2
max) (9.105)

and, therefore,

lim sup
i→∞

E‖w̃e
i‖2 = lim sup

i→∞
E
∥∥∥∥(V−1

ε

)T
[
w̄e
i

w̌e
i

]∥∥∥∥2

≤ lim sup
i→∞

v2
2
[
E‖w̄e

i‖2 + E‖w̌e
i‖2
]

= O(µmax) (9.106)

which leads to the desired result (9.11).
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We remark that the type of derivation used in the above proof, which
starts from a stochastic recursion of the form (9.60) and transforms
it into a deterministic recursion of the form (9.100), with the sizes of
the parameters specified in terms of µmax and with a Γ matrix of the
form (9.101), will be a recurring technique in our presentation. For
example, we will encounter a similar derivation in two more locations
in the current chapter while establishing Theorems 9.2 and 9.6 further
ahead — see expressions (9.153) and (9.301); these theorems deal with
the stability of the fourth and first-order moments of the error vector.
We will also encounter a similar derivation in the next chapter — see
expressions (10.48), (10.77), and (10.89).

9.2 Stability of Fourth-Order Error Moment

In the next chapter we will derive a long-term model to approximate the
behavior of the network in the long term, as i→∞, and for sufficiently
small step-sizes. The long-term model will be more tractable for perfor-
mance analysis in the steady-state regime. At that point, we will argue
that performance results that are derived from analyzing the long-term
model provide accurate expressions for the performance results of the
original network model to first-order in the step-size parameters. This is
a reassuring conclusion that will lead to useful closed-form performance
expressions. These results will be established under the condition that
the fourth-order moment of the error vector, E‖w̃k,i‖4, is asymptot-
ically stable. We therefore establish this fact here and call upon it
later in the analysis. To do so, we will rely on condition (8.121) on the
fourth-order moments of the individual gradient noise processes.

Theorem 9.2 (Fourth-order moment stability). Consider a network of N inter-
acting agents running the distributed strategy (8.46) with a primitive matrix
P = A1AoA2. Assume the aggregate cost (9.10) and the individual costs,
Jk(w), satisfy the conditions in Assumption 6.1. Assume further that the first
and fourth-order moments of the gradient noise process satisfy the conditions
of Assumption 8.1 with the second-order moment condition (8.115) replaced
by the fourth-order moment condition (8.121). Then, the fourth-order mo-
ments of the network error vectors are stable for sufficiently small step-sizes,
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namely, it holds that

lim sup
i→∞

E‖w̃k,i‖4 = O(µ2
max), k = 1, 2, . . . , N (9.107)

Proof. We again establish the result for the general case of complex data and,
therefore, h = 2 throughout this derivation. We recall relations (9.61)–(9.62),
namely,

w̄e
i = (I2M −DT

11,i−1)w̄e
i−1 − DT

21,i−1w̌
e
i−1 + s̄ei (9.108)

w̌e
i = (J T

ε −D
T
22,i−1)w̌e

i−1 − DT
12,i−1w̄

e
i−1 + šei − b̌e (9.109)

Now note that, for any (deterministic or random) column vectors a and b, it
holds that

‖a+ b‖4 = ‖a‖4 + ‖b‖4 + 2‖a‖2 ‖b‖2 +
4Re(a∗b)

[
‖a‖2 + ‖b‖2 + Re(a∗b)

]
(9.110)

so that using the vector inequalities

[Re(a∗b)]2 ≤ |a∗b|2 ≤ ‖a‖2 ‖b‖2 (9.111)

and
2Re(a∗b) ≤ ‖a‖2 + ‖b‖2 (9.112)

we get

‖a+ b‖4 ≤ ‖a‖4 + 3‖b‖4 + 8‖a‖2 ‖b‖2 + 4‖a‖2 Re(a∗b) (9.113)

Applying this inequality to (9.108) with the identifications

a ← (I2M −DT
11,i−1)w̄e

i−1 −D
T
21,i−1w̌

e
i−1 (9.114)

b ← s̄ei (9.115)

we obtain

‖w̄e
i‖4 ≤ ‖(I2M −DT

11,i−1)w̄e
i−1 −D

T
21,i−1w̌

e
i−1‖4 + 3‖s̄ei‖4 +

8‖(I2M −DT
11,i−1)w̄e

i−1 − DT
21,i−1w̌

e
i−1‖2 ‖s̄ei‖2 +

4‖(I2M −DT
11,i−1)w̄e

i−1 −D
T
21,i−1w̌

e
i−1‖2 Re(a∗s̄ei )

(9.116)

Conditioning on F i−1 and computing the expectations of both sides, we will
find that the expectation of the last term on the right-hand side of the above
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expression is zero due to the assumed properties on the gradient noise process.
Taking expectations again we then conclude that

E‖w̄e
i‖4 ≤ E‖(I2M −DT

11,i−1)w̄e
i−1 −D

T
21,i−1w̌

e
i−1‖4 + 3

(
E‖s̄ei‖4

)
+

8
(
E‖(I2M −DT

11,i−1)w̄e
i−1 −D

T
21,i−1w̌

e
i−1‖2

) (
E‖s̄ei‖2

)
= E

∥∥∥∥(1− t) 1
1− t (I2M −D

T
11,i−1)w̄e

i−1 − t
1
t
DT

21,i−1w̌
e
i−1

∥∥∥∥4
+

3
(
E‖s̄ei‖4

)
+ 8

(
E‖s̄ei‖2

)
×(

E
∥∥∥∥(1− t) 1

1− t (I2M −D
T
11,i−1)w̄e

i−1 − t
1
t
DT

21,i−1w̌
e
i−1

∥∥∥∥2
)

≤ (1− σ11µmax)4

(1− t)3 E‖w̄e
i−1‖4 + σ4

21µ
4
max

t3
E
∥∥w̌e

i−1
∥∥4 + 3E‖s̄ei‖4 +

8
(
E‖s̄ei‖2

)( (1− σ11µmax)2

1− t E
∥∥w̄e

i−1
∥∥2 + σ2

21µ
2
max
t

E
∥∥w̌e

i−1
∥∥2
)

(9.117)

for any arbitrary positive number t ∈ (0, 1). Similarly, using the identifications

a ← (J T
ε −D

T
22,i−1)w̌e

i−1 −D
T
12,i−1w̄

e
i−1 − b̌e (9.118)

b ← šei (9.119)

for relation (9.109), we can establish the inequality

‖w̌e
i‖4 ≤

∥∥∥(J T
ε −D

T
22,i−1)w̌e

i−1 −D
T
12,i−1w̄

e
i−1 − b̌e

∥∥∥4
+ 3‖šei‖4 +

8
∥∥∥(J T

ε −D
T
22,i−1)w̌e

i−1 −D
T
12,i−1w̄

e
i−1 − b̌e

∥∥∥2
‖šei‖2 +

4‖a‖2Re(a∗b) (9.120)

from which we conclude that, again for any positive scalar t ∈ (0, 1):
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E‖w̌e
i‖4

≤ E
∥∥∥(J T

ε −D
T
22,i−1)w̌e

i−1 − DT
12,i−1w̄

e
i−1 − b̌e

∥∥∥4
+ 3E‖šei‖4 +

8
(
E‖šei‖2

)(
E
∥∥∥(J T

ε −D
T
22,i−1)w̌e

i−1 − DT
12,i−1w̄

e
i−1 − b̌e

∥∥∥2
)

≤ E
∥∥∥∥t1tJ T

ε w̌
e
i−1 − (1− t) 1

1− t

[
DT

22,i−1w̌
e
i−1 +DT

12,i−1w̄
e
i−1 + b̌e

]∥∥∥∥4
+

3
(
E‖šei‖4

)
+ 8

(
E‖šei‖2

)
×(

E
∥∥∥t1
t
J T
ε w̌

e
i−1 − (1− t) 1

1− t
[
DT

22,i−1w̌
e
i−1 + DT

12,i−1w̄
e
i−1 + b̌e

]∥∥∥2
)

≤ 1
t3
‖Jε‖4 E

∥∥w̌e
i−1
∥∥4 +

1
(1− t)3E

∥∥∥DT
22,i−1w̌

e
i−1 +DT

12,i−1w̄
e
i−1 + b̌e

∥∥∥4
+

3
(
E‖šei‖4

)
+ 8

(
E‖šei‖2

)
×(1

t
‖Jε‖2E ‖w̌ei−1‖2 + 1

1− tE
∥∥DT

22,i−1w̌
e
i−1 +DT

12,i−1w̄
e
i−1 + b̌e

∥∥2
)

≤ (ρ(Jε) + ε)4

t3
E
∥∥w̌e

i−1
∥∥4 +

27σ4
22µ

4
max

(1− t)3 E
∥∥w̌e

i−1
∥∥4 + 27σ4

12µ
4
max

(1− t)3 E
∥∥w̄e

i−1
∥∥4 + 27‖b̌e‖4 +

3
(
E‖šei‖4

)
+ 8(ρ(Jε) + ε)2

t

(
E
∥∥w̌e

i−1
∥∥2
)
E‖šei‖2 +

8
(

3σ2
22µ

2
max

1− t E
∥∥w̌e

i−1
∥∥2 + 3σ2

12µ
2
max

1− t E
∥∥w̄e

i−1
∥∥2 + 3‖b̌e‖2

)
E‖šei‖2

(9.121)

where in the last inequality we used the result

‖a+ b+ c‖4 =
∥∥∥∥1

33a+ 1
33b+ 1

33c
∥∥∥∥4

≤ 1
3‖3a‖

4 + 1
3‖3b‖

4 + 1
3‖3c‖

4

= 27‖a‖4 + 27‖b‖4 + 27‖c‖4 (9.122)

We now bound the fourth-order noise terms that appear in expressions (9.121)
and (9.121) for E‖w̄e

i‖4 and E‖w̌e
i‖4, namely, E‖s̄ei‖4 and E‖šei‖4. Thus, note
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that

E‖s̄ei‖4 + E‖šei‖4 ≤ E (‖s̄ei‖2 + ‖šei‖2)2

= E

(∥∥∥∥[ s̄eišei
]∥∥∥∥2
)2

= E
∥∥VT

ε AT
2Msei

∥∥4

≤
∥∥VT

ε AT
2
∥∥4 ‖M‖4 E‖sei‖4

≤ v4
1µ

4
max E‖sei‖4 (9.123)

On the other hand, using Jensen’s inequality (F.26) and applying it to the
convex function f(x) = x2,

E‖sei‖4 = E (‖sei‖2)2

= 4E
(

N∑
k=1
‖sk,i‖2

)2

= 4E
(

1
N
N‖s1,i‖2 + 1

N
N‖s2,i‖2 + . . .+ 1

N
N‖sN,i‖2

)2

(F.26)
≤ 4

N
E
(
(N‖s1,i‖2)2 + (N‖s2,i‖2)2 + . . .+ (N‖sN,i‖2)2)

= 4N
N∑
k=1

E‖sk,i‖4 (9.124)

in terms of the fourth-order moments of the individual gradient noise pro-
cesses, E‖sk,i‖4. Likewise, we have

N∑
`=1
‖w̃`,i−1‖4 ≤

(
‖w̃1,i−1‖2 + ‖w̃2,i−1‖2 + . . .+ ‖w̃N,i−1‖2

)2

=
(
‖w̃i−1‖2

)2

=
(

1
2
∥∥w̃e

i−1
∥∥2
)2

= 1
4
∥∥w̃e

i−1
∥∥4 (9.125)
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Therefore, for each term sk,i in (9.124) we can write

E‖sk,i‖4
(8.122)
≤ (β4

4,k/h
4)E‖φ̃k,i−1‖4 + σ4

s4,k

= (β4
4,k/h

4)E

∥∥∥∥∥∑
`∈Nk

a1,`k w̃`,i−1

∥∥∥∥∥
4

+ σ4
s4,k

(F.26)

≤ (β4
4,k/h

4)
∑
`∈Nk

a1,`k E ‖w̃`,i−1‖4 + σ4
s4,k

≤ (β4
4,k/h

4)
N∑
`=1

E ‖w̃`,i−1‖4 + σ4
s4,k

(9.125)
≤ (β4

4,k/4h4)E
∥∥w̃e

i−1
∥∥4 + σ4

s4,k

= (β4
4,k/4h4)E

∥∥∥(V−1
ε

)T VT
ε w̃

e
i−1

∥∥∥4
+ σ4

s4,k

≤ (β4
4,k/4h4)

∥∥∥(V−1
ε

)T
∥∥∥4

E
∥∥VT

ε w̃
e
i−1
∥∥4 + σ4

s4,k

(a)= 2(β4
4,k/4h4) v4

2
[
E‖w̄e

i−1‖4 + E‖w̌e
i−1‖4

]
+ σ4

s4,k

(9.126)

where in step (a) we used (9.55) to conclude that

∥∥VT
ε w̃

e
i−1
∥∥4 =

(∥∥∥∥[ w̄e
i−1

w̌e
i−1

]∥∥∥∥2
)2

=
(∥∥w̄e

i−1
∥∥2 +

∥∥w̌e
i−1
∥∥2
)2

≤ 2
∥∥w̄e

i−1
∥∥4 + 2

∥∥w̌e
i−1
∥∥4 (9.127)

In this way, we can bound the term E‖sei‖4 as follows:

E‖sei‖4 ≤ v4
2β

4
d4
[
E‖w̄e

i−1‖4 + E‖w̌e
i−1‖4

]
+ σ4

s4 (9.128)

where we introduced the scalars:

β4
d4

∆= 2N
(

N∑
k=1

β4
4,k/h

4

)
(9.129)

σ4
s4

∆= 4N
(

N∑
k=1

σ4
s4,k

)
(9.130)
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Substituting into (9.123) we get

E‖s̄ei‖4 + E‖šei‖4 ≤ v4
1v

4
2β

4
d4µ

4
max

[
E‖w̄e

i−1‖4 + E‖w̌e
i−1‖4

]
+

v4
1µ

4
maxσ

4
s4 (9.131)

Returning to (9.117), selecting t = σ11µmax, and using the bounds (9.91) and
(9.131), we then find that

E‖w̄e
i‖4 ≤ (1− σ11µmax)E‖w̄e

i−1‖4 + σ4
21µmax

σ3
11

E
∥∥w̌e

i−1
∥∥4 +

3v4
1v

4
2β

4
d4µ

4
max

[
E‖w̄e

i−1‖4 + E‖w̌e
i−1‖4

]
+ 3v4

1µ
4
maxσ

4
s4 +

8v2
1v

2
2β

2
dµ

2
max(1− σ11µmax)

(
E
∥∥w̄e

i−1
∥∥2
)2

+

8v2
1v

2
2β

2
dµ

2
max(1− σ11µmax)

(
E
∥∥w̄e

i−1
∥∥2
)(

E
∥∥w̌e

i−1
∥∥2
)

+

8v2
1µ

2
maxσ

2
s(1− σ11µmax)E

∥∥w̄e
i−1
∥∥2 +

8σ
2
21µmax

σ11
v2

1v
2
2β

2
dµ

2
max

(
E
∥∥w̌e

i−1
∥∥2
)2

+

8σ
2
21µmax

σ11
v2

1v
2
2β

2
dµ

2
max

(
E
∥∥w̌e

i−1
∥∥2
)(

E
∥∥w̄e

i−1
∥∥2
)

+

8σ
2
21µmax

σ11
v2

1µ
2
maxσ

2
sE‖w̌

e
i−1‖2 (9.132)

Now, for any real random variables a and b it holds that

(Ea)2 ≤ Ea2 (9.133)

and
2
(
Ea2) · (Eb2) ≤ Ea4 + Eb4 (9.134)

This latter property can be established as follows. Using (Ea2 − Eb2)2 ≥ 0,
we get

2
(
Ea2) · (Eb2) ≤

(
Ea2)2 +

(
Eb2)2

≤ Ea4 + Eb4 (9.135)

These properties enable us to write

2
(
E
∥∥w̌e

i−1
∥∥2
)(

E
∥∥w̄e

i−1
∥∥2
)
≤ E

∥∥w̌e
i−1
∥∥4 + E

∥∥w̄e
i−1
∥∥4 (9.136)(

E
∥∥w̌e

i−1
∥∥2
)2

≤ E
∥∥w̌e

i−1
∥∥4 (9.137)(

E
∥∥w̄e

i−1
∥∥2
)2

≤ E
∥∥w̄e

i−1
∥∥4 (9.138)
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so that

E‖w̄e
i‖4 ≤ aE‖w̄e

i−1‖4 + bE
∥∥w̌e

i−1
∥∥4 + a′ E‖w̄e

i−1‖2 + b′ E‖w̌e
i−1‖2 + e

(9.139)
where the constant parameters {a, b, a′, b′, e} have the following form

a = 1− σ11µmax +O(µ2
max) (9.140)

b = O(µmax) (9.141)
a′ = O(µ2

max) (9.142)
b′ = O(µ3

max) (9.143)
e = O(µ4

max) (9.144)

In a similar manner, using (9.121) and selecting

t = ρ(Jε) + ε < 1 (9.145)

we can verify that

E‖w̌e
i‖4 ≤ (ρ(Jε) + ε)E‖w̌e

i−1‖4 +
27µ4

max
(1− ρ(Jε)− ε)3

[
σ4

22E‖w̌
e
i−1‖4 + σ4

12E‖w̄e
i−1‖4

]
+

3v4
1v

4
2β

4
d4µ

4
max

[
E‖w̄e

i−1‖4 + E‖w̌e
i−1‖4

]
+ 3v4

1µ
4
maxσ

4
s4

8 (ρ(Jε) + ε) v2
1µ

2
maxσ

2
sE‖w̌

e
i−1‖2 + 27‖b̌e‖4 +

4 (ρ(Jε) + ε) v2
1v

2
2β

2
dµ

2
max

[
E‖w̄e

i−1‖4 + 3E‖w̌e
i−1‖4

]
+

24µ4
maxv

2
1σ

2
s

1− ρ(Jε)− ε
[
σ2

22E‖w̌
e
i−1‖2 + σ2

12E‖w̄e
i−1‖2

]
+

12µ4
maxv

2
1v

2
2β

2
d

1− ρ(Jε)− ε
×[

(σ2
22 + 3σ2

12)E‖w̄e
i−1‖2 + (σ2

12 + 3σ2
22)E‖w̌e

i−1‖2
]

+
24‖b̌e‖2v2

1v
2
2β

2
dµ

2
max

[
E‖w̄e

i−1‖2 + E‖w̌e
i−1‖2

]
+

24‖b̌e‖2v2
1µ

2
maxσ

2
s

(9.146)

so that

E‖w̌e
i‖4 ≤ cE‖w̄e

i−1‖4 + dE
∥∥w̌e

i−1
∥∥4 + c′ E‖w̄e

i−1‖2 + d′ E‖w̌e
i−1‖2 + f

(9.147)



530 Stability of Multi-Agent Networks

where the constant parameters {c, d, c′, d′, f} have the following form

c = O(µ2
max) (9.148)

d = ρ(Jε) + ε+O(µ2
max) (9.149)

c′ = O(µ4
max) (9.150)

d′ = O(µ2
max) (9.151)

f = O(µ4
max) (9.152)

In other words, we can write[
E‖w̄e

i‖4
E‖w̌e

i‖4
]
�
[
a b
c d

]
︸ ︷︷ ︸

∆= Γ

[
E‖w̄e

i−1‖4
E‖w̌e

i−1‖4
]

+
[
a′ b′

c′ d′

] [
E‖w̄e

i−1‖2
E‖w̌e

i−1‖2
]

+
[
e
f

]

(9.153)
in terms of the 2 × 2 coefficient matrix Γ indicated above and whose entries
are of the form

Γ =
[

1−O(µmax) O(µmax)
O(µ2

max) ρ(Jε) + ε+O(µ2
max)

]
(9.154)

We again find that Γ is a stable matrix for sufficiently small µmax and ε.
Moreover, using (9.105) we have

lim sup
i→∞

[
a′ b′

c′ d′

] [
E‖w̄e

i−1‖2
E‖w̌e

i−1‖2
]

=
[
O(µ3

max)
O(µ4

max)

]
(9.155)

In this case, we can iterate (9.153) and use (9.103) to conclude that

lim sup
i→∞

E‖w̄e
i‖4 = O(µ2

max), lim sup
i→∞

E‖w̌e
i‖4 = O(µ4

max) (9.156)

and, therefore,

lim sup
i→∞

E‖w̃e
i‖4 = lim sup

i→∞
E

(∥∥∥∥(V−1
ε

)T
[
w̄e
i

w̌e
i

]∥∥∥∥2
)2

≤
∥∥∥(V−1

ε

)T
∥∥∥4
(

lim sup
i→∞

E
(
‖w̄e

i‖2 + ‖w̌e
i‖2
)2)

≤ lim sup
i→∞

2v4
2
(
E‖w̄e

i‖4 + E‖w̌e
i‖4
)

= O(µ2
max) (9.157)

which leads to the desired result (9.107).
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9.3 Stability of First-Order Error Moment

Using the fact that (Ea)2 ≤ Ea2 for any real-valued random variable
a, we can readily conclude from (9.11), by using a = ‖w̃k,i‖, that

lim sup
i→∞

E‖w̃k,i‖ = O(µ1/2
max), k = 1, 2, . . . , N (9.158)

so that the first-order moment of the error vector tends to a bounded
region in the order of O(µ1/2

max). However, a smaller upper bound on
‖E w̃k,i‖ can be derived with O(µ1/2

max) replaced by O(µmax), as shown
in (9.1) and as we proceed to verify in this section. To do so, we examine
the evolution of the mean-error vector more closely.

We reconsider the network error recursion (9.12), namely,

w̃e
i = Bi−1w̃

e
i−1 + AT

2Msei (we
i−1) − AT

2Mbe, i ≥ 0 (9.159)

where, from the expressions in Lemma 8.1:

Bi−1 = PT − AT
2MHi−1AT

1 (9.160)
PT = AT

2AT
oAT

1 (9.161)

Hi−1
∆= diag {H1,i−1, H2,i−1, . . . , HN,i−1 } (9.162)

Hk,i−1
∆=

∫ 1

0
∇2
wJk(w? − tφ̃k,i−1)dt (9.163)

Conditioning both sides of (9.159) on F i−1, invoking the conditions on
the gradient noise process from Assumption 8.1, and computing the
conditional expectations we obtain:

E [ w̃e
i |F i−1] = Bi−1w̃

e
i−1 − AT

2Mbe (9.164)

where the term involving sei is eliminated since E [sei |F i−1] = 0. Taking
expectations again we arrive at

E w̃e
i = E

[
Bi−1w̃

e
i−1
]
− AT

2Mbe (9.165)

Let
H̃i−1

∆= H − Hi−1 (9.166)
where, in a manner similar to (9.162), we define the constant matrix

H ∆= diag { H1, H2, . . . , HN } (9.167)
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with each Hk,i−1 given by the value of the Hessian matrix at the limit
point defined by (8.55), namely,

Hk
∆= ∇2

w Jk(w?) (9.168)

Then, using (9.166) in the expression for Bi−1, we can write

Bi−1 = PT −AT
2MHAT

1 + AT
2MH̃i−1AT

1
∆= B + AT

2MH̃i−1AT
1 (9.169)

in terms of the constant coefficient matrix

B ∆= PT −AT
2MHAT

1 (9.170)

In this way, the mean-error relation (9.165) becomes

E w̃e
i = B

(
E w̃e

i−1
)
− AT

2Mbe + AT
2Mci−1 (9.171)

in terms of a deterministic perturbation sequence defined by

ci−1
∆= E

(
H̃i−1AT

1 w̃
e
i−1

)
(9.172)

The constant matrix B defined by (9.170), and which drives the
mean-error recursion (9.171), will play a critical role in characterizing
the performance of multi-agent networks in future chapters. It also
plays an important role in characterizing the mean-error stability of
the network in this section. We therefore establish several important
properties for B and subsequently use these properties to establish
result (9.1) later in Theorem 9.6.

Stability of the Coefficient Matrix B
The first key result pertains to the stability of the matrix B for suffi-
ciently small step-sizes.

Theorem 9.3 (Stability of B). Consider a network of N interacting agents
running the distributed strategy (8.46) with a primitive matrix P = A1AoA2.
Assume the aggregate cost (9.10) satisfies condition (6.13) in Assumption 6.1.
Then, the constant matrix B defined by (9.170) is stable for sufficiently small
step-sizes and its spectral radius is given by

ρ(B) = 1− λmin

(
N∑
k=1

qkHk

)
+ O

(
µ(N+1)/N

max

)
(9.173)
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where λmin(·) denotes the smallest eigenvalue of its Hermitian matrix
argument.

Proof. We first establish the result for diffusion and consensus networks and
then extend the conclusion to the general distributed structure (8.46) with
three combination matrices {A1, Ao, A2}. The arguments used in steps (a)
and (b) below are justified when all step-sizes in M are strictly positive,
which is the situation under study. The more general argument under step
(c) below is applicable even to situations where some of the step-sizes are
zero (a scenario we shall encounter later in Chapter 13).

(a) Diffusion strategies. For the case of diffusion strategies, the stability ar-
gument follows directly by examining the expression for the matrix B. Recall
that different choices for {Ao, A1, A2} correspond to different strategies, as
already shown by (8.7)–(8.10). In particular, for ATC and CTA diffusion, we
set A1 = A or A2 = A, for some left-stochastic matrix A, and the matrix
Ao disappears from B since Ao = IN for these strategies. Specifically, the
expression for B becomes

Batc = AT (I2MN −MH) (9.174)
Bcta = (I2MN −MH)AT (9.175)

where A = A⊗ I2M is left-stochastic and

M ∆= diag{ µ1I2M , µ2I2M , . . . , µNI2M } (9.176)

H ∆= diag { H1, H2, . . . , HN } (9.177)

The important fact to note from (9.174) and (9.175) is that the combination
matrix AT appears multiplying (from left or right) the block diagonal matrix
I2MN − MH. We can then immediately call upon result (F.24) from the
appendix, and employ the block maximum norm with blocks of size 2M×2M
each, to conclude that

ρ (Batc) ≤ ρ (I2MN −MH) (9.178)
ρ (Bcta) ≤ ρ (I2MN −MH) (9.179)

Therefore, for both cases of ATC and CTA diffusion, the respective coefficient
matrices B become stable whenever the block-diagonal matrix I2MN −MH
is stable. It is easily seen that this latter condition is guaranteed for step-sizes
µk satisfying

µk <
2

ρ(Hk) , k = 1, 2, . . . , N (9.180)
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from which we conclude that sufficiently small step-sizes stabilize Batc or Bcta.

(b) Consensus strategy. For the consensus strategy, we set A1 = A2 = IN and
Ao = A. In this case, the expression for B becomes

Bcons = AT −MH (9.181)

where A now appears as an additive term. A condition on the step-sizes to
ensure the stability of Bcons can be deduced from Weyl’s Theorem (F.33) in
the appendix if we additionally assume that the left-stochastic matrix A is
symmetric [248], in which case it will also be doubly stochastic. Since A is then
both symmetric and left-stochastic, its eigenvalues will be real and lie inside
the interval [−1, 1]. Hence, (I2MN − AT) ≥ 0. Moreover, since the matrices
M and H are block-diagonal Hermitian and commute with each other, i.e.,
HM = MH, it follows that Bcons in (9.181) is Hermitian, as well as the
matrix Bncop = I2MN −MH. Now note that we can write the following two
trivial equalities (by adding and subtracting equal terms):

Bncop = Bcons + (I2MN −AT) (9.182)
Bcons = (λmin(A) · I2MN −MH) +

(
AT − λmin(A) · I2MN

)
(9.183)

so that by applying Weyl’s Theorem (F.33) to both representations, we obtain
the following eigenvalue relations:

λ`(Bcons) ≤ λ`(Bncop) (9.184)
λ`(Bcons) ≥ λ` {λmin(A) · I2MN −MH} (9.185)

for ` = 1, 2, . . . , 2MN and where we are assuming ordered eigenvalues, namely,
λ1 ≥ λ2 ≥ . . . , for any of the matrix arguments. It follows that the matrix
Bcons will be stable, namely, −1 < λ`(Bcons) < 1 for all ` if

λ`(Bncop) < 1 (9.186)
λ` {λmin(A) · I2MN −MH} > −1 (9.187)

The first condition is automatically satisfied due to the form of the matrix
Bncop and since MH > 0. For the second condition, it will be satisfied by
step-sizes {µk} such that

µk <
1 + λmin(A)
ρ(Hk) , k = 1, 2, . . . , N (9.188)

Since we are dealing with strongly-connected networks, the matrix A is
primitive and, therefore, it has a single eigenvalue matching its spectral
radius, which is equal to one. That eigenvalue occurs at +1 so that
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λmin(A) > −1 and the upper bound in (9.188) is positive. We therefore
conclude that sufficiently small step-sizes stabilize B for consensus strategies
with a symmetric combination policy A. If A is not symmetric, then the next
argument would apply to this case.

(c) General case (eigenvalue perturbation analysis). For the general case,
when the matrix Ao is not necessarily the identity matrix or symmetric, and
when all three matrices {Ao, A1, A2} or subsets thereof may be present, the
argument is more demanding. The argument that follows is based on an eigen-
value perturbation analysis in the small step-size regime similar to [277]. We
establish the result for the general case of complex data and, therefore, h = 2
throughout this derivation.

We introduce the same Jordan canonical decomposition (9.24) for the
matrix P , namely,

P
∆= VεJV

−1
ε (9.189)

J =
[

1 0
0 Jε

]
(9.190)

where the matrix J
ε
consists of Jordan blocks of forms similar to (9.25) with

ε > 0 appearing on the lower diagonal. The value of ε can be chosen to be
arbitrarily small and is independent of µmax. The Jordan decomposition of
the extended matrix P = P ⊗ I2M is given by

P = (Vε ⊗ I2M )(J ⊗ I2M )(V −1
ε ⊗ I2M ) (9.191)

so that substituting into (9.170) we obtain

B =
(
(V −1
ε )T ⊗ I2M

) {
(JT ⊗ I2M )−DT} (V T

ε ⊗ I2M
)

(9.192)

where

DT ∆=
(
V T
ε ⊗ I2M

)
AT

2MHAT
1
(
(V −1
ε )T ⊗ I2M

)
≡

[
DT

11 DT
21

DT
12 DT

22

]
(9.193)

Using the partitioning (9.23)–(9.24) and the fact that

A1 = A1 ⊗ I2M , A2 = A2 ⊗ I2M (9.194)
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we find that the block entries {Dmn} in (9.193) are given by

D11 =
N∑
k=1

qkH
T
k (9.195)

D12 = (1T ⊗ I2M )HTM(A2VR ⊗ I2M ) (9.196)
D21 = (V T

L A1 ⊗ I2M )HT(q ⊗ I2M ) (9.197)
D22 = (V T

L A1 ⊗ I2M )HTM(A2VR ⊗ I2M ) (9.198)

In a manner similar to the arguments used in the proof of Theorem 9.1, we
can verify that

D11 = O(µmax) (9.199)
D12 = O(µmax) (9.200)
D21 = O(µmax) (9.201)
D22 = O(µmax) (9.202)

ρ(I2M −DT
11) = 1− σ11µmax = 1−O(µmax) (9.203)

where σ11 is a positive scalar independent of µmax.
Let

Vε
∆= Vε ⊗ I2M , Jε

∆= Jε ⊗ I2M (9.204)
Then, using (9.192), we can write

B =
(
V−1
ε

)T
[
I2M −DT

11 −DT
21

−DT
12 J T

ε
−DT

22

]
VT
ε (9.205)

so that
VT
ε B
(
V−1
ε

)T =
[
I2M −DT

11 −DT
21

−DT
12 J T

ε
−DT

22

]
(9.206)

which shows that the matrix B is similar to, and therefore has the same
eigenvalues as, the block matrix on the right-hand side, written as

B ∼
[
I2M −O(µmax) O(µmax)

O(µmax) J T
ε +O(µmax)

]
(9.207)

Now recall that Jε is (N − 1)× (N − 1) and has a Jordan structure. For
ease of presentation, and without any loss of generality, let us assume that Jε
consists of two Jordan blocks, say, as

Jε =


λa
ε λa

λb
ε λb

ε λb

 (9.208)
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Then, the matrix Jε = Jε⊗ I2M has dimensions 2M(N −1)×2M(N −1) and
is given by

Jε = Jε ⊗ I2M


λaI2M
εI2M λaI2M

λbI2M
εI2M λbI2M

εI2M λbI2M

 (9.209)

More generically, for multiple Jordan blocks, it is clear that we can express
Jε in the following lower-triangular form:

Jε =


λa,2I2M

λa,3I2M

K
. . .

λa,LI2M

 (9.210)

with scalars {λa,`} on the diagonal, all of which have norms strictly less than
one, and where the entries of the strictly lower-triangular matrix K are either
ε or zero. In the above representation, we are assuming that Jε consists of
several Jordan blocks. It follows that

J T
ε +O(µmax) =

 λa,2I2M +O(µmax) KT +O(µmax)
. . .

O(µmax) λa,LI2M +O(µmax)


(9.211)

We introduce the eigen-decomposition of the Hermitian positive-definite
matrix DT

11 and denote it by:

DT
11

∆= UΛU∗ (9.212)

where U is unitary and Λ has positive-diagonal entries {λk}; the matrices
U and Λ are 2M × 2M . Using U , we further introduce the following block-
diagonal similarity transformation:

T ∆= diag
{
µ1/N

maxU, µ
2/N
maxI2M , . . . , µ

(N−1)/N
max I2M , µmaxI2M

}
(9.213)

where all block entries are defined in terms of I2M , except for the first entry
defined in terms of U . We now use (9.205) to get

T −1
(
VT
ε B
(
V−1
ε

)T
)
T = (9.214)
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B O

(
µ

(N+1)/N
max

)
λa,2I2M +O(µmax) O

(
µ

1/N
max

)
O(µ1/N

max)
. . .

O
(
µ

1/N
max

)
λa,LI2M +O(µmax)


where we introduced the 2M × 2M diagonal matrix

B
∆= I2M − Λ (9.215)

It follows from (9.214) that all off-diagonal entries of the above transformed
matrix are at least O(µ1/N

max). Although the factor µ1/N
max decays slower than

µmax, it nevertheless becomes small for sufficiently small µmax. Then, call-
ing upon Gershgorin’s Theorem (F.37) from the appendix, we conclude from
(9.214) that the eigenvalues of B are are either located in the Gershgorin cir-
cles that are centered at the eigenvalues of B with radii O(µ(N+1)/N

max ) or in the
Gershgorin circles that are centered at the {λa,`} with radii O(µ1/N

max), namely,

|λ(B)− λ(B)| ≤ O
(
µ(N+1)/N

max

)
or |λ(B)− λa,`| ≤ O

(
µ1/N

max

)
(9.216)

where λ(B) and λ(B) denote any of the eigenvalues of B and B, and ` =
2, . . . , L. It follows that

ρ(B) ≤ ρ(B) +O
(
µ(N+1)/N

max

)
or ρ(B) ≤ ρ(Jε) +O(µ1/N

max) (9.217)

Now since Jε is a stable matrix, we know that ρ(Jε) < 1. We express this
spectral radius as

ρ(Jε) = 1− δJ (9.218)

where δJ is positive and independent of µmax. We also know from (9.203) that

ρ(B) = 1− σ11µmax < 1 (9.219)

since B = U∗(I2M −DT
11)U . We conclude from (9.217) that

ρ(B) ≤ 1− σ11µmax +O
(
µ(N+1)/N

max

)
or ρ(B) ≤ 1− δJ +O(µ1/N

max) (9.220)

If we now select µmax � 1 small enough such that

O
(
µ(N+1)/N

max

)
< σ11µmax and O

(
µ1/N

max

)
+O(µmax) < δJ (9.221)
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Figure 9.1: The larger circle on the left has radius ρ(Jε) + O(µ1/N
max) and is

disjoint from the smaller circle on the right whose radius is O(µmax). The
tiny discs inside the smaller circle on the right are disjoint and have radii
O(µN+1/N

max ) each. The eigenvalue corresponding to the spectral radius of B
lies inside the rightmost smaller disc centered around ρ(B).

then we would be able to conclude that ρ(B) < 1 so that B is stable for
sufficiently small step-sizes. Both conditions in (9.221) can be satisfied simul-
taneously and they will ensure

ρ(B) = 1−O(µmax) (9.222)

With regards to expression (9.173) for the spectral radius of B, we call
upon the stronger statement of Gershgorin’s theorem mentioned after (F.37)
in the appendix and which relates to how the eigenvalues of a matrix are
distributed over disjoint Gershgorin sets. To begin with, note from (9.203)
that for µmax � 1, all eigenvalues of B = I2M−Λ are real-valued and positive.
We then conclude from (9.222) that all eigenvalues of B lie inside the open
interval

λ(B) ∈ (1−O(µmax), 1) (9.223)

It further follows from this result that the eigenvalues of B are at most
O(µmax) apart from each other.

Now, referring to (9.216), the condition on the left describes a region in
space that consists of the union of 2M Gershgorin discs: each disc is centered
at one of the eigenvalues of B with radius O(µ(N+1)/N

max ). We can then choose
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µmax small enough such that the discs that are centered at distinct eigenvalues
ofB remain disjoint from each other. The union of these discs will be contained
within the circle that is centered at one and with radius O(µmax) — see the
region described by the smaller circle on the right in Figure 9.1.

Let us now examine the rightmost condition in (9.216). This condition
describes a region in space that consists of the union of 2M(N−1) Gershgorin
discs: each disc is now centered at an eigenvalue of Jε with radius O(µ1/N

max).
Therefore, again for µmax � 1, the union of these discs is contained within a
circle centered at the origin and with radius ρ(Jε) + O(µ1/N

max); this radius is
smaller than 1−O(µmax) by virtue of the second condition in (9.221) — see
the region described by the larger circle on the left in Figure 9.1. It follows
that the two circular regions that we identified are disjoint from each other:
one region is determined by the circle on the left that is centered at the origin
with radius smaller than 1 − O(µmax), while the other region is determined
by the circle on the right that is centered at one and has radius O(µmax).
The 2M discs that appear within this smaller circle are disjoint from the
discs that appear inside the larger circle on the left. We conclude that 2M of
the eigenvalues of B are located inside the discs in the rightmost circle. The
eigenvalue that attains the spectral radius of B occurs inside this region so
that

ρ(B) = ρ(B) +O
(
µ(N+1)/N

max

)
(9.224)

Since it is assumed that µmax � 1, and by referring back to expression (9.195)
for D11, we have

ρ(B) = ρ(I2M −DT
11) = 1− λmin

(
N∑
k=1

qkHk

)
(9.225)

Combining this relation with (9.224), we arrive at (9.173).

Size of Entries of B
We can further exploit the structure revealed by expression (9.205) for
B to examine the size of the entries of (I−B)−1. In our derivations, the
matrix B also appears transformed under the similarity transformation:

B̄ ∆= VT
ε B

(
V−1
ε

)T (9.206)=
[
I2M −DT

11 −DT
21

−DT
12 J T

ε −DT
22

]
(9.226)

where, according to (9.204),

Vε
∆= Vε ⊗ IhM (9.227)
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We therefore examine both matrices. The following result clarifies the
size of the entries of (I − B)−1 and (I − B̄)−1.

Lemma 9.4 (Similarity transformation). Assume the matrix P is primitive. It
holds that for sufficiently small step-sizes:

(I − B)−1 = O(1/µmax) (9.228)

(I − B̄)−1 =
[
O(1/µmax) O(1)

O(1) O(1)

]
(9.229)

where the leading (1, 1) block in (I − B̄)−1 has dimensions hM × hM .

Proof. We carry out the derivation for the complex case h = 2 without loss
of generality following arguments similar to [69, 278]. We first remark that,
by similarity, the matrix B̄ is stable by Theorem 9.3. Let

X = I − B̄ =
[
DT

11 DT
21

DT
12 I − J T

ε +DT
22

]
∆=

[
X11 X12
X21 X22

]
(9.230)

where, from (9.199)–(9.202),

X11 = O(µmax) (9.231)
X12 = O(µmax) (9.232)
X21 = O(µmax) (9.233)
X22 = O(1) (9.234)

The matrix X is invertible since I−B̄ is invertible. Moreover, X11 is invertible
since D11 > 0. We now appeal to the useful block matrix inversion formula
[113, 206]:[

A B
C D

]−1
=
[
A−1 0

0 0

]
+
[
A−1B∆−1CA−1 −A−1B∆−1

−∆−1CA−1 ∆−1

]
(9.235)

for matrices {A,B,C,D} of compatible dimensions with invertible A and
invertible Schur complement ∆ defined by

∆ = D − CA−1B (9.236)

Using this formula we can write

X−1 =
[
X−1

11 + X−1
11 X12∆−1X21X−1

11 −X−1
11 X12∆−1

−∆−1X21X−1
11 ∆−1

]
(9.237)
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where ∆ denotes the Schur complement of X relative to X11:

∆ ∆= X22 −X21X−1
11 X12 = O(1) (9.238)

We then use (9.231)–(9.234) and (9.238) to deduce that

X−1 =
[
O(1/µmax) O(1)

O(1) O(1)

]
(9.239)

as claimed.

Low-Rank Approximation
We can establish similar results for the matrix

F ∆= BT ⊗b B∗ (9.240)

which is defined in terms of the block Kronecker product operation
using blocks of size hM × hM , where h = 1 for real data and h = 2
for complex data. The matrix F will play a critical role in character-
izing the performance and convergence rate of distributed algorithms,
as will be revealed by future Theorem 11.2. In our derivations, the
matrix F will also sometimes appear transformed under the similarity
transformation:

F̄ ∆= (Vε ⊗b Vε)−1F (Vε ⊗b Vε) (9.241)

Lemma 9.5 (Low-rank approximation). Assume the matrix P is primitive. For
sufficiently small step-sizes, it holds that

(I −F)−1 = O(1/µmax) (9.242)

(I − F̄)−1 =
[
O(1/µmax) O(1)

O(1) O(1)

]
(9.243)

where the leading (hM)2×(hM)2 block in (I−F̄)−1 is O(1/µmax). Moreover,
we can also write

(I −F)−1 =
[
(p⊗ p)(1⊗ 1)T]⊗ Z−1 +O(1) (9.244)

in terms of the regular Kronecker product operation, where the matrix Z has
dimensions (hM)2 × (hM)2 and consists of blocks of size hM × hM each:
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Z
∆=

N∑
k=1

qk
[
(IhM ⊗Hk) + (HT

k ⊗ IhM )
]

(9.245)

where the vectors {p, q} were defined earlier by (9.7)–(9.9). In addition,
Z = O(µmax).

Proof. We again carry out the derivation for the complex case h = 2 without
loss of generality by extending an argument from [278] to the current context.
We recall from (9.170) the expression for B:

B = PT −AT
2MRAT

1 = AT
2
(
AT
o −MH

)
AT

1 (9.246)

where P = P ⊗ I2M and P = A1AoA2. Since the matrices {Ao,A1,A2,M}
are real-valued, and H is Hermitian, we have

BT = A1(Ao −HTM)A2 (9.247)
B∗ = A1(Ao −HM)A2 (9.248)

We introduce the same Jordan canonical decomposition (9.21)–(9.24) and
verify, in a manner similar to (9.53), that

B∗ = (Vε ⊗ I2M )
[
I2M − E11 −E12
−E21 (Jε ⊗ I2M )− E22

] (
V −1
ε ⊗ I2M

)
(9.249)

where the block matrices {Emn} are given by

E11 =
N∑
k=1

qkHk = O(µmax) (9.250)

E12 = (1T ⊗ I2M )HM(A2VR ⊗ I2M ) = O(µmax) (9.251)
E21 = (V T

L A1 ⊗ I2M )H(q ⊗ I2M ) = O(µmax) (9.252)
E22 = (V T

L A1 ⊗ I2M )HM(A2VR ⊗ I2M ) = O(µmax) (9.253)

and their entries are in the order of µmax; this fact can be verified
in the same manner that we assessed the size of the block matrices
{D11,i−1,D12,i−1,D21,i−1,D22,i−1} in the proof of the earlier Theorem 9.1.
Moreover, the dimensions of E11 are 2M × 2M .

In a similar manner, we find that

BT = (Vε ⊗ I2M )
[
I2M −D11 −D12
−D21 (Jε ⊗ I2M )−D22

] (
V −1
ε ⊗ I2M

)
(9.254)
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where the block matrices {Dmn} are given by

D11 =
N∑
k=1

qkH
T
k = O(µmax) (9.255)

D12 = (1T ⊗ I2M )HTM(A2VR ⊗ I2M ) = O(µmax) (9.256)
D21 = (V T

L A1 ⊗ I2M )HT(q ⊗ I2M ) = O(µmax) (9.257)
D22 = (V T

L A1 ⊗ I2M )HTM(A2VR ⊗ I2M ) = O(µmax) (9.258)

and D11 has dimensions 2M × 2M . Substituting expressions (9.249) and
(9.254) into (9.240), and using the second property for block Kronecker prod-
ucts from Table F.2 in the appendix, we obtain

F = (Vε ⊗b Vε)X (Vε ⊗b Vε)−1 (9.259)

where the block Kronecker product operation is relative to blocks of size
2M × 2M , and where we introduced

X ∆=
[
I2M −D11 −D12
−D21 (Jε ⊗ I2M )−D22

]
⊗b
[
I2M − E11 −E12
−E21 (Jε ⊗ I2M )− E22

]
(9.260)

We conclude that

(I −F)−1 = (Vε ⊗b Vε) (I −X )−1 (Vε ⊗b Vε)−1 (9.261)

We partition X into the following block structure:

X =
[
X11 X12
X21 X22

]
(9.262)

where, for example, X11 is (2M)2 × (2M)2 and is given by

X11 = (I2M −D11)⊗ (I2M − E11) (9.263)

It follows that
I −X =

[
I(2M)2 −X11 −X12
−X21 I −X22

]
(9.264)

and, in a manner similar to the way we assessed the size of the block matri-
ces {D11,i−1,D12,i−1,D21,i−1,D22,i−1} in the proof of Theorem 9.1, we can
likewise verify that

I(2M)2 −X11 = O(µmax) (9.265)
X12 = O(µmax) (9.266)
X21 = O(µmax) (9.267)

I −X22 = O(1) (9.268)
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In particular, note that

I(2M)2 −X11 = I(2M)2 − (I2M −D11)⊗ (I2M − E11)
= (I2M ⊗ E11) + (D11 ⊗ I2M )− (D11 ⊗ E11)
= O(µmax) (9.269)

and

I −X22 = I − ((Jε ⊗ I2M )−D22)⊗b ((Jε ⊗ I2M )− E22)
= I − (Jε ⊗ I2M )⊗b (Jε ⊗ I2M ) +O(µmax)
= O(1) (9.270)

To proceed, we call again upon the useful block matrix inversion formula
(9.235). The matrix I−X is invertible since I−F is invertible; this is because
ρ(F) = [ρ(B)]2 < 1. Therefore, applying (9.235) to I −X we get

(I −X )−1 =
[

(I(2M)2 −X11)−1 0
0 0

]
+ (9.271)

[
(I −X11)−1X12∆−1X21(I −X11)−1 (I −X11)−1X12∆−1

∆−1X21(I −X11)−1 ∆−1

]
It is seen from (9.269) that the entries of (I − X11)−1 are O(1/µmax), while
the entries in the second matrix on the right-hand side of equality (9.271) are
O(1) when the step-sizes are small. That is, we can write

(I −X )−1 =
[
O(1/µmax) O(1)

O(1) O(1)

]
(9.272)

where the leading (2M)2 × (2M)2 block is O(1/µmax). Moreover, since
O(1/µmax) dominates O(1) for sufficiently small µmax, we can also write

(I −X )−1 =
[

(I(2M)2 −X11)−1 0
0 0

]
+ O(1) (9.273)

=
[
{(I2M ⊗ E11) + (D11 ⊗ I2M )}−1 0

0 0

]
+ O(1)

=
[
I(2M)2

0

]
Z−1 [ I(2M)2 0

]
+ O(1)

where we used the fact from (9.245) that, for h = 2,

Z = (I2M ⊗ E11) + (D11 ⊗ I2M ) (9.274)
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Substituting (9.273) into (9.261) and using expressions (9.250) and (9.255) for
D11 and E11 we arrive at the following low-rank approximation:

(I −F)−1

= (p⊗ I2M )⊗b (p⊗ I2M )Z−1 (1T ⊗ I2M
)
⊗b
(
1T ⊗ I2M

)
+O(1)

(a)= [(p⊗ p)⊗ (I2M ⊗ I2M )] (1⊗ Z−1)
[
(1⊗ 1)T ⊗ (I2M ⊗ I2M )

]
+O(1)

= [(p⊗ p)⊗ I4M2 ] (1⊗ Z−1)
[
(1⊗ 1)T ⊗ I4M2

]
+ O(1)

=
[
(p⊗ p)⊗ Z−1] [(1⊗ 1)T ⊗ I4M2

]
+ O(1)

=
[
(p⊗ p)(1⊗ 1)T]⊗ Z−1 +O(1) (9.275)

where step (a) uses the third property from Table F.2 in the appendix. Ob-
serve that the matrix (p⊗ p)(1⊗ 1)T has rank one and, therefore, the above
representation for (I − F)−1) amounts to a low-rank approximation. More-
over, since Z = O(µmax), we conclude from (9.275) that (9.243) holds. We
also conclude that (9.242) holds since

(I − F̄)−1 = (Vε ⊗b Vε)−1 (I −F)−1 (Vε ⊗b Vε) = (I −X )−1 (9.276)

Mean-Error Stability
We now return to examine the mean-error stability of recursion (9.171).
For this purpose, we need to introduce a smoothness condition on the
Hessian matrices of the individual costs. This condition was not needed
while establishing the stability of the second and fourth-order moments,
E‖w̃k,i‖2 and E‖w̃k,i‖4, in the earlier sections. This same smoothness
condition will be adopted in the next two chapters when we study the
long-term behavior of the network and its performance.

Theorem 9.6 (Network mean-error stability). Consider a network of N inter-
acting agents running the distributed strategy (8.46) with a primitive matrix
P = A1AoA2. Assume the aggregate cost (9.10) and the individual costs,
Jk(w), satisfy the conditions in Assumption 6.1. Assume additionally that
each Jk(w) satisfies a smoothness condition relative to the limit point w?,
defined by (8.55), of the following form:∥∥∇2

w Jk(w? + ∆w)−∇2
w Jk(w?)

∥∥ ≤ κd ‖∆w‖ (9.277)

for small perturbations ‖∆w‖ ≤ ε and for some κd ≥ 0. Assume further that
the first and second-order moments of the gradient noise process satisfy the
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conditions of Assumption 8.1. Then, the first-order moment of the network
errors satisfy

lim sup
i→∞

‖E w̃k,i‖ = O(µmax), k = 1, 2, . . . , N (9.278)

Proof. We multiply both sides of the error recursion (9.171) from the left by
VT
ε and use (9.57) and (9.206) to get[
E w̄e

i

E w̌e
i

]
︸ ︷︷ ︸

∆= zi

=
[
I2M −DT

11 −DT
21

−DT
12 J T

ε −DT
22

]
︸ ︷︷ ︸

∆= B̄

[
E w̄e

i−1
E w̌e

i−1

]
︸ ︷︷ ︸

∆= zi−1

−
[

0
b̌e

]
+ VT

ε AT
2Mci−1

(9.279)
where the matrix B̄ from (9.226) is stable. We already know from (9.59) that
‖b̌e‖ = O(µmax). We now verify that the limit superior of ‖VT

ε AT
2Mci−1‖ is

O(µ2
max).
Indeed, in view of result (E.61) from the appendix, we know that condition

(9.277) also holds globally for any ∆w with κd replaced by some constant κ′d.
Then, for each agent k:

‖H̃k,i−1‖
∆= ‖H −Hk,i−1‖

≤
∫ 1

0

∥∥∥∇2
wJk(w?) − ∇2

w Jk(w? − tφ̃k,i−1)
∥∥∥ dt

(9.277)
≤

∫ 1

0
κ′d‖tφ̃k,i−1‖dt

= 1
2κ
′
d‖φ̃k,i−1‖

≤ 1
2κ
′
d

∥∥∥∥∥∑
`∈Nk

a1,`kw̃`,i−1

∥∥∥∥∥
(F.26)

≤ 1
2κ
′
d

∑
`∈Nk

a1,`k ‖w̃`,i−1‖

≤ 1
2κ
′
d

∑
`∈Nk

‖w̃`,i−1‖

≤ 1
2κ
′
d

∑
`∈Nk

∥∥w̃e
`,i−1

∥∥
≤ 1

2κ
′
dN
∥∥w̃e

i−1
∥∥ (9.280)

so that

‖H̃i−1‖ = max
1≤k≤N

‖H̃k,i−1‖ ≤
1
2κ
′
dN
∥∥w̃e

i−1
∥∥ (9.281)
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and, consequently,

‖VT
ε AT

2Mci−1‖
(9.172)
≤ ‖Vε‖ ‖A2‖ ‖M‖‖EH̃i−1AT

1 w̃
e
i−1‖

≤ ‖Vε‖ ‖A2‖ ‖M‖‖A1‖E
[
‖H̃i−1‖ ‖w̃e

i−1‖
]

≤ 1
2κ
′
dN‖Vε‖ ‖A2‖ ‖M‖‖A1‖E‖w̃e

i−1‖2

∆= rµmaxE‖w̃e
i−1‖2 (9.282)

for some constant r that is independent of µmax. It then follows from (9.11)
that

lim sup
i→∞

‖VT
ε AT

2Mci−1‖ = O(µ2
max) (9.283)

as claimed, where one µmax arises from M and the other µmax arises from
(9.11).

Returning to (9.279), we partition the vectors zi and VT
ε AT

2Mci−1 into

zi
∆=
[
z̄i
ži

]
, VT

ε AT
2Mci−1

∆=
[
c̄i−1
či−1

]
(9.284)

with the leading vectors, {z̄i, c̄i−1}, having dimensions hM×1 each. It follows
that[

z̄i
ži

]
=
[
I2M −DT

11 −DT
21

−DT
12 J T

ε −DT
22

] [
z̄i−1
ži−1

]
+
[
c̄i−1
či−1

]
+
[

0
O(µmax)

]
(9.285)

This recursion has a form similar to the earlier recursion we encountered in
(9.60) while studying the mean-square stability of the original error dynam-
ics (10.2), with two differences. First, the matrices {D11, D12, D21, D22} in
(9.285) are constant matrices; nevertheless, they satisfy the same bounds as
the matrices {D11,i−1,D12,i−1,D21,i−1,D22,i−1} in (9.60). In particular, it
continues to hold that

‖I2M −DT
11‖

(9.47)
≤ 1− σ11µmax (9.286)

‖D12‖
(9.51)
≤ σ12µmax (9.287)

‖D21‖
(9.50)
≤ σ21µmax (9.288)

‖D22‖
(9.51)
≤ σ22µmax (9.289)

for some positive constants {σ11, σ12, σ21, σ22} that are independent of µmax.
Second, the gradient noise terms that appeared in (9.60) are now replaced by
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the deterministic sequences {c̄i−1, či−1}. However, from (9.282) and using the
fact that (Ea)2 ≤ Ea2 for any real random variable a, we have that

‖VT
ε AT

2Mci−1‖2 ≤ r2µ2
maxE‖w̃

e
i−1‖4 (9.290)

and, hence,

‖c̄i−1‖2 ≤ r2µ2
maxE‖w̃

e
i−1‖4, ‖či−1‖2 ≤ r2µ2

maxE‖w̃
e
i−1‖4 (9.291)

Now, if we repeat the argument that led to (9.106), with proper adjustments,
we can show that relations similar to (9.69) and (9.81) continue to hold for
{‖z̄i‖2, ‖ži‖2}. The argument is as follows.

We first appeal to Jensen’s inequality (F.26) from the appendix and apply
it to the function f(x) = ‖x‖2 to obtain the bound:

‖z̄i‖2 =
∥∥∥∥(1− t) 1

1− t (I2M −D
T
11)z̄i−1 + t

1
t

(
−DT

21ži−1 + c̄i−1
)∥∥∥∥2

≤ 1
1− t (1− σ11µmax)2‖z̄i−1‖2 + 2

t

(
σ2

21µ
2
max‖ži−1‖2 + ‖c̄i−1‖2

)
≤ (1− σ11µmax)‖z̄i−1‖2 + 2

σ11µmax

(
σ2

21µ
2
max‖ži−1‖2 + ‖c̄i−1‖2

)
≤ (1− σ11µmax)‖z̄i−1‖2 + 2σ2

21µmax

σ11
‖ži−1‖2 + 2r2µmax

σ11
E‖w̃e

i−1‖4

(9.292)

for any arbitrary positive number t ∈ (0, 1). We selected t = σ11µmax in the
above derivation. We repeat a similar argument for ‖ži‖2. Thus, using Jensen’s
inequality again we have

‖ži‖2 =
∥∥∥t1
t
J T
ε ži−1 − (1− t) 1

1− t
[
−DT

22ži−1 −DT
12z̄i−1 + či−1 +O(µmax)

]∥∥∥2

(9.76)
≤ 1

t
(ρ(Jε) + ε)2 ‖ži−1‖2 +

4
1− t

[
σ2

22µ
2
max‖ži−1‖2 + σ2

12µ
2
max‖z̄i−1‖2 + ‖či−1‖2 +O(µ2

max)
]

(9.293)

for any arbitrary positive number t ∈ (0, 1). Since we know that ρ(Jε) ∈ (0, 1),
then we can select ε small enough to ensure t = ρ(Jε) + ε ∈ (0, 1) and rewrite
(9.293) as
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‖ži‖2 ≤
(
ρ(Jε) + ε+ 4σ2

22µ
2
max

1− ρ(Jε)− ε

)
‖ži−1‖2 +(

4σ2
12µ

2
max

1− ρ(Jε)− ε

)
‖z̄i−1‖2 +(

4r2µ2
max

1− ρ(Jε)− ε

)
E‖w̃e

i−1‖4 +O(µ2
max) (9.294)

If we now introduce the scalar coefficients

a = 1− σ11µmax = 1−O(µmax) (9.295)

b = 2σ2
21µmax

σ11
= O(µmax) (9.296)

c = 4σ2
12µ

2
max

1− ρ(Jε)− ε
= O(µ2

max) (9.297)

d = ρ(Jε) + ε+ 4σ2
22µ

2
max

1− ρ(Jε)− ε
= ρ(Jε) + ε+O(µ2

max) (9.298)

e = 2r2µmax

σ11
= O(µmax) (9.299)

f = 4r2µ2
max

1− ρ(Jε)− ε
= O(µ2

max) (9.300)

we can combine (9.292) and (9.294) into a single compact inequality recursion
as follows:[

‖z̄i‖2
‖ži‖2

]
�
[
a b
c d

]
︸ ︷︷ ︸

Γ

[
‖z̄i−1‖2
‖ži−1‖2

]
+
[
e
f

]
E‖w̃e

i−1‖4 +
[

0
O(µ2

max)

]

(9.301)
in terms of the 2× 2 coefficient matrix Γ indicated above. We know from the
argument (9.102) that Γ is stable for sufficiently small step-sizes. If we now
recall the result

lim sup
i→∞

E‖w̃e
i‖4

(9.107)= O(µ2
max) (9.302)

and use (9.103) we conclude that, as i→∞,

lim sup
i→∞

‖z̄i‖2 = O(µ2
max), lim sup

i→∞
E‖ži‖2 = O(µ2

max) (9.303)

and, hence,
lim sup
i→∞

‖zi‖2 = O(µ2
max) (9.304)
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It follows that
lim sup
i→∞

‖zi‖ = O(µmax) (9.305)

Consequently,

lim sup
i→∞

∥∥∥∥[ E w̄e
i

E w̌e
i

]∥∥∥∥ = O(µmax) (9.306)

and, hence,

lim sup
i→∞

‖E w̃k,i‖ ≤ lim sup
i→∞

‖E w̃e
i‖

= lim sup
i→∞

∥∥∥∥(V−1
ε

)T
[

E w̄e
i

E w̌e
i

]∥∥∥∥
≤

∥∥∥(V−1
ε

)T
∥∥∥ (lim sup

i→∞

∥∥∥∥[ E w̄e
i

E w̌e
i

]∥∥∥∥)
= O(µmax) (9.307)

as claimed.



10
Long-Term Network Dynamics

We move on to motivate a long-term model for the evolution of the net-
work error dynamics, w̃e

i , after sufficient iterations have passed, i.e., for
i � 1. We examine the stability property of the model, the proximity
of its trajectory from that of the original network dynamics, and subse-
quently employ the model to assess network MSD and ER performance
metrics. To do so, we will need to recall the same smoothness condition
used in establishing the mean-stability result of Theorem 9.6.

Assumption 10.1. (Smoothness condition on individual cost func-
tions). It is assumed that each Jk(w) satisfies a smoothness condition close
to the limit point w?, defined by (8.55), in that the corresponding Hessian
matrix is Lipschitz continuous in the proximity of w? with some parameter
κd ≥ 0, i.e., ∥∥∇2

wJk(w? + ∆w)−∇2
wJk(w?)

∥∥ ≤ κd ‖∆w‖ (10.1)

for small perturbations ‖∆w‖ ≤ ε.

552
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10.1 Long-Term Error Model

We reconsider the network error recursion (9.12), namely,

w̃e
i = Bi−1w̃

e
i−1 + AT

2Msei (we
i−1) − AT

2Mbe, i ≥ 0 (10.2)

where, from the expressions in Lemma 8.1,

Bi−1 = PT − AT
2MHi−1AT

1 (10.3)
PT = AT

2AT
oAT

1 (10.4)

Hi−1
∆= diag {H1,i−1, H2,i−1, . . . , HN,i−1 } (10.5)

Hk,i−1
∆=

∫ 1

0
∇2
wJk(w? − tφ̃k,i−1)dt (10.6)

We again introduce the error matrix:

H̃i−1
∆= H − Hi−1 (10.7)

which measures the deviation of Hi−1 from the constant matrix:

H ∆= diag { H1, H2, . . . , HN } (10.8)

with each Hk given by the value of the Hessian matrix at the limit
point, namely,

Hk
∆= ∇2

w Jk(w?) (10.9)
Then, using (9.166) in the expression for Bi−1, we can write

Bi−1 = B + AT
2MH̃i−1AT

1 (10.10)

in terms of the constant coefficient matrix

B ∆= PT −AT
2MHAT

1 (10.11)

We established in Theorem 9.3 that, for sufficiently small step-sizes,
the matrix B is stable and its spectral radius is given by

ρ(B) = 1− λmin

(
N∑
k=1

qkHk

)
+ O

(
µ(N+1)/N

max

)
(10.12)

where λmin(·) denotes the smallest eigenvalue of its Hermitian matrix
argument. Now, using (10.10), we can rewrite error recursion (10.2) as

w̃e
i = B w̃e

i−1 + AT
2Msei (we

i−1) − AT
2Mbe + AT

2Mci−1 (10.13)



554 Long-Term Network Dynamics

in terms of the random perturbation sequence:

ci−1
∆= H̃i−1AT

1 w̃
e
i−1 (10.14)

By exploiting the smoothness condition (10.1), and following an argu-
ment similar to (9.280)–(9.283), we can verify that

lim sup
i→∞

E‖ci−1‖ = O(µmax) (10.15)

This is because

lim sup
i→∞

E‖ci−1‖
(10.14)
≤ ‖A1‖

(
lim sup
i→∞

E‖H̃i−1‖ ‖w̃e
i−1‖

)
(9.281)
≤ 1

2κ
′
dN‖A1‖

(
lim sup
i→∞

E‖w̃e
i−1‖2

)
(9.11)= O(µmax) (10.16)

Returning to (10.15), we deduce that ‖ci−1‖ = O(µmax) asymptoti-
cally with high probability using the same argument that led to (4.53) in
the single-agent case. Referring to recursion (10.13), this analysis sug-
gests that we can assess the mean-square performance of the original
error recursion (10.2) by considering instead the following long-term
model, which holds with high probability after sufficient iterations:

w̃e
i = B w̃e

i−1 + AT
2Msei (we

i−1) − AT
2Mbe, i� 1 (10.17)

In this model, the perturbation term AT
2Mci−1 that appears in (10.13)

is removed. We may also consider an alternative long-term model where
AT

2Mci−1 is instead replaced by a constant driving term in the order
of O(µ2

max). However, the conclusions that will follow about the per-
formance of the original recursion (10.2) will be the same whether we
remove AT

2Mci−1 altogether or replace it by O(µ2
max). We therefore

continue our analysis by using model (10.17). Obviously, the iterates
{w̃e

i} that are generated by (10.17) are generally different from the it-
erates that are generated by the original recursion (10.2). To highlight
this fact more accurately, we rewrite the long-term recursion (10.17)
more explicitly as follows for i� 1:

w̃e′
i = B w̃e′

i−1 + AT
2Msei (we

i−1) − AT
2Mbe (10.18)
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with the iterates now denoted by w̃e′
i using the prime notation for the

state of the long-term model. Note that the driving process sei (we
i−1)

in (10.18) is the same gradient noise process from the original recursion
(10.2) and is therefore evaluated at we

i−1. It is instructive to compare
the following statement with the earlier Lemma 8.1.

Lemma 10.1 (Long-term network dynamics). Consider a network of N inter-
acting agents running the distributed strategy (8.46) with a primitive matrix
P = A1AoA2. Assume the aggregate cost (9.10) and the individual costs,
Jk(w), satisfy the conditions in Assumptions 6.1 and 10.1. After sufficient
iterations, i � 1, the error dynamics of the network relative to the limit
point w? defined by (8.55) is well-approximated by the following model (as
confirmed by future result (10.29)):

w̃e′

i = B w̃e′

i−1 + AT
2Msei (we

i−1) − AT
2Mbe (10.19)

where

B ∆= AT
2
(
AT
o −MH

)
AT

1 (10.20)

Ao
∆= Ao ⊗ I2M , A1

∆= A1 ⊗ I2M , A2
∆= A2 ⊗ I2M (10.21)

M ∆= diag{ µ1I2M , µ2I2M , . . . , µNI2M } (10.22)

H ∆= diag { H1, H2, . . . , HN } (10.23)

Hk
∆= ∇2

w Jk(w?) (10.24)

where ∇2
wJk(w) denotes the 2M × 2M Hessian matrix of Jk(w) relative to w.

In a manner similar to the partitioning of w̃e
i into its constituent

elements in (8.143), we partition w̃e′
i into its 2M × 1 block entries as

follows:

w̃e′
i

∆=


w̃e′

1,i
w̃e′

2,i
...

w̃e′
N,i

 (10.25)

with each w̃e′
k,i at every agent in turn consisting of

w̃e′
k,i =

 w̃
′
k,i(

w̃
′∗
k,i

)T

 (10.26)
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We can view the long-term model (10.19) as a dynamic recursion that is
fed by the gradient noise sequence, sei (we

i−1). Therefore, assuming both
the original system (10.2) and the long-term model (10.19) are launched
from the same initial conditions, we observe by iterating (10.19) that
w̃e′
i will still be determined by the past history of the original iterates
{wj , j ≤ i − 1} through its dependence on the gradient noise process
{sej(we

j−1), j ≤ i}. Therefore, it continues to hold that the error vectors
w̃
′
k,i belong to the filtration F i−1 that is determined by the history of

all iterates {wk,j , j ≤ i− 1, k = 1, 2, . . . , N} that are generated by the
original distributed strategy (8.46).

Working with recursion (10.19) is much more tractable for perfor-
mance analysis because its dynamics is driven by the constant matrix
B as opposed to the random matrix Bi−1 in the original error recur-
sion (10.2). We shall therefore follow the following route to evaluate
the MSD of the stochastic-gradient distributed algorithm (8.46). We
shall work with the long-term model (10.19) and evaluate its MSD.
Subsequently, we will argue that, under a bounding condition on the
fourth-order moment of the gradient noise process, namely, condition
(8.121), this MSD is within O(µ3/2

max) from the true MSD expression
that would have resulted had we worked directly with the original er-
ror recursion (10.2) without the approximation of ignoring AT

2Mci−1.
This fact will then allow us to conclude that the MSD expression that
is derived from the long-term model (10.19) provides an accurate rep-
resentation for the MSD of the original stochastic-gradient distributed
strategy (8.46) to first-order in µmax.

10.2 Size of Approximation Error

We first examine how close the trajectories of the original error re-
cursion (10.2) and the long-term model (10.19) are to each other. We
reproduce both recursions below with the state variable for the long-
term model denoted by w̃e′

i :

w̃e
i = Bi−1w̃

e
i−1 + AT

2Msei (we
i−1) − AT

2Mbe (10.27)
w̃e′
i = B w̃e′

i−1 + AT
2Msei (we

i−1) − AT
2Mbe (10.28)



10.2. Size of Approximation Error 557

Observe that both models are driven by the same gradient noise pro-
cess; in this way, the evolution of the long-term model is coupled to
the evolution of the original recursion (but not the other way around).
The next result establishes that the mean-square difference between
the trajectories {w̃e

i , w̃
e′
i } is asymptotically bounded by O(µ2

max).

Theorem 10.2 (Performance error is O(µ3/2
max)). Consider a network of N inter-

acting agents running the distributed strategy (8.46) with a primitive matrix
P = A1AoA2. Assume the aggregate cost (9.10) and the individual costs,
Jk(w), satisfy the conditions in Assumptions 6.1 and 10.1. Assume further
that the first and fourth-order moments of the gradient noise process satisfy
the conditions of Assumption 8.1 with the second-order moment condition
(8.115) replaced by the fourth-order moment condition (8.121). Then, it holds
that, for sufficiently small step-sizes:

lim sup
i→∞

E‖w̃e
i − w̃

e′

i ‖2 = O(µ2
max) (10.29)

lim sup
i→∞

E‖w̃e
i‖2 = lim sup

i→∞
E‖w̃e′

i ‖2 + O(µ3/2
max) (10.30)

Proof. To simplify the notation, we introduce the difference

zi
∆= w̃e

i − w̃
e′

i (10.31)

Using (10.10) and (10.14), and subtracting recursions (10.27) and (10.28) we
then get

zi = Bzi−1 +AT
2Mci−1 (10.32)

We also know from (9.173) that the matrix B is stable for sufficiently small
step-sizes and, moreover, for µmax � 1, it holds from (9.222) and (9.226) that

ρ(B) = 1−O(µmax) = 1− σbµmax (10.33)
for some positive constant σb that is independent of µmax.

We multiply both sides of (10.32) from the left by VT
ε and use (9.57) and

(9.206) to get for i� 1:[
z̄i
ži

]
=
[
I2M −DT

11 −DT
21

−DT
12 J T

ε −DT
22

]
︸ ︷︷ ︸

∆= B̄

[
z̄i−1
ži−1

]
+ VT

ε AT
2Mci−1 (10.34)

where the matrix
B̄ = VT

ε B
(
V−1
ε

)T (10.35)
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is similar to B and is therefore stable by Theorem 9.3. We partition the vectors
VT
ε zi and VT

ε AT
2Mci−1 in recursion (10.34) into

VT
ε zi

∆=
[
z̄i
ži

]
, VT

ε AT
2Mci−1

∆=
[
c̄i−1
či−1

]
(10.36)

with the leading vectors, {z̄i, c̄i−1}, having dimensions hM×1 each. It follows
that [

z̄i
ži

]
=
[
I2M −DT

11 −DT
21

−DT
12 J T

ε −DT
22

] [
z̄i−1
ži−1

]
+
[
c̄i−1
či−1

]
(10.37)

This recursion has a form that is similar to the earlier recursion (9.285) we
encountered while studying the mean stability of the original error dynamics
(10.2) with two minor difference. First, the variables {z̄i, ži, c̄i−1, či−1} are
now stochastic in nature and, second, the rightmost O(µmax) perturbation
term in (9.285) is absent from (10.37). Nevertheless, from an argument similar
to the one that led to (9.282), we can similarly establish that

‖VT
ε AT

2Mci−1‖2 ≤ r2µ2
max‖w̃

e
i−1‖4 (10.38)

and, hence,

‖c̄i−1‖2 ≤ r2µ2
max‖w̃

e
i−1‖4, ‖či−1‖2 ≤ r2µ2

max‖w̃
e
i−1‖4 (10.39)

Moreover, repeating the argument that led to (9.292) and (9.294) we find
that these recursions, under expectation, are now replaced by the following
relations:

E‖z̄i‖2 ≤ (1− σ11µmax)E‖z̄i−1‖2 +
2σ2

21µmax

σ11
E‖ži−1‖2 + 2r2µmax

σ11
E‖w̃e

i−1‖4 (10.40)

and

E‖ži‖2 ≤
(
ρ(Jε) + ε+ 3σ2

22µ
2
max

1− ρ(Jε)− ε

)
E
∥∥žei−1

∥∥2 +(
3σ2

12µ
2
max

1− ρ(Jε)− ε

)
E
∥∥z̄ei−1

∥∥2 +(
3r2µ2

max
1− ρ(Jε)− ε

)
E‖w̃e

i−1‖4 (10.41)
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If we now introduce the scalar coefficients

a = 1− σ11µmax = 1−O(µmax) (10.42)

b = 2σ2
21µmax

σ11
= O(µmax) (10.43)

c = 3σ2
12µ

2
max

1− ρ(Jε)− ε
= O(µ2

max) (10.44)

d = ρ(Jε) + ε+ 3σ2
22µ

2
max

1− ρ(Jε)− ε
= ρ(Jε) + ε+O(µ2

max) (10.45)

e = 2r2µmax

σ11
= O(µmax) (10.46)

f = 3r2µ2
max

1− ρ(Jε)− ε
= O(µ2

max) (10.47)

we can combine (10.40) and (10.41) into a single compact inequality recursion
as follows:[

E‖z̄i‖2
E‖ži‖2

]
�
[
a b
c d

]
︸ ︷︷ ︸

Γ

[
E‖z̄i−1‖2
E‖ži−1‖2

]
+
[
e
f

]
E‖w̃e

i−1‖4 (10.48)

in terms of the 2× 2 coefficient matrix Γ indicated above. Using the fact that

lim sup
i→∞

E‖w̃e
i‖4

(9.107)= O(µ2
max) (10.49)

and relation (9.103) we conclude that

lim sup
i→∞

E‖z̄i‖2 = O(µ2
max), lim sup

i→∞
E‖ži‖2 = O(µ4

max) (10.50)

and, hence,
lim sup
i→∞

E‖zi‖2 = O(µ2
max) (10.51)

It follows that
lim sup
i→∞

E‖w̃e
i − w̃

e′

i ‖2 = O(µ2
max) (10.52)

which establishes (10.29). Finally, note that

E‖w̃e′

i ‖2 = E‖w̃e′

i − w̃
e
i + w̃e

i‖2

≤ E‖w̃e′

i − w̃
e
i‖2 + E‖w̃e

i‖2 + 2
∣∣∣E (w̃e′

i − w̃
e
i )∗w̃

e
i

∣∣∣
≤ E‖w̃e′

i − w̃
e
i‖2 + E‖w̃e

i‖2 + 2
√
E‖w̃e′

i − w̃
e
i‖2 E‖w̃

e
i‖2

(10.53)
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and, hence, from (9.11) and (10.29) we get

lim sup
i→∞

(
E‖w̃e′

i ‖2 − E‖w̃e
i‖2
)
≤ O(µ2

max) +
√
O(µ3

max) = O(µ3/2
max)

(10.54)
since µ2

max < µ
3/2
max for small µmax � 1, which establishes (10.30).

10.3 Stability of Second-Order Error Moment

We already know from the result of Theorem 9.1 that the original error
recursion (10.2) is mean-square stable in the sense that E‖w̃k,i‖2 tends
asymptotically to a region that is bounded by O(µmax). Before launch-
ing into the performance analysis of the stochastic-gradient distributed
algorithm (8.46), we first remark that the long-term approximate model
(10.19) is also mean-square stable.

Lemma 10.3 (Mean-square stability of long-term model). Consider a network
of N interacting agents running the distributed strategy (8.46) with a primi-
tive matrix P = A1AoA2. Assume the aggregate cost (9.10) and the individual
costs, Jk(w), satisfy the conditions in Assumptions 6.1 and 10.1. Assume fur-
ther that the first and second-order moments of the gradient noise process
satisfy the conditions of Assumption 8.1. Consider the iterates that are gen-
erated by the long-term model (10.19). Then, for sufficiently small step-sizes,
it holds that

lim sup
i→∞

E‖w̃′k,i‖2 = O(µmax), k = 1, 2, . . . , N (10.55)

Proof. We multiply both sides of the long-term model (10.19) from the left
by VT

ε to get, for i� 1:[
w̄e′

i

w̌e′

i

]
︸ ︷︷ ︸

∆= zi

=
[
I2M −DT

11 −DT
21

−DT
12 J T

ε −DT
22

]
︸ ︷︷ ︸

∆= B̄

[
w̄e′

i−1
w̌e′

i−1

]
︸ ︷︷ ︸

∆= zi−1

+

VT
ε AT

2Msei −
[

0
b̌e

]
(10.56)
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where the matrix B̄ is stable by Theorem 9.3, and where we are denoting the
transformed error vector by zi for ease of reference:

zi
∆= VT

ε w̃
e′

i =
[
w̄e′

i

w̌e′

i

]
(10.57)

We are also dropping the argument we
i−1 from sei (we

i−1) and writing simply
sei . The long-term model (10.56) represents a dynamic system that is driven
by two components: a deterministic (constant) driving term represented by
b̌e, and a random term represented by sei (we

i−1). To facilitate the mean-square
stability analysis, we may examine the contribution of these driving terms sep-
arately. For this purpose, we introduce the following two auxiliary recursions,
one driven by the deterministic term and the other driven by the stochastic
term and running over i > io for some large enough io � 1:

ai = B̄ ai−1 +
[

0
b̌e

]
(10.58)

bi = B̄ bi−1 + VT
ε AT

2Msei (we
i−1) (10.59)

with initial conditions aio = 0 and bio = zio so that at any time instant i > io,

zi = bi − ai (10.60)
Consider first recursion (10.58) for ai. Since B̄ is stable, the sequence ai con-
verges to

lim
i→∞

ai = (I − B̄)−1
[

0
b̌e

]
(9.229)= O(µmax) (10.61)

since b̌e = O(µmax). It follows that

lim sup
i→∞

‖ai‖ = O(µmax) (10.62)

Consider next recursion (10.59) for bi. As was done earlier in (9.56) we par-
tition the entries of VT

ε AT
2Msei into:

VT
ε AT

2Msei (we
i−1) ∆=

[
s̄ei (we

i−1)
šei (we

i−1)

]
(10.63)

We also partition the entries of bi in the following manner in conformity with
the dimensions of {s̄ei , š

e
i}:[

b̄i
b̌i

]
︸ ︷︷ ︸

=bi

=
[
I2M −DT

11 −DT
21

−DT
12 J T

ε −DT
22

]
︸ ︷︷ ︸

∆= B̄

[
b̄i−1
b̌i−1

]
︸ ︷︷ ︸

=bi−1

+
[
s̄ei (we

i−1)
šei (we

i−1)

]
(10.64)
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This recursion has a form similar to the earlier recursion we encountered in
(9.60) while studying the mean-square stability of the original error dynamics
(10.2), with three differences. First, the driving term involving b̌e in (9.60) is
not present in (10.64). Second, the matrices {D11, D12, D21, D22} in (10.64)
are constant matrices; nevertheless, they satisfy the same bounds as the matri-
ces {D11,i−1,D12,i−1,D21,i−1,D22,i−1} in (9.60). And, third, the argument
of the noise terms {s̄ei , š

e
i} in (10.64) is we

i−1 and not bi. However, these noise
terms still satisfy the same bound given by (9.91), namely,

E‖s̄ei‖2 + E‖šei‖2 ≤ v2
1v

2
2β

2
dµ

2
max

[
E‖w̄e

i−1‖2 + E‖w̌e
i−1‖2

]
+ v2

1µ
2
maxσ

2
s

(10.65)

in terms of the transformed vectors {w̄e
i−1, w̌

e
i−1} defined by (9.55). Therefore,

repeating the same argument that led to (9.106) will show that relations (9.69)
and (9.81) still hold for {E‖b̄i‖2,E‖b̌i‖2}, namely,

E‖b̄i‖2 ≤ (1− σ11µmax)E‖b̄i−1‖2 +
(
σ2

21µmax

σ11

)
E‖b̌i−1‖2 + E‖s̄ei‖2

(10.66)
and

E‖b̌i‖2 ≤
(
ρ(Jε) + ε+ 2σ2

22µ
2
max

1− ρ(Jε)− ε

)
E
∥∥∥b̌i−1

∥∥∥2
+(

2σ2
12µ

2
max

1− ρ(Jε)− ε

)
E
∥∥b̄i−1

∥∥2 + E‖šei‖2 (10.67)

Using (10.65) we find that the last two recursive inequalities can be replaced
by

E‖b̄i‖2 ≤ (1− σ11µmax)E‖b̄i−1‖2 +
(
σ2

21µmax

σ11

)
E‖b̌i−1‖2 +

v2
1µ

2
maxσ

2
s + v2

1v
2
2β

2
dµ

2
max

[
E‖w̄e

i−1‖2 + E‖w̌e
i−1‖2

]
(10.68)

and

E‖b̌i‖2 ≤
(
ρ(Jε) + ε+ 2σ2

22µ
2
max

1− ρ(Jε)− ε

)
E
∥∥∥b̌i−1

∥∥∥2
+(

2σ2
12µ

2
max

1− ρ(Jε)− ε

)
E
∥∥b̄i−1

∥∥2 + v2
1µ

2
maxσ

2
s +

v2
1v

2
2β

2
dµ

2
max

[
E‖w̄e

i−1‖2 + E‖w̌e
i−1‖2

]
(10.69)
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If we now introduce the scalar coefficients

a = 1− σ11µmax = 1−O(µmax) (10.70)

b = σ2
21µmax

σ11
= O(µmax) (10.71)

c = 2σ2
12µ

2
max

1− ρ(Jε)− ε
= O(µ2

max) (10.72)

d = ρ(Jε) + ε+ 3σ2
22µ

2
max

1− ρ(Jε)− ε
= ρ(Jε) + ε+O(µ2

max) (10.73)

e = v2
1µ

2
maxσ

2
s = O(µ2

max) (10.74)
f = 0 (10.75)
h = v2

1v
2
2β

2
dµ

2
max = O(µ2

max) (10.76)

we can combine (10.68) and (10.69) into a single compact inequality recursion
as follows:[

E‖b̄i‖2
E‖b̌i‖2

]
�
[
a b
c d

]
︸ ︷︷ ︸

Γ

[
E‖b̄i−1‖2
E‖b̌i−1‖

]
+
[
h h
h h

] [
E‖w̄e

i−1‖2
E‖w̌e

i−1‖2
]

+
[
e
e

]

(10.77)
in terms of the 2×2 coefficient matrix Γ indicated above. Using result (9.105)
and the derivation leading to it we can similarly conclude that

lim sup
i→∞

E‖b̄i‖2 = O(µmax), lim sup
i→∞

E‖b̌i‖2 = O(µ2
max) (10.78)

and, hence,
lim sup
i→∞

E‖bi‖2 = O(µmax) (10.79)

From (10.60) we have that ‖zi‖2 ≤ 2‖ai‖2 + 2‖bi‖2 so that

lim sup
i→∞

E‖zi‖2 = O(µmax) (10.80)

from which we conclude that (10.55) holds.

10.4 Stability of Fourth-Order Error Moment

In the next chapter we will employ the long-term model (10.19) to
assess the performance of the multi-agent network as i → ∞ and for
sufficiently small step-sizes. In preparation for that discussion, we es-
tablish here the stability of the fourth-order moment of the error in
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the long-term model (10.19) in a manner similar to what we did in
Theorem 9.2 for the fourth-order moment of the error in the original
recursion (10.2).

Lemma 10.4 (Fourth-order moment stability of long-term model). Consider
a network of N interacting agents running the distributed strategy (8.46)
with a primitive matrix P = A1AoA2. Assume the aggregate cost (9.10)
and the individual costs, Jk(w), satisfy the conditions in Assumptions 6.1
and 10.1. Assume further that the first and fourth-order moments of the gra-
dient noise process satisfy the conditions of Assumption 8.1 with the second-
order moment condition (8.115) replaced by the fourth-order moment condi-
tion (8.121). Then, the fourth-order moments of the error vectors generated by
the long-term model (10.19) are stable for sufficiently small step-sizes, namely,
it holds that

lim sup
i→∞

E‖w̃′k,i‖4 = O(µ2
max), k = 1, 2, . . . , N (10.81)

Proof. We employ the same notation from the proof of Lemma 10.3 and re-
consider recursions (10.58) and (10.64) for the auxiliary variables {ai, bi}:

ai = B̄ ai−1 +
[

0
b̌e

]
(10.82)[

b̄i
b̌i

]
︸ ︷︷ ︸

=bi

=
[
I2M −DT

11 −DT
21

−DT
12 J T

ε −DT
22

]
︸ ︷︷ ︸

∆= B̄

[
b̄i−1
b̌i−1

]
︸ ︷︷ ︸

=bi−1

+
[
s̄ei (we

i−1)
šei (we

i−1)

]
(10.83)

Using (10.62), we readily conclude from (10.62) that

lim sup
i→∞

‖ai‖4 = O(µ4
max) (10.84)

With regards to the recursion involving {b̄ei , b̌
e

i}, we can unfold it and write

b̄
e

i = (I2M −DT
11)b̄ei−1 − DT

21b̌
e

i−1 + s̄ei (we
i−1) (10.85)

b̌
e

i = (J T
ε −DT

22)b̌
e

i−1 − DT
12b̄

e

i−1 + šei (we
i−1) (10.86)

These relations have similar forms to the earlier relations (9.108)–(9.109)
we encountered while studying the stability of the fourth-order mo-
ment of the original error recursion (10.2), with three differences. First,
the driving term involving b̌e in (9.109) is not present in (10.86). Sec-
ond, the matrices {D11, D12, D21, D22} in (10.85)–(10.86) are constant
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matrices; nevertheless, they satisfy the same bounds as the matrices
{D11,i−1,D12,i−1,D21,i−1,D22,i−1} in (9.108)–(9.109). And, third, the ar-
gument of the noise terms {s̄ei , š

e
i} in (10.85)–(10.86) is we

i−1 and not bi.
However, these noise terms still satisfy the same bounds given by (9.91) and
(9.131), namely,

E‖s̄ei‖2 + E‖šei‖2 ≤ v2
1v

2
2β

2
dµ

2
max

[
E‖w̄e

i−1‖2 + E‖w̌e
i−1‖2

]
+ v2

1µ
2
maxσ

2
s

(10.87)
and

E‖s̄ei‖4 + E‖šei‖4 ≤ v4
1v

4
2β

4
d4µ

4
max

[
E‖w̄e

i−1‖4 + E‖w̌e
i−1‖4

]
+ v4

1µ
4
maxσ

4
s4

(10.88)
Therefore, repeating the same argument that led to (9.153) we can similarly
show that[

E‖b̄i‖4
E‖b̌i‖4

]
�

[
a b
c d

]
︸ ︷︷ ︸

∆= Γ′

[
E‖b̄i−1‖4
E‖b̌i−1‖4

]
+
[
a′ b′

c′ d′

] [
E‖b̄i−1‖2
E‖b̌i−1‖2

]
+

[
a′′ b′′

c′′ d′′

] [
E‖w̄e

i−1‖2
E‖w̌e

i−1‖2
]

+
[
e
f

]
(10.89)

where

a = 1− σ11µmax +O(µ2
max) (10.90)

b = O(µmax) (10.91)
c = O(µ4

max) (10.92)
d = ρ(Jε) + ε+O(µ2

max) (10.93)
a′ = O(µ2

max) (10.94)
b′ = O(µ3

max) (10.95)
c′ = O(µ4

max) (10.96)
d′ = O(µ2

max) (10.97)
a′′ = O(µ2

max) (10.98)
b′′ = O(µ2

max) (10.99)
c′′ = O(µ2

max) (10.100)
d′′ = O(µ2

max) (10.101)

and
Γ′ =

[
1−O(µmax) O(µmax)
O(µ4

max) ρ(Jε) + ε+O(µ2
max)

]
(10.102)

We again find that Γ′ is a stable matrix for sufficiently small µmax and ε. Using
results (9.105) and (10.78), and repeating the argument that led to (9.156)
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we conclude that

lim sup
i→∞

E‖b̄i‖4 = O(µ2
max), lim sup

i→∞
E‖b̌i‖4 = O(µ4

max) (10.103)

so that

lim sup
i→∞

E‖bi‖4 = lim sup
i→∞

E

(∥∥∥∥[ b̄ib̌i
]∥∥∥∥2)2

= lim sup
i→∞

E
(
‖b̄i‖2 + ‖b̌i‖2

)2

≤ 2
(

lim sup
i→∞

E
(
‖b̄i‖4 + ‖b̌i‖4

))
= O(µ2

max) (10.104)

Now, from zi = bi − ai we have

‖zi‖4 ≤ 8‖bi‖4 + 8‖ai‖4 (10.105)

and, therefore,

lim sup
i→∞

E‖zi‖4 = O(µ2
max) (10.106)

Consequently,

lim sup
i→∞

E‖w̃e
i‖4 = lim sup

i→∞
E

(∥∥∥∥(V−1
ε

)T
[
w̄e
i

w̌e
i

]∥∥∥∥2
)2

= lim sup
i→∞

E
(∥∥∥(V−1

ε

)T
zi

∥∥∥2
)2

≤
∥∥∥(V−1

ε

)T
∥∥∥4
(

lim sup
i→∞

E‖zi‖4
)

= O(µ2
max) (10.107)

which leads to the desired result (10.81).

10.5 Stability of First-Order Error Moment

We can also establish the stability of the mean error for the long-term
model (10.19).
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Lemma 10.5 (Mean stability of long-term model). Consider a network of N
interacting agents running the distributed strategy (8.46) with a primitive ma-
trix P = A1AoA2. Assume the aggregate cost (9.10) and the individual costs,
Jk(w), satisfy the conditions in Assumptions 6.1 and 10.1. Assume further
that the first and second-order moments of the gradient noise process satisfy
the conditions of Assumption 8.1. Consider the iterates that are generated by
the long-term model (10.19). Then, for sufficiently small step-sizes, it holds
that

lim sup
i→∞

‖E w̃′k,i‖ = O(µmax), k = 1, 2, . . . , N (10.108)

Proof. Conditioning both sides of (10.19) on F i−1, invoking the conditions
on the gradient noise process from Assumption 8.1, and computing the con-
ditional expectations we obtain:

E
[
w̃e′

i |F i−1

]
= Bw̃e′

i−1 − AT
2Mbe (10.109)

where the term involving sei (we
i−1) is eliminated because E [sei |F i−1] = 0.

Taking expectations again we arrive at

E w̃e′

i = B
(
E w̃e′

i−1

)
− AT

2Mbe (10.110)

We multiply both sides of this recursion from the left by VT
ε to get[

E w̄e′

i

E w̌e′

i

]
︸ ︷︷ ︸

∆= zi

=
[
I2M −DT

11 −DT
21

−DT
12 J T

ε −DT
22

]
︸ ︷︷ ︸

∆= B̄

[
E w̄e′

i−1
E w̌e′

i−1

]
︸ ︷︷ ︸

∆= zi−1

−
[

0
b̌e

]
(10.111)

where the matrix B̄ is stable by Theorem 9.3. For simplicity, we denote the
state variable in (10.111) by zi, so that we can rewrite the recursion more
compactly in the form

zi = B̄zi−1 −
[

0
b̌e

]
(10.112)

This is a first-order recursion that is driven by a constant term. Since B̄ is
stable and b̌e = O(µmax), we conclude from (10.112) that

lim
i→∞

zi = −(I − B̄)−1
[

0
b̌e

]
(9.229)=

[
O(1/µmax) O(1)

O(1) O(1)

] [
0

O(µmax)

]
= O(µmax) (10.113)



568 Long-Term Network Dynamics

It follows that
lim sup
i→∞

‖zi‖ = O(µmax) (10.114)

Consequently,

lim sup
i→∞

∥∥∥∥∥
[

E w̄e′

i

E w̌e′

i

]∥∥∥∥∥ = O(µmax) (10.115)

and, hence,

lim sup
i→∞

‖E w̃′k,i‖ ≤ lim sup
i→∞

‖E w̃e′

i ‖

= lim sup
i→∞

∥∥∥∥∥(V−1
ε

)T
[

E w̄e′

i

E w̌e′

i

]∥∥∥∥∥
≤

∥∥∥(V−1
ε

)T
∥∥∥ (lim sup

i→∞

∥∥∥∥∥
[

E w̄e′

i

E w̌e′

i

]∥∥∥∥∥
)

= O(µmax) (10.116)

as claimed.

10.6 Comparing Consensus and Diffusion Strategies

Using results from the previous sections, we are able to compare some
stability properties of diffusion and consensus networks. Recall from
(8.7)–(8.10) that the consensus and diffusion strategies correspond to
the following choices for {Ao, A1, A2} in terms of a single combination
matrix A in the general description (8.46):

consensus: Ao = A, A1 = IN = A2 (10.117)
CTA diffusion: A1 = A, A2 = IN = Ao (10.118)
ATC diffusion: A2 = A, A1 = IN = Ao (10.119)

Example 10.1 (Stabilizing effect of diffusion networks). We revisit the conclu-
sion of Example 8.4, albeit now under more general costs. Thus, refer to the
mean recursion (10.110), namely,

E w̃e′

i = B
(
E w̃e′

i−1

)
− AT

2Mbe (10.120)



10.6. Comparing Consensus and Diffusion Strategies 569

which is driven by a constant matrix B. Using the choices (10.117)–(10.119),
the B matrix is given by the following expressions in terms of the B matrix
for the non-cooperative strategy:

Bncop = IhMN −MH (non-cooperation) (10.121)
Bcons = Bncop +

(
AT − IhMN

)
(consensus) (10.122)

Batc = AT Bncop (ATC diffusion) (10.123)
Bcta = BncopAT (CTA diffusion) (10.124)

where A = A ⊗ IhM and h = 1 for real data and h = 2 for complex data.
We encountered a similar structure in expressions (8.30)–(8.33) for the case of
MSE networks in Example 8.3, where the mean error vector evolved instead
according to the recursion:

E w̃i = B (E w̃i−1) (10.125)

without the additional driving terms appearing in (10.120). Now, observe
that the coefficient matrices {Batc,Bcta} shown in (10.123)–(10.124) for the
diffusion strategies are expressed in terms of Bncop in a multiplicative manner,
while Bcons is related to Bncop in an additive manner. These structures have
an important implication on mean stability in view of the following matrix
result.

Let X1 and X2 be any left-stochastic matrices with blocks of size hM×hM ,
and let D be any Hermitian block-diagonal positive-definite matrix also with
blocks of size hM ×hM . Then, it holds from property (F.24) in the appendix
that ρ(XT

2 DXT
1 ) ≤ ρ(D). That is, multiplication of D by left-stochastic trans-

formations generally reduces the spectral radius. This result can be used to
establish the stability of the diffusion dynamics (i.e., of Bdiff) whenever the
non-cooperative strategy is stable (i.e., Bncop) and regardless of the com-
bination policy, A. Indeed, note that Bncop has a Hermitian block-diagonal
structure similar to D and that it is stable for any µmax < 2/ρ(H):

Bncop stable ⇐⇒ µmax <
2

ρ(H) (10.126)

The matrix A in (10.123)–(10.124) plays the role of X1 or X2. Therefore, it
follows that, whenever (10.126) holds, it will also hold that ρ(Batc) < 1 and
ρ(Bcta) < 1 for any A. The same conclusion does not generally hold for Bcons
[248]. Note further that since ρ(Batc) ≤ ρ(Bncop) and ρ(Bcta) ≤ ρ(Bncop), it
follows that diffusion strategies have a stabilizing effect.

�

Example 10.2 (Two interacting agents). We illustrate further the conclusion
of Example 10.1 by considering the case of an MSE network (cf. Example 8.2)
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consisting of two interacting agents shown in Figure 10.1 [248], with

Ru,1 = σ2
u,1 IM , Ru,2 = σ2

u,2 IM (10.127)

Without loss of generality, we assume

µ1σ
2
u,1 ≤ µ2σ

2
u,2 (10.128)

Agent 1 uses combination weights {1− a, a}, while agent 2 uses combination
weights {1 − b, b} with a, b ∈ (0, 1). The combination matrix A is therefore
given by

A =
[
1− a b
a 1− b

]
(10.129)

which is left-stochastic. If desired, a symmetric A can be obtained by setting
a = b.

The agents run either the consensus LMS strategy (7.14) or the diffusion
LMS strategy (7.22) or (7.23). We already know from (8.28) in Example 8.2
that the mean error recursion for the non-cooperative, diffusion, and consensus
LMS strategies running over complex data evolve according to the following
dynamics:

E w̃i = B (E w̃i−1) , i ≥ 0 (10.130)

with the coefficient matrix B given by the following expressions for the various
strategies under consideration (we are only showing the B matrix for the ATC
strategy since the argument is similar for CTA):

Bncop =
[

1− µ1σ
2
u,1 0

0 1− µ2σ
2
u,2

]
⊗ IM (10.131)

Batc =
[

(1− a) (1− µ1σ
2
u,1) a (1− µ2σ

2
u,2)

b (1− µ1σ
2
u,1) (1− b) (1− µ2σ

2
u,2)

]
⊗ IM (10.132)

Bcons =
[

(1− a)− µ1σ
2
u,1 a

b (1− b)− µ2σ
2
u,2

]
⊗ IM (10.133)

We first assume that

0 < µ1σ
2
u,1 ≤ µ2σ

2
u,2 < 2 (10.134)

so that each of the individual agents is stable in the mean and, hence, the
matrix Bncop given above is stable. Then, from the conclusion of Example 10.1
above we know that the diffusion network will also be stable in the mean for
any choice of the parameters {a, b}. This is because the stability of Bncop
guarantees the stability of Batc.
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1 2

Figure 10.1: A two-agent MSE network with agent 1 using combination
weights {a, 1− a} and agent 2 using combination weights {b, 1− b}.

We now verify that there are choices for the combination parameters {a, b}
that will destabilize the consensus network (even though the individual agents
are themselves stable in the mean). Specifically, we verify below that if the
parameters {a, b} ∈ (0, 1) are chosen to satisfy

a+ b ≥ 2− µ1σ
2
u,1 > 0 (10.135)

then consensus will lead to unstable mean behavior, i.e., E w̃i will grow un-
bounded. Indeed, note first that the minimum eigenvalue of Bcons can be found
to be

λmin(Bcons) = 1
2
(

(2− a− b− µ1σ
2
u,1 − µ2σ

2
u,2)−

√
τ
)

(10.136)

where

τ , (b− a− µ1σ
2
u,1 + µ2σ

2
u,2)2 + 4ab

= (b+ a+ µ1σ
2
u,1 − µ2σ

2
u,2)2 + 4b(µ2σ

2
u,2 − µ1σ

2
u,1) (10.137)

From the first equality in (10.137), we conclude that τ ≥ 0 and, hence, that
λmin(Bcons) is real. Moreover, using (10.134)–(10.135), we have that

b+ a+ µ1σ
2
u,1 − µ2σ

2
u,2 ≥ 0 (10.138)

4b(µ2σ
2
u,2 − µ1σ

2
u,1) ≥ 0 (10.139)

It follows that

λmin(Bcons) ≤
1
2
(
(2− a− b− µ1σ

2
u,1 − µ2σ

2
u,2)− (b+ a+ µ1σ

2
u,1 − µ2σ

2
u,2)
)

= 1− b− a− µ1σ
2
u,1

≤ −1 (10.140)
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where (10.140) follows from (10.135). We conclude that the consensus network
is unstable since the eigenvalues of Bcons do not lie strictly inside the unit
circle.
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N = 2 agents, M = 3, µ1 = µ2 = 1 × 10−5, µkσ2

u,k = 0.5, σ2

v,k = 0.05

 

 

ATC diffusion (7.23)

CTA diffusion (7.22)

consensus (7.13)

Figure 10.2: Evolution of the learning curves for the diffusion and consensus
strategies for the numerical values µ1 = µ2 = 1×10−5, µ1σ

2
u,1 = µ2σ

2
u,2 = 0.5,

and (a, b) = (0.8, 0.8). These numerical values satisfy (10.135) for which the
consensus solution becomes unstable.

Figure 10.2 illustrates these results for the two-agent MSE network of Fig-
ure 10.1 dealing with complex-valued data {dk(i),uk,i} satisfying the model
dk(i) = uk,iw

o + vk(i) with M = 3. The unknown vector wo is generated
randomly and its norm is normalized to one. The figure plots the evolution of
the ensemble-average learning curves, 1

2E‖w̃i‖2, for consensus, ATC diffusion,
and CTA diffusion using µ1 = µ2 = 1 × 10−5. The measure 1

2E‖w̃i‖2 corre-
sponds to the average mean-square-deviation (MSD) of the agents at time i
since

1
2E‖w̃i‖2 = 1

2
(
E‖w̃1,i‖2 + E‖w̃2,i‖2

)
(10.141)

and w̃k,i = wo − wk,i. The learning curves are obtained by averaging the
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trajectories { 1
2‖w̃i‖2} over 100 repeated experiments. The label on the ver-

tical axis in the figure refers to the learning curves 1
2E‖w̃i‖2 by writing

MSDdist,av(i), with an iteration index i and where the subscripts “dist” and
“av” are meant to indicate that this is an average performance measure for the
distributed solution. Each experiment in this simulation involves running the
consensus (7.13) or diffusion (7.22)–(7.23) LMS recursions with h = 2 on the
complex-valued data {dk(i),uk,i}. The simulations use σ2

v,1 = σ2
v,2 = 0.05,

µ1σ
2
u,1 = µ2σ

2
u,2 = 0.5, and (a, b) = (0.8, 0.8). These numerical values ensure

that (10.134) and (10.135) are satisfied so that the individual agents and the
diffusion strategy are both mean stable, while the consensus strategy becomes
unstable in the mean. The small step-sizes ensure that the networks are mean-
square stable. It is seen in the figure that the learning curve of the consensus
strategy grows unbounded while the learning curve of the diffusion strategies
tend towards steady-state values.

Next, we consider an example satisfying

0 < µ1σ
2
u,1 < 2 ≤ µ2σ

2
u,2 (10.142)

so that, for the non-cooperative mode of operation, agent 1 is still stable while
agent 2 is unstable. From the first equality of (10.137), we again conclude that

λmin(Bcons) ≤ 1
2
(
(2− a− b− µ1σ

2
u,1 − µ2σ

2
u,2)− |b− a− µ1σ

2
u,1 + µ2σ

2
u,2|
)

=
{

1− a− µ1σ
2
u,1, if b+ µ2σ

2
u,2 ≤ a+ µ1σ

2
u,1

1− b− µ2σ
2
u,2, otherwise

≤ 1− b− µ2σ
2
u,2

≤ 1− µ2σ
2
u,2

≤ −1 (10.143)

That is, in this second case, no matter how we choose the parameters {a, b},
the consensus network is always unstable. In contrast, the diffusion network
is able to stabilize the network, i.e., there are choices for {a, b} that lead to
stable behavior. To see this, we set b = 1 − a so that the eigenvalues of Batc
are

λ (Batc) ∈ {0, 1− µ1σ
2
u,1 − (µ2σ

2
u,2 − µ1σ

2
u,1)a} (10.144)

Some straightforward algebra shows that the magnitude of the nonzero eigen-
value will be bounded by one and, hence, the diffusion network will be stable
in the mean if a satisfies:

0 ≤ a <
2− µ1σ

2
u,1

µ2σ2
u,2 − µ1σ2

u,1
(10.145)

�



11
Performance of Multi-Agent Networks

We established in Theorem 9.1 that a multi-agent network running the
distributed strategy (8.46) is mean-square stable for sufficiently small
step-size parameters. More specifically, we showed that, for each agent
k, the error variance relative to the limit point, w?, defined by (8.55),
enters a bounded region whose size is in the order of O(µmax):

lim sup
i→∞

E‖w̃k,i‖2 = O(µmax), k = 1, 2, . . . , N (11.1)

In this chapter, we will assess the size of these mean-square errors for
both cases of real and complex data. We will measure the mean-square-
deviation (MSD) at each agent k, as well as for the entire network, by
using the following definitions:

MSDdist,k
∆= µmax ·

(
lim

µmax→0
lim sup
i→∞

1
µmax

E‖w̃k,i‖2
)

(11.2)

MSDdist,av
∆= 1

N

(
N∑
k=1

MSDdist,k

)
(11.3)

The form of expression (11.2) for the MSD was motivated earlier in
(4.94) while studying single-agent adaptation, except that here we are
scaling by µmax since we can now have multiple step-sizes {µk} across

574



11.1. Conditions on Costs and Noise 575

the agents. The subscript “dist” in the above two expressions is used to
indicate that these measures relate to the distributed implementation.
Note that the network performance is defined in terms of the average
MSD value across all agents. We will derive closed-form expressions for
the MSD performance for both cases of real and complex-valued data —
see, e.g., (11.118), as well as for the excess-risk (ER) metric defined later
by (11.34) — see, e.g., (11.186). If we examine, for instance, expression
(11.118) for the MSD, we observe that it is proportional to µmax, i.e.,
it is small and in the order of O(µmax), as expected from (11.1). In this
way, we will be able to conclude that network adaptation with small
constant step-sizes is able to lead to reliable performance even in the
presence of gradient noise, which is a reassuring result.

11.1 Conditions on Costs and Noise

The presentation will assume the same conditions we used in the last
two chapters to examine the stability of multi-agent networks. In par-
ticular, we assume the aggregate cost (9.10) and the individual costs,
Jk(w), satisfy the conditions in Assumptions 6.1 and 10.1. We also
assume that the first and fourth-order moments of the gradient noise
process satisfy the conditions of Assumption 8.1 with the second-order
moment condition (8.115) replaced by the fourth-order moment condi-
tion (8.121), in addition to a smoothness condition on the noise covari-
ance matrices defined as follows.

We refer to the definition of the individual gradient noise processes
in (8.109), namely, for any φ ∈ F i−1:

sk,i(φ) ∆= ∇̂w∗Jk(φ) − ∇w∗Jk(φ) (11.4)

where F i−1 denotes the filtration corresponding to all past iterates
across all agents:

F i−1 = filtration defined by {wk,j , j ≤ i− 1, k = 1, 2, . . . , N}
(11.5)

We define the extended gradient noise vector of size 2M × 1:

sek,i(φ) ∆=

 sk,i(φ)(
s∗k,i(φ)

)T

 (11.6)
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We denote its conditional covariance matrix by

Res,k,i(φ) ∆= E
[
sek,i(φ)se∗k,i(φ) |F i−1

]
(11.7)

We further assume that, in the limit, the following moment matrices
tend to constant values when evaluated at the limit point w?:

Rs,k
∆= lim

i→∞
E
[
sk,i(w?)s∗k,i(w?) |F i−1

]
(11.8)

Rq,k
∆= lim

i→∞
E
[
sk,i(w?)sT

k,i(w?) |F i−1
]

(11.9)

Assumption 11.1 (Smoothness condition on noise covariance). It is assumed
that the conditional second-order moments of the individual noise processes
satisfy smoothness conditions similar to (5.37), namely,∥∥Res,k,i(w? + ∆w)−Res,k,i(w?)

∥∥ ≤ κd ‖∆w‖γ (11.10)

in terms of the extended covariance matrix, for small perturbations ‖∆w‖ ≤ ε,
and for some constants κd ≥ 0 and exponent 0 < γ ≤ 4.

Following the argument that led to (4.24) in the single-agent case, we
can similarly show that the conditional noise covariance matrix satisfies
more globally a condition of the following form for all φ ∈ F i−1:∥∥∥Res,k,i(φ)−Res,k,i(w?)

∥∥∥ ≤ κd ‖φ̃‖γ + κ′d ‖φ̃‖2 (11.11)

where φ̃ = w? − φ and for some constant κ′d ≥ 0.
The performance expressions that will be derived in this chapter

will be expressed in terms of the following quantities, defined for both
cases of real or complex data.

Definition 11.1 (Hessian and moment matrices). We associate with each agent
k a pair of matrices {Hk, Gk}, both of which are evaluated at the location of
the limit point w = w?. The matrices are defined as follows:

Hk
∆= ∇2

w Jk(w?), Gk
∆=


Rs,k (real case)[

Rs,k Rq,k
R∗q,k RT

s,k

]
(complex case) (11.12)
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Both matrices are dependent on the data type (whether real or complex); in
particular, each Hk is 2M × 2M for complex data and M ×M for real data.
Note that Hk ≥ 0 and Gk ≥ 0.

In view of the lower bound condition in (6.13), it follows that
N∑
k=1

qkHk > 0 (11.13)

so that the weighted sum of the {Hk}matrices is invertible. This matrix
sum will appear in the performance expressions.

In a manner similar to Lemma 4.1, one useful conclusion that fol-
lows from the smoothness condition (11.10) and from (11.11) is that,
after sufficient iterations, we can express the covariance matrix of the
gradient noise process, sek,i(φ), in terms of the same limiting matri-
ces {Gk} defined by (11.12). This fact is established next and will be
employed later in the proof of Theorem 11.2. For the sake of the ar-
gument used in the derivation of the lemma below, we recall from the
explanation following (8.134) that each noise component, sek,i(·), is ac-
tually dependent on the iterate φk,i−1 and, hence, we will write this
noise component more explicitly as sek,i(φk,i−1). We further recall from
the distributed algorithm (8.46) that φk,i−1 is a convex combination
of various {w`,i−1} from the neighborhood of agent k. This property is
exploited in the derivation.

Lemma 11.1 (Limiting second-order moment of gradient noise). Under the
smoothness condition (11.10), and for sufficiently small step-sizes, it holds that
the covariance matrix of the extended gradient noise process, sek,i(φk,i−1), at
each agent k satisfies for i� 1:

Esek,i(φk,i−1)
(
sek,i(φk,i−1)

)∗ = Gk + O
(
µmin{1, γ2 }

)
(11.14)

where 0 < γ ≤ 4 and Gk is given by (11.12). Consequently, it holds for i� 1
that the trace of the covariance matrix satisfies:

Tr(Gk)− bo ≤ E‖sek,i(φk,i−1)‖2 ≤ Tr(Gk) + bo (11.15)

for some nonnegative value bo = O
(
µmin{1, γ2 }

)
.
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Proof. By adding and subtracting the same term we have [71, 278]:

E
[
sek,i(φk,i−1)

(
sek,i(φk,i−1)

)∗ |F i−1

]
= E

[
sek,i(w?)

(
sek,i(w?)

)∗ |F i−1

]
+

E
[
sek,i(φk,i−1)

(
sek,i(φk,i−1)

)∗ |F i−1

]
−

E
[
sek,i(w?)

(
sek,i(w?)

)∗ |F i−1

]
(11.16)

which, upon using definition (11.7), can be rewritten as:

E
[
sek,i(φk,i−1)

(
sek,i(φk,i−1)

)∗ |F i−1

]
= E

[
sek,i(w?)

(
sek,i(w?)

)∗ |F i−1

]
+

Res,k,i(φk,i−1)−Res,k,i(w?) (11.17)

Subtracting the covariance matrix Gk defined by (11.12) from both sides, and
computing expectations, we get:

Esek,i(φk,i−1)
(
sek,i(φk,i−1)

)∗ −Gk
= E

(
E
[
sek,i(w?)

(
sek,i(w?)

)∗ |F i−1

]
−Gk

)
+

E
(
Res,k,i(φk,i−1)−Res,k,i(w?)

)
(11.18)

It then follows from the triangle inequality of norms, and from Jensen’s in-
equality (F.29) in the appendix, that∥∥∥Esek,i(φk,i−1)

(
sek,i(φk,i−1)

)∗ −Gk∥∥∥
≤
∥∥∥E (E [ sek,i(w?) (sek,i(w?))∗ |F i−1

]
−Gk

)∥∥∥+∥∥E (Res,k,i(φk,i−1)−Res,k,i(w?)
)∥∥

(F.29)
≤ E

∥∥∥E [ sek,i(w?) (sek,i(w?))∗ |F i−1

]
−Gk

∥∥∥+

E
∥∥Res,k,i(φk,i−1)−Res,k,i(w?)

∥∥ (11.19)

Computing the limit superior of both sides, and using (11.8)–(11.9) to
annihilate the limit of the first term on the right-hand side, we conclude that

lim sup
i→∞

∥∥∥Esek,i(φk,i−1)
(
sek,i(φk,i−1)

)∗ −Gk∥∥∥ ≤
lim sup
i→∞

E
∥∥Res,k,i(φk,i−1)−Res,k,i(w?)

∥∥ (11.20)
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We next use the smoothness condition (11.11) to bound the right-most term
as follows:

‖Res,k,i(φk,i−1)−Res,i(w?)‖ ≤ κd ‖φ̃k,i−1‖γ + κ′d ‖φ̃k,i−1‖2 (11.21)

where
φ̃k,i−1

∆= w? − φk,i−1 (11.22)

Recall from the distributed algorithm (8.46) that

φ̃k,i−1 =
∑
`∈Nk

a1,`k w̃`,i−1 (11.23)

so that exploiting the convexity of the functions f(x) = x2 and f(x) = x4,
and applying Jensen’s inequality (F.26), we get:

‖φ̃k,i−1‖2 =

∥∥∥∥∥∑
`∈Nk

a1,`kw̃`,i−1

∥∥∥∥∥
2

(F.26)
≤

∑
`∈Nk

a1,`k‖w̃`,i−1‖2

≤
∑
`∈Nk

‖w̃`,i−1‖2

≤
N∑
`=1
‖w̃`,i−1‖2 (11.24)

Likewise, we have

‖φ̃k,i−1‖4 ≤
N∑
`=1
‖w̃`,i−1‖4 (11.25)

and since the function f(x) = xγ/4 is increasing over x ≥ 0:

‖φ̃k,i−1‖γ =
(
‖φ̃k,i−1‖4

)γ/4
≤

(
N∑
`=1
‖w̃`,i−1‖4

)γ/4
(11.26)

Substituting (11.24) and (11.26) into (11.21), we obtain

‖Res,k,i(φk,i−1)−Res,i(w?)‖ ≤ κd

(
N∑
`=1
‖w̃`,i−1‖4

)γ/4
+ κ′d

(
N∑
`=1
‖w̃`,i−1‖2

)
(11.27)
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Using arguments similar to the steps that led to (4.31) in the single-agent
case, we find under expectation and in the limit that:

lim sup
i→∞

E‖Res,k,i(φi−1)−Res,k,i(w?)‖

≤ lim sup
i→∞

κd E

(
N∑
`=1
‖w̃`,i−1‖4

)γ/4
+ κ′d E

(
N∑
`=1
‖w̃`,i−1‖2

)
(a)
≤ lim sup

i→∞

κd

(
N∑
`=1

E‖w̃`,i−1‖4
)γ/4

+ κ′d

(
N∑
`=1

E‖w̃`,i−1‖2
)

(9.11)= O(µγ
′/2

max) (11.28)

where in step (a) we applied Jensen’s inequality (F.30) to the function f(x) =
xγ/4; this function is concave over x ≥ 0 for γ ∈ (0, 4]. Moreover, in the last
step we called upon results (9.11) and (9.107), namely, that the second and
fourth-order moments of w̃`,i−1 are asymptotically bounded by O(µmax) and
O(µ2

max), respectively. Accordingly, the exponent γ′ in the last step is given
by

γ′
∆= min {γ, 2} (11.29)

since O(µγ/2max) dominates O(µmax) for values of γ ∈ (0, 2] and O(µmax) domi-
nates O(µγ/2max) for values of γ ∈ [2, 4]. Substituting (11.28) into (11.20) gives

lim sup
i→∞

∥∥∥Esek,i(φk,i−1)
(
sek,i(φk,i−1)

)∗ − Gk

∥∥∥ = O(µγ
′/2

max) (11.30)

which leads to (11.14). Moreover, since for any square matrix X, it holds that
|Tr(X)| ≤ c ‖X‖, for some constant c that is independent of γ′, we conclude
that

lim sup
i→∞

∣∣E‖sek,i(φk,i−1)‖2 − Tr (Gk)
∣∣ = O(µγ

′/2
max) = b1 (11.31)

in terms of the absolute value of the difference. We are denoting the value of
the limit superior by the nonnegative number b1; we know from (11.31) that
b1 = O(µγ′/2). The above relation then implies that, given ε > 0, there exists
an Io large enough such that for all i > Io it holds that∣∣E‖sek,i(φk,i−1)‖2 − Tr(Gk)

∣∣ ≤ b1 + ε (11.32)

If we select ε = O(µγ′/2) and introduce the sum bo = b1 + ε, then we arrive
at the desired result (11.15).
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11.2 Performance Metrics

As was already explained in Sec. 4.5, besides the MSD metric (11.2)–
(11.3), there is a second useful measure of performance defined in terms
of the mean excess-cost; which is also called the excess-risk (ER). For
multi-agent networks, this metric is usually of interest when the cost
functions Jk(w) across the agents are identical, i.e., when Jk(w) ≡ J(w)
and Hk ≡ H for k = 1, 2, . . . , N . In this case, the N agents would
be cooperating to minimize the same strongly-convex cost function,
Jglob(w) = N · J(w), and the limit point w? will coincide with the
minimizer, wo, of J(w). We shall nevertheless define the ER metric
more broadly for the general case when the individual costs may be
different from each other.

For this purpose, we refer to the normalized aggregate cost,
J̄glob,?(w), defined by (8.59) and whose global minimizer is the same
w?. We already know from (11.1) that the iterates, wk,i, at the vari-
ous agents approach w? for sufficiently small step-sizes. We therefore
define the ER measure for every agent k as the average fluctuation of
J̄glob,?(w) around its minimum value (in a manner similar to what was
defined earlier for the single-agent case in (4.95)):

ERdist,k
∆= (11.33)

µmax ·
(

lim
µmax→0

lim sup
i→∞

1
µmax

E
{
J̄glob,?(wk,i−1)− J̄glob,?(w?)

})

The main difference in relation to (4.95) is that we are now scaling by
µmax and using the normalized aggregate cost (8.59). The reason why
we are using this normalized cost in (11.33), rather than the regular
aggregate cost Jglob,?(w) from (9.6), is to ensure that the above defi-
nition of the excess-risk is compatible with the definition used earlier
for non-cooperative agents in (4.95) and for centralized processing in
(5.53). For example, when the individual costs happen to coincide, say,
Jk(w) ≡ J(w), then the expectation on the right-hand side of (11.33)
reduces to E{J(wk,i−1) − J(wo)}, which is consistent with the earlier
expression (4.95).
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We further define the network ER measure as the average ER values
across all agents:

ERdist,av
∆= 1

N

(
N∑
k=1

ERdist,k

)
(11.34)

Using (9.107) and result (E.44) from the appendix, along with the same
justification we employed earlier to arrive at (4.96), we can similarly
express the ER measure (11.33) in terms of a weighted mean-square-
error norm as follows:

ERdist,k = µmax ·
(

lim
µmax→0

lim sup
i→∞

1
µmax

E‖w̃e
k,i−1‖21

2 H̄

)
(11.35)

where the matrix H̄ denotes the value of the Hessian matrix of the
normalized cost, J̄glob,?(w), evaluated at w = w?. It follows from (8.59)
that this matrix is given by

H̄
∆=

N∑
k=1

q̄kHk (11.36)

It is straightforward to verify that the MSD and ER performance mea-
sures defined so far can be equivalently expressed as follows in terms of
the extended error vectors {w̃e

k,i, w̃
e
i} defined by (8.133) and (8.143):

MSDdist,k
∆= µmax ·

(
lim

µmax→0
lim sup
i→∞

1
µmax

1
2E‖w̃

e
k,i‖2

)
(11.37)

MSDdist,av
∆= µmax ·

(
lim

µmax→0
lim sup
i→∞

1
µmax

1
2N E‖w̃e

i‖2
)

(11.38)

ERdist,av = µmax ·
(

lim
µmax→0

lim sup
i→∞

1
µmax

1
2N E‖w̃e

i−1‖2(IN⊗H̄)

)
(11.39)

These expressions measure the mean-square-error performance of the
network and its agents, as well as the mean fluctuation of the normal-
ized aggregate cost function around its optimal value, in the steady-
state regime assuming sufficiently small step-sizes. More specifically,
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these expressions result in performance measures that are first-order
in µmax. We shall evaluate them by relying on the long-term model
(10.19).

As explained earlier in Sec. 4.5, we sometimes write the expressions
for the MSD and ER measures more compactly (but less rigorously) as
follows for small step-sizes:

MSDdist,k
∆= lim

i→∞

1
2E‖w̃

e
k,i‖2 (11.40)

MSDdist,av
∆= lim

i→∞

1
2N E‖w̃e

i‖2 (11.41)

ERdist,k = lim
i→∞

1
2E‖w̃

e
k,i−1‖2H̄ (11.42)

ERdist,av = lim
i→∞

1
2N E‖w̃e

i−1‖2(IN⊗H̄) (11.43)

with the understanding that the limits on the right-hand side are com-
puted according to the definitions (11.35) and (11.37)–(11.39) since,
strictly speaking, the limits in (11.40)–(11.43) may not exist. Yet, it is
useful to note that derivations that assume the validity of these limits
still lead to the same expressions for the MSD and ER to first-order in
µmax as derivations that rely on the more formal expressions (11.35)
and (11.37)–(11.39) — this fact can be verified by examining and re-
peating the proofs of Theorems 11.2 and 11.4 further ahead.

11.3 Mean-Square-Error Performance

We examine first the mean-square-error performance of the multi-agent
network and derive closed-form expressions for the MSD measures of
the individual agents and the entire network. The expressions given be-
low involve the bvec and block Kronecker operations defined in Sec. F.1
in the appendix.

Theorem 11.2 (Network limiting performance). Consider a network of N inter-
acting agents running the distributed strategy (8.46) with a primitive matrix
P = A1AoA2. Assume the aggregate cost (9.10) and the individual costs,
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Jk(w), satisfy the conditions in Assumptions 6.1 and 10.1. Assume further
that the first and fourth-order moments of the gradient noise process satisfy
the conditions of Assumption 8.1 with the second-order moment condition
(8.115) replaced by the fourth-order moment condition (8.121). Assume also
(11.10). Let

γm
∆= 1

2 min {1, γ} > 0 (11.44)

with γ ∈ (0, 4] from (11.10). Then, it holds that

lim sup
i→∞

1
2E‖w̃

e
k,i‖2 = 1

h
Tr(JkX ) +O

(
µ1+γm

max
)

(11.45)

lim sup
i→∞

1
2N E‖w̃e

i‖2 = 1
hN

Tr(X ) +O
(
µ1+γm

max
)

(11.46)

and, for large enough i, the convergence rate of the error variances, E‖w̃k,i‖2,
towards the steady-state region (11.45) is given by

α = 1− 2λmin

(
N∑
k=1

qkHk

)
+O

(
µ(N+1)/N

max

)
(11.47)

where qk is defined by (9.7) and α ∈ (0, 1); the smaller the value of α is,
the faster the convergence of E‖w̃k,i‖2 towards (11.45). Moreover, the ma-
trix X that appears in (11.45)–(11.46) is Hermitian non-negative definite and
corresponds to the unique solution of the (discrete-time) Lypaunov equation:

X − BXB∗ = Y (11.48)

where the quantities {Y,B,Jk} are defined by:

Ao = Ao ⊗ IhM , A1 = A1 ⊗ IhM , A2 = A2 ⊗ IhM (11.49)
M = diag{ µ1IhM , µ2IhM , . . . , µNIhM} (11.50)
H = diag{ H1, H2, . . . ,HN } (11.51)
Hk = ∇2

wJk(w?) (11.52)
S = diag{ G1, G2, . . . , GN } (11.53)
Y = AT

2MSMA2 (11.54)
B = AT

2
(
AT
o −MH

)
AT

1 (11.55)
F = BT ⊗b B∗ (11.56)
Jk = diag{ 0hM , . . . , 0hM , IhM , 0hM , . . . , 0hM } (11.57)

with Jk having an identity matrix at the k−th diagonal block, and h = 1
for real data and h = 2 for complex data. Furthermore, the following are
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equivalent characterizations for the matrix X or its trace:

X =
∞∑
n=0
BnY (B∗)n (11.58)

bvec(X ) = (I −F∗)−1bvec(Y) (11.59)

Tr(X ) =
(
bvec

(
YT))T (I −F)−1bvec (IhMN ) (11.60)

Tr(JkX ) =
(
bvec

(
YT))T (I −F)−1bvec (Jk) (11.61)

Proof. We start from the long-term model (10.19), namely,

w̃e′

i = B w̃e′

i−1 + AT
2Msei (we

i−1) − AT
2Mbe (11.62)

We drop the argument we
i−1 from sei for compactness of presentation. Condi-

tioning on the past history and taking expectations gives

E
(
w̃e′

i |F i−1

)
= B w̃e′

i−1 − AT
2Mbe (11.63)

so that taking expectations again we obtain the mean recursion:

E w̃e′

i = B
(
E w̃e′

i−1

)
− AT

2Mbe (11.64)

Now observe that recursion (11.62) includes a constant driving term on the
right-hand side represented by the factor AT

2Mbe. To facilitate the variance
analysis, we introduce the centered variable:

zi
∆= w̃e′

i − E w̃e′

i (11.65)

Subtracting (11.64) from (11.62) we find that zi satisfies the following recur-
sion:

zi = Bzi−1 + AT
2Msei (we

i−1) (11.66)

where the deterministic driving terms are also removed. Although we are
interested in evaluating the asymptotic size of E‖w̃e′

i ‖2, we can still rely on
the centered variable zi for this purpose. This is because it holds for i� 1:

E‖zi‖2 = E‖w̃e′

i ‖2 − ‖E w̃
e′

i ‖2
(10.108)= E‖w̃e′

i ‖2 + O(µ2
max) (11.67)

Moreover, we established earlier in (10.30) that under the fourth-order mo-
ment condition (8.121) on the gradient noise processes, the error variances
E‖w̃e′

i ‖2 and E‖w̃e
i‖2 are within O(µ3/2

max) from each other. Therefore, we
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may evaluate the network error variance (or MSD) in terms of the mean-
square value of the variable zi (similarly for any weighted square measure of
w̃e
i such as the ER) by employing the correction:

lim sup
i→∞

1
2N E‖w̃e

i‖2 = lim sup
i→∞

1
2N E‖zi‖2 + O(µ3/2

max) (11.68)

We therefore continue with recursion (11.66) and proceed to examine how the
mean-square value of zi evolves over time by relying on energy conservation
arguments [6, 205, 206, 269, 278].

Let Σ denote an arbitrary Hermitian positive semi-definite matrix that
we are free to choose. Equating the squared weighted values of both sides of
(11.66) and taking expectations conditioned on the past history gives:

E
(
‖zi‖2Σ |F i−1

)
= ‖zi−1‖2B∗ΣB + E

(
‖sei‖2MA2ΣAT

2M
|F i−1

)
(11.69)

Taking expectations again removes the conditioning on F i−1 and we get

E‖zi‖2Σ = E
(
‖zi−1‖2B∗ΣB

)
+ E

(
‖sei‖2MA2ΣAT

2M

)
(11.70)

We now evaluate the right-most term. For that purpose, we shall call upon
the results of Lemma 11.1. To begin with, note that

E
(
‖sei‖2MA2ΣAT

2M

)
= Tr

[
MA2ΣAT

2ME
(
sei (we

i−1)
(
sei (we

i−1)
)∗)]
(11.71)

where the entries of the covariance matrix Esei (we
i−1)

(
sei (we

i−1)
)∗ that ap-

pears in the above expression were already evaluated earlier in (11.14). Using
that result, and the fact that the gradient noises across the agents are uncor-
related with each other and second-order circular, we obtain

lim sup
i→∞

∥∥∥Esei (we
i−1)

(
sei (we

i−1)
)∗ − S∥∥∥ = O(µγ

′/2
max) (11.72)

where γ′ was defined in (11.29) as γ′ = min {γ, 2}. Using the sub-
multiplicative property of norms, namely, ‖AB‖ ≤ ‖A‖ ‖B‖, we conclude
from (11.72) that

lim sup
i→∞

∥∥∥MA2ΣAT
2M

(
Esei (we

i−1)
(
sei (we

i−1)
)∗ − S)∥∥∥

= Tr(Σ) ·O
(
µ2+(γ′/2)

max

)
(11.73)

where an additional factor µ2
max has been added to the big-O term; it arises

from the fact that ‖MA2ΣAT
2M‖ = Tr(Σ)·O(µ2

max). Note that we are keeping
the factor Tr(Σ) explicit on the right-hand side of (11.73); this is convenient
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for later use in (11.92) — the reason we have Tr(Σ) in (11.73) is because
‖Σ‖ ≤ Tr(Σ) for any Hermitian positive semi-definite Σ. Using again the fact
that |Tr(X)| ≤ c ‖X‖ for any square matrix X, we conclude that

lim sup
i→∞

∣∣∣E‖sei‖2MA2ΣAT
2M
− Tr (ΣY)

∣∣∣ = Tr(Σ) ·O
(
µ2+(γ′/2)

max

)
= b1

(11.74)
in terms of the absolute value of the difference and where we are denoting
the value of the limit superior by the nonnegative number b1; we know from
(11.74) that b1 = Tr(Σ) ·O(µ2+(γ′/2)

max ). The same argument that led to (11.15)
then gives for i� 1:

Tr(ΣY) − bo ≤ E
(
‖sei‖2MA2ΣAT

2M

)
≤ Tr(ΣY) + bo (11.75)

for some nonnegative constant bo = Tr(Σ)·O(µ2+(γ′/2)
max ). It follows from (11.75)

that we can also write for i� 1:

E
(
‖sei‖2MA2ΣAT

2M

)
= Tr(ΣY) + Tr(Σ) ·O

(
µ2+(γ′/2)

max

)
(11.76)

Substituting (11.75) into (11.70) we obtain for i� 1:

E‖zi‖2Σ ≤ E
(
‖zi−1‖2B∗ΣB

)
+ Tr(ΣY) + bo (11.77)

E‖zi‖2Σ ≥ E
(
‖zi−1‖2B∗ΣB

)
+ Tr(ΣY) − bo (11.78)

Using the sub-additivity and super-additivity properties (4.117)–(4.118) of
the limit superior and limit inferior operations, we conclude from the above
relations that:

lim sup
i→∞

E‖zi‖2Σ ≤ lim sup
i→∞

E
(
‖zi−1‖2B∗ΣB

)
+ Tr(ΣY) + bo (11.79)

lim inf
i→∞

E‖zi‖2Σ ≥ lim inf
i→∞

E
(
‖zi−1‖2B∗ΣB

)
+ Tr(ΣY) − bo (11.80)

Grouping terms we get:

lim sup
i→∞

E‖zi‖2Σ−B∗ΣB ≤ Tr(ΣY) + bo (11.81)

lim inf
i→∞

E‖zi‖2Σ−B∗ΣB ≥ Tr(ΣY) − bo (11.82)

and, consequently, by using the fact that the limit inferior of a sequence
is upper bounded by its limit superior, we obtain the following inequality
relation:
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Tr(ΣY) − bo ≤ lim inf
i→∞

E‖zi‖2Σ−B∗ΣB

≤ lim sup
i→∞

E‖zi‖2Σ−B∗ΣB ≤ Tr(ΣY) + bo (11.83)

Recalling that bo = Tr(Σ) · O(µ2+(γ′/2)
max ), we conclude that the limit superior

and limit inferior of the error variance satisfy:

lim sup
i→∞

E‖zi‖2Σ−B∗ΣB = Tr(ΣY) + Tr(Σ) ·O
(
µ2+(γ′/2)

max

)
(11.84)

lim inf
i→∞

E‖zi‖2Σ−B∗ΣB = Tr(ΣY) − Tr(Σ) ·O
(
µ2+(γ′/2)

max

)
(11.85)

We can now use (11.84) to justify (11.46). To do so, it is useful to review
first two properties of block Kronecker products, which will be used in the
derivation.

Thus, consider an arbitrary square matrix C with block entries, say, of size
hM×hM each. We let the notation bvec(C) denote the vector that is obtained
by vectorizing each block entry of the matrix and then stacking the resulting
columns on top of each other — see expression (F.5) in the appendix. It is then
well-known that the following properties from Table F.2 in the appendix hold
for arbitrary matrices {U,W,C} with block entries of compatible dimensions
and in terms of the block Kronecker product operation defined by (F.2) in
the same appendix:

bvec(UCW ) = (WT ⊗b U)bvec(C) (11.86)

Tr(CW ) =
(
bvec(WT)

)T bvec(C) (11.87)

Returning to (11.84), we recall that we are free to choose the weighting ma-
trix Σ. Assume we select Σ as the solution to the following (discrete-time)
Lyapunov equation:

Σ− B∗ΣB = IhMN (11.88)
We know from (9.173) that the matrix B is stable for sufficiently small step-
sizes. Accordingly, we are guaranteed from the statement of Lemma F.2 that
the above Lyapunov equation has a unique solution Σ and, moreover, this
solution is Hermitian and non-negative definite, as desired. The advantage of
this choice for Σ is that it reduces the weighting matrix on the mean-square
value of zi in (11.84) to the identity matrix. We can then focus on evaluating
the value of the right-hand side of expression (11.84).

For this purpose, we start by applying the block vectorization operation
to both sides of (11.88) and use (11.86) to find that

bvec(Σ)−
(
BT ⊗b B∗

)
bvec(Σ) = bvec(IhMN ) (11.89)
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so that in terms of the matrix F defined by (11.56), which is also stable, we
can write

bvec(Σ) = (I −F)−1bvec(IhMN ) (11.90)

Now, substituting this Σ into (11.84), we obtain E‖zi‖2 on the left-hand side
while the term Tr(ΣY) on the right-hand side becomes:

Tr(ΣY) (11.87)=
(
bvec(YT)

)T bvec(Σ)

=
(
bvec(YT)

)T (I −F)−1bvec(IhMN ) (11.91)

Likewise, the second term on the right-hand side of (11.84) becomes:

O
(
µ2+(γ′/2)

max

)
· Tr(Σ) (11.87)= O

(
µ2+(γ′/2)

max

)
· (bvec(IhMN ))T bvec(Σ)

= O
(
µ2+(γ′/2)

max

)
· (bvec(IhMN ))T (I −F)−1bvec(IhMN )

(11.92)

But since F is a stable matrix, we can employ the expansion

(I −F)−1 = I + F + F2 + F3 + . . .

(11.56)= I +
(
BT ⊗b B∗

)
+
((
BT)2 ⊗b (B∗)2

)
+ . . . (11.93)

and appeal to properties (11.86) and (11.87) again, to validate the identities:

[
bvec

(
YT)]T (I −F)−1bvec (IhMN ) =

∞∑
n=0

Tr [BnY(B∗)n] (11.94)

(bvec(IhMN ))T (I −F)−1bvec(IhMN ) =
∞∑
n=0

Tr [(B∗)nBn] (11.95)

The two series that appear in the above expressions converge to the trace
values of certain Lyapunov solutions. To see this, let

X ′ ∆=
∞∑
n=0

(B∗)n Bn, X ∆=
∞∑
n=0
BnY (B∗)n (11.96)

Then, these series correspond, respectively, to the unique solutions of the
following Lyapunov equations (cf. Lemma F.2 from the appendix):

X ′ − B∗X ′B = IhMN (11.97)
X − BXB∗ = Y (11.98)
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Moreover, the matrices X and X ′ so defined are Hermitian and nonnegative-
definite (note for X that the matrix Y defined by (11.54) is Hermitian and
non-negative definite). Therefore, we have established so far that

lim sup
i→∞

E‖zi‖2 = Tr(X ) + Tr(X ′) ·O
(
µ2+(γ′/2)

max

)
(11.99)

We now verify that Tr(X ′) = O(1/µmax) — see (11.103); this result will permit
us to assess the size of the second term on the right-hand side of (11.99) —
see (11.104).

Applying the bvec operation to both sides of (11.97) and using (11.86) we
find that

bvec(X ′) = (I −F)−1bvec(I) (11.100)

Then,

‖bvec(X ′)‖ ≤
∥∥(I −F)−1∥∥ ‖bvec(I)‖

(a)
≤ r ·

∥∥(I −F)−1∥∥
1 ‖bvec(I)‖

(9.243)= O(1/µmax) (11.101)

where in step (a) we used a positive constant r to account for the fact that
matrix norms are equivalent (cf. (F.6) in the appendix). We can use this result
to bound the trace of X ′ as follows.

Let L × L denote the dimensions of X ′; we know that L = hNM . Let
further {x′nn, n = 1, 2, . . . , L} denote the diagonal entries of X ′. Since X ′ ≥
0, we know that x′nn ≥ 0. We collect the diagonal entries of X ′ into the
column vector b = col{x′nn}. Then, for any two vectors a and b of compatible
dimensions, we use the Cauchy-Schwartz inequality (a∗b)2 ≤ ‖a‖2 ‖b‖2 to
conclude that

(Tr(X ′))2 ∆=
(

L∑
n=1

x′nn

)2

=
(
1Tb

)2
≤ ‖1‖2 ‖b‖2

= L · ‖b‖2

≤ L · ‖bvec(X ′)‖2
(11.101)= O(1/µ2

max) (11.102)

and, therefore,

Tr(X ′) = O (1/µmax) (11.103)
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It follows that

O
(
µ2+(γ′/2)

max

)
· Tr(X ′) = O

(
µ1+(γ′/2)

max

)
(11.104)

Returning to (11.99), we conclude that

lim sup
i→∞

E‖zi‖2 = Tr(X ) + O
(
µ1+(γ′/2)

max

)
(11.105)

and, consequently, using (11.68), we obtain the following two equivalent char-
acterizations for the network MSD:

lim sup
i→∞

1
2N E‖w̃e

i‖2 = 1
2N Tr(X ) + O

(
µ1+γm

max
)

(11.106)

= 1
2N

∞∑
n=0

Tr [BnY(B∗)n] +O
(
µ1+γm

max
)

(11.107)

with γm replacing γ′/2. These results, along with the arguments leading to
them, justify expressions (11.46) and (11.58)–(11.60). Observe in particular
from (11.54) and (9.243) that the term on the left-hand side of (11.94) is
O(µmax) since ‖Y‖ = O(µ2

max) and ‖(I −F)−1‖ = O(1/µmax). Therefore, the
value of Tr(X ) in (11.60) is O(µmax), which dominates the factor O(µ1+γm

max ).
Similarly, if we start from (11.85) instead, and apply the same arguments

we would arrive at the following equivalent expressions:

lim inf
i→∞

1
2N E‖w̃e

i‖2 = 1
2N Tr(X ) − O

(
µ1+γm

max
)

(11.108)

= 1
2N

∞∑
n=0

Tr [BnY(B∗)n]−O
(
µ1+γm

max
)

(11.109)

This last result is not needed in the current derivation but is referred to later
in Example 11.7.

We can also assess the mean-square performance of the individual agents
in the network from (11.77). Let us introduce the N×N block diagonal matrix
Jk defined by (11.57) with blocks of size hM × hM , where all blocks on the
diagonal are zero except for an identity matrix on the diagonal block of index
k. Then, the error variance for agent k satisfies:

lim sup
i→∞

1
2E‖w̃

e
i‖2Jk = lim sup

i→∞

1
2E‖zi‖

2
Jk + O(µ3/2

max) (11.110)

The same argument that was used to obtain expression (11.46) for the network
mean-square-error can then be repeated to give (11.45) and (11.61).
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With regards to the convergence rate of E‖w̃k,i‖2 towards the region
(11.45), we substitute (11.76) into (11.70) to write for i� 1:

E‖zi‖2Σ = E
(
‖zi−1‖2B∗ΣB

)
+ Tr(ΣY) + Tr(Σ) ·O

(
µ2+(γ′/2)

max

)
(11.111)

Selecting the origin of time at some large time and iterating from there:

E‖zi‖2 = E‖z−1‖2(B∗)i+1Bi+1 +
i∑

n=0
Tr [BnY(B∗)n] + o(µ2) (11.112)

The first-term on the right-hand side corresponds to a transient component
that dies out with time. The rate of its convergence towards zero determines
the rate of convergence of E‖zi‖2 towards its steady-state region. This rate
can be characterized as follows. Note that, using properties (11.86)–(11.87)
for block Kronecker products, we can express the weighted variance of z−1
as the following trace relation in terms of its un-weighted covariance matrix,
which we denote by Rz = Ez−1z

∗
−1:

E‖z−1‖2(B∗)i+1Bi+1 = E
(
z∗−1 (B∗)i+1 Bi+1z−1

)
= Tr

(
(B∗)i+1 Bi+1Rz

)
(11.87)=

[
bvec

(
RT
z

)]T bvec
(

(B∗)i+1 Bi+1
)

(11.86)=
[
bvec(RT

z )
]T ((BT)i+1 ⊗b (B∗)i+1

)
bvec(I)

(11.113)

It is clear now that the convergence rate of the transient component is dictated
by the spectral radius of the matrix multiplying bvec(I), namely, by

ρ
((
BT)i+1 ⊗b (B∗)i+1

)
=
(

[ρ(B)]2
)i+1

(11.114)

We conclude that the convergence rate of E‖zi‖2 towards the steady-state
regime is dictated by [ρ(B)]2 since this value characterizes the slowest rate at
which the transient term dies out. Therefore, using (9.173) and the relation
(1− x)2 = 1− 2x+O(x2), we can approximate the convergence rate to first-
order in µ as follows:

[ρ(B)]2 =
[

1− λmin

(
N∑
k=1

qkHk

)
+ O

(
µ(N+1)/N

max

)]2

= 1− 2λmin

(
N∑
k=1

qkHk

)
+ O

(
µ(N+1)/N

max

)
(11.115)
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Example 11.1 (Steady-state region for MSE networks). Let us consider the case
of MSE networks, defined earlier in Example 6.3, where the data {dk(i),uk,i}
satisfy the linear regression model (6.14) and where the cost function associ-
ated with each agent is the mean-square-error cost, Jk(w) = E |dk(i)−uk,iw|2.

We showed in Example 6.1 that in this case, all individual costs are min-
imized at the same location wo. It follows that the reference vectors wo and
w? will coincide and, therefore, the bias vector be that appears in the error
recursion (10.2) will be zero (as is evident from the definition of its entries in
(8.136)). Moreover, the matrices Hk,i−1 and Hk defined by (10.6) and (10.9),
respectively, will coincide with each other since the Hessian matrix ∇2

w Jk(w)
will be constant for all w. Thus, in this case, we get:

Hk,i−1 ≡ Hk = ∇2
w Jk(wo) (11.116)

As a result, the perturbation term ci−1 in (10.13) will be identically zero
and recursions (10.13) and (10.19) will therefore coincide (including having
be = 0). Both models (i.e., the actual error recursion and the long-term error
recursion) will then have the same MSD expressions. Therefore, we can rely on
expression (11.68) without the need for the additional error factor O(µ3/2

max).
We know from the earlier result (4.16) that γ = 2 for mean-square-error costs.
Using this value for γ in the derivation leading to (11.107), and ignoring the
correction by O(µ3/2

max), we arrive instead at

lim sup
i→∞

1
2N E‖w̃e

i‖2 = 1
2N

∞∑
n=0

Tr [BnY(B∗)n] + O
(
µ2

max
)

(11.117)

with an approximation error in the order of O(µ2
max) rather than the term

O(µ3/2
max) that would result from (11.107) if we use γm = 1/2. We conclude

that for MSE networks, the results of Theorem 11.2 are valid with the ap-
proximation error O(µ1+γm

max ) in (11.45)–(11.46) replaced by the smaller factor
O(µ2

max).
�

MSD Performance
We now use the result of Theorem 11.2 to derive an expression for the
MSD performance of each agent and for the entire network. We will
do so by appealing to the useful low-rank approximation (9.244). Two
observations are in place in relation to the forthcoming result (11.118).
First, observe from (11.118) the interesting conclusion that the consen-
sus and diffusion strategies represented by (8.46) are able to equalize
the MSD performance across all agents for sufficiently small step-sizes.
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This is a reassuring property since it means that all agents, regardless
of the quality of their data, will end up achieving similar performance
levels. At the same time, we remark that although expression (11.118)
suggests that the performance of consensus and diffusion strategies
match to first-order in µmax, differences in performance actually oc-
cur for larger step-sizes with ATC diffusion exhibiting superior perfor-
mance. These differences are illustrated and explained further ahead in
Example 11.4, and also Examples 11.11–11.13.

Lemma 11.3 (Network MSD performance). Under the same conditions of The-
orem 11.2, it holds that

MSDdist,k = MSDdist,av = 1
2hTr

( N∑
k=1

qkHk

)−1( N∑
k=1

q2
kGk

) (11.118)

where h = 1 for real data and h = 2 for complex data.

Proof. We establish the result for h = 2 without loss of generality by extend-
ing the argument from [71, 278] to the current context. According to definition
(11.37), and expressions (11.45) and (11.61), we need to evaluate the following
limit:

MSDdist,k = µmax·
(

lim
µmax→0

lim sup
i→∞

1
µmax

1
h

(
bvec

(
YT))T (I −F)−1bvec (Jk)

)
(11.119)

We focus on the rightmost factor inside the above expression. Using (9.244),
along with the first line in (9.275), we get:(

bvec
(
YT))T (I −F)−1bvec(Jk) = O(µ2

max) + (11.120)(
bvec

(
YT))T (p⊗ I2M )⊗b (p⊗ I2M )Z−1 (1T ⊗ I2M

)
⊗b
(
1T ⊗ I2M

)
bvec (Jk)

Using the Kronecker product property (11.86), it is straightforward to verify
that the last three terms combine into the following result, where the bvec
operation is relative to blocks of size 2M × 2M :[(

1T ⊗ I2M
)
⊗b
(
1T ⊗ I2M

)]
bvec(Jk) = vec(I2M ) (11.121)

with the rightmost term involving the traditional (not block) vec operator.
Let us therefore evaluate the matrix vector product:

x
∆= Z−1vec(I2M ) (11.122)
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This vector is the unique solution to the linear system of equations

Zx = vec(I2M ) (11.123)

or, equivalently, by using definition (9.245) for Z:(
N∑
k=1

qk(I2M ⊗Hk)
)
x +

(
N∑
k=1

qk(HT
k ⊗ I2M )

)
x = vec(I2M ) (11.124)

Let X = unvec(x) denote the 2M×2M matrix whose vector representation is
x. Applying to each of the terms appearing on the left-hand side of the above
expression the Kronecker product property (11.87), albeit using vec instead
of bvec operations, namely,

vec(UCW ) = (WT ⊗ U)vec(C) (11.125)

we find that (
N∑
k=1

qk(I2M ⊗Hk)
)
x = vec

{(
N∑
k=1

qkHk

)
X

}
(11.126)(

N∑
k=1

qk(HT
k ⊗ I2M )

)
x = vec

{
X

(
N∑
k=1

qkHk

)}
(11.127)

We conclude from these equalities and from (11.124) that X is the unique
solution to the (continuous-time) Lyapunov equation (cf. Lemma F.3 from
the appendix): (

N∑
k=1

qkHk

)
X + X

(
N∑
k=1

qkHk

)
= I2M (11.128)

It is straightforward to verify that the solution X is given by

X = 1
2

(
N∑
k=1

qkHk

)−1

(11.129)

Therefore, substituting into (11.120) gives(
bvec

(
YT))T (I −F)−1bvec(Jk) = (11.130)(

bvec
(
YT))T [(p⊗ I2M )⊗b (p⊗ I2M )] vec(X) + O(µ2

max)

Using the Kronecker product properties (11.87) and (11.125) again, we obtain
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(
bvec

(
YT))T [(p⊗ I2M )⊗b (p⊗ I2M )] vec(X)

= Tr [unbvec {(p⊗ I2M )⊗b (p⊗ I2M ) vec(X)}Y]
= Tr

[
(p⊗ I2M )X

(
pT ⊗ I2M

)
Y
]

= Tr
[(
pT ⊗ I2M

)
AT

2MSMA2 (p⊗ I2M )X
]

= Tr
[(
qT ⊗ I2M

)
S (q ⊗ I2M )X

]
(11.129)= 1

2Tr

( N∑
k=1

qkHk

)−1( N∑
k=1

q2
kGk

) (11.131)

Grouping terms we conclude that:(
bvec

(
YT))T (I −F)−1bvec(Jk)

= 1
2Tr

( N∑
k=1

qkHk

)−1( N∑
k=1

q2
kGk

) + O(µ2
max) (11.132)

We know from the definition of the scalars {qk} in (9.7) that each qk is propor-
tional to µmax. Therefore, the first term on the right-hand side of the above
expression is linear in µmax. Now substituting (11.132) into the right-hand
side of (11.119) and computing the limit as µmax → 0, we arrive at expression
(11.118) for the performance of the individual agents. Since this expression is
independent of the index of the agent, by averaging over all agents, we find
that the network performance is given by the same expression.

Example 11.2 (MSD performance of consensus and diffusion networks). We spe-
cialize the main result of Lemma 11.3 to the consensus and diffusion strategies,
which correspond to the choices {Ao, A1, A2} shown earlier in (8.7)–(8.10) in
terms of a single combination matrix A, namely,

consensus: Ao = A, A1 = IN = A2 (11.133)
CTA diffusion: A1 = A, A2 = IN = Ao (11.134)
ATC diffusion: A2 = A, A1 = IN = Ao (11.135)

In these cases, the Perron eigenvector p defined by (9.9) will correspond to
the Perron eigenvector associated with A:

Ap = p, 1Tp = 1, pk > 0 (11.136)



11.3. Mean-Square-Error Performance 597

Consequently, the entries qk defined by (9.7) will reduce to

qk = µkpk (11.137)

Using these facts in (11.118) we obtain

MSDdist,k = MSDdist,av = 1
2hTr

( N∑
k=1

µkpkHk

)−1( N∑
k=1

µ2
kp

2
kGk

)
(11.138)

where h = 1 for real data and h = 2 for complex data. Moreover, the con-
vergence rate of the error variances, E‖w̃k,i‖2, towards this MSD value is
determined by

αdist = 1− 2λmin

(
N∑
k=1

µkpkHk

)
+ O

(
µ(N+1)/N

max

)
(11.139)

where αdist ∈ (0, 1). When A is doubly-stochastic, and the step-sizes are
uniform across the agents so that µk ≡ µ, the above expressions reduce to

MSDdist,av = µ

2hN Tr

( N∑
k=1

Hk

)−1( N∑
k=1

Gk

) (11.140)

αdist = 1− 2µ
N
λmin

(
N∑
k=1

Hk

)
+ o(µ) (11.141)

Comparing these expressions with (5.65) and (5.67) we observe that, to first-
order in µ, the distributed solution is able to match the performance of the
centralized solution for doubly-stochastic policies.

Observe further from (11.138) that, for sufficiently small step-sizes, the
consensus and diffusion strategies are able to equalize the MSD performance
across all agents. It is also instructive to compare expression (11.138) with
(5.79) and (5.65) in the non-cooperative and centralized cases. Note that
the effect of distributed cooperation results in the appearance of the scaling
coefficients {pk}; these factors are determined by the combination policy A.

�

Example 11.3 (MSD performance of MSE networks — Case I). We revisit
the setting of Example 6.3, where the data {dk(i),uk,i} satisfy the linear
regression model (6.14) and where the cost associated with each agent is the
mean-square-error cost, Jk(w) = E |dk(i)− uk,iw|2. As mentioned earlier, we
already know from Example 6.1 that, in this case, the reference vectors wo
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and w? coincide. We assume the agents employ uniform step-sizes and sense
regression data with uniform covariance matrices, i.e., µk ≡ µ and Ru,k ≡ Ru
for k = 1, 2, . . . , N . We can assess the performance of the resulting consensus
network (cf. Example 7.2) or diffusion network (cf. Example 7.3) as follows.
In the current setting, and assuming complex data for generality, we know
from (8.15) that

Rs,k
∆= lim

i→∞
E
[
sk,i(wo)s∗k,i(wo) |F i−1

]
= σ2

v,kRu,k (11.142)

Therefore, using the definitions (11.12), we have:

Hk =
[
Ru 0
0 RT

u

]
≡ H, Gk = σ2

v,k

[
Ru ×
× RT

u

]
(11.143)

where the off-diagonal block entries of Gk are not needed since Hk is block-
diagonal. Substituting into (11.138), and using h = 2 for complex data, we
conclude that the MSD performance of consensus or diffusion LMS networks
is given by:

MSDdist,k = MSDdist,av = µM

2

(
N∑
k=1

p2
kσ

2
v,k

)
(11.144)

If the combination matrix A happens to be doubly stochastic, then p = 1/N .
Substituting pk = 1/N into (11.144) gives

MSDdist,k = MSDdist,av = µM

2
1
N2

(
N∑
k=1

σ2
v,k

)
(11.145)

which agrees with the expression that would result from (5.65) for the cen-
tralized LMS solution in the complex case, namely,

MSDcent = µM

2
1
N

(
1
N

N∑
k=1

σ2
v,k

)
(11.146)

Therefore, the distributed strategies are able to match the performance of
the centralized solution for doubly stochastic combination policies. Observe
though that, more generally, when A is not doubly-stochastic, the scaling
factors {p2

k} appear in (11.144).
If the step-sizes were different across the agents, then we would instead

obtain from (11.138) the following expression for the network performance:

MSDdist,k = MSDdist,av = M

2

(
N∑
k=1

µkpk

)−1 ( N∑
k=1

µ2
kp

2
kσ

2
v,k

)
(11.147)
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Another situation of interest is when the combination weights {a`k} are se-
lected according to the averaging (or uniform) rule we encountered earlier in
(8.89), namely,

a`k =
{

1/nk, ` ∈ Nk
0, otherwise (11.148)

where
nk

∆= |Nk| (11.149)

denotes the size of the neighborhood of agent k (or its degree). In this case, the
matrix A will be left-stochastic and the entries of the corresponding Perron
eigenvector are given by:

pk = nk

(
N∑
m=1

nm

)−1

(11.150)

Then, expression (11.144) gives

MSDdist,k = MSDdist,av = µM

2

(
N∑
k=1

nk

)−2 ( N∑
k=1

n2
kσ

2
v,k

)
(11.151)

which would reduce to (11.145) when the degrees of all agents are uniform,
i.e., nk ≡ n.

�

Example 11.4 (MSD performance of MSE networks — Case II). We continue
with the scenario of Example 11.3 for MSE networks except that we now
assume that the regression covariance matrices are not necessarily uniform but
chosen of the form Ru,k = σ2

u,kIM . In this case, the expressions for {Hk, Gk}
in (11.143) become

Hk = σ2
u,k

[
IM 0
0 IM

]
, Gk = σ2

v,k σ
2
u,k

[
IM ×
× IM

]
(11.152)

We can assess the performance of the resulting consensus network (cf. Exam-
ple 7.2) or diffusion network (cf. Example 7.3) by substituting these values
into (11.138), and using h = 2 for complex data, to get:

MSDdist,k = MSDdist,av = M

2

(
N∑
k=1

µ2
kp

2
kσ

2
v,kσ

2
u,k

)(
N∑
k=1

µkpkσ
2
u,k

)−1

(11.153)
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If the combination matrix A happens to be doubly stochastic, then p = 1/N .
Substituting pk = 1/N into (11.153) gives

MSDdist,k = MSDdist,av = M

2N

(
N∑
k=1

µ2
kσ

2
v,kσ

2
u,k

)(
N∑
k=1

µkσ
2
u,k

)−1

(11.154)
On the other hand, if the combination weights {a`k} are selected according to
the averaging rule (11.148), we would then substitute (11.150) into (11.153)
to give

MSDdist,k = MSDdist,av

= M

2

(
N∑
k=1

nk

)−1( N∑
k=1

µ2
kn

2
kσ

2
v,kσ

2
u,k

)(
N∑
k=1

µknkσ
2
u,k

)−1

(11.155)

If the step-sizes are uniform across all agents, the above expression becomes

MSDdist,k = MSDdist,av

= µM

2

(
N∑
k=1

nk

)−1( N∑
k=1

n2
kσ

2
v,kσ

2
u,k

)(
N∑
k=1

nkσ
2
u,k

)−1

(11.156)

We illustrate these results numerically for the case of the averaging rule
(11.148) with uniform step-sizes across the agents. Figure 11.1 shows the con-
nected network topology with N = 20 agents used for this simulation, with
the measurement noise variances, {σ2

v,k}, and the power of the regression data,
assumed of the form Ru,k = σ2

u,kIM , shown in the plots of Figure 11.2, re-
spectively. All agents are assumed to have a non-trivial self-loop so that the
neighborhood of each agent includes the agent itself as well. The resulting
network is therefore strongly-connected.

Figures 11.3 and 11.4 plot the evolution of the ensemble-average learning
curves, 1

NE‖w̃i‖2, for consensus, ATC diffusion, and CTA diffusion for
two choices of the step-size parameter: a smaller value at µ = 0.002 and
a second larger value at µ = 0.01. The curves are obtained by averaging
the trajectories { 1

N ‖w̃i‖2} over 100 repeated experiments. The labels on
the vertical axes in the figures refer to the learning curve 1

NE‖w̃i‖2 by
writing MSDdist,av(i), with an iteration index i. Each experiment involves
running the consensus (7.14) or diffusion (7.22)–(7.23) LMS recursions with
h = 2 on complex-valued data {dk(i),uk,i} generated according to the model
dk(i) = uk,iw

o + vk(i), with M = 10. The unknown vector wo is generated
randomly and its norm is normalized to one.
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Figure 11.1: A connected network topology consisting of N = 20 agents
employing the averaging rule (11.148).

Table 11.1: MSD values predicted by expressions (11.178) and (11.156) at
the larger step-size value, µ = 0.01.

algorithm result (11.178) result (11.156)
consensus strategy (7.14) −42.00 dB −44.34 dB
CTA diffusion strategy (7.22) −42.00 dB −44.34 dB
ATC diffusion strategy (7.23) −43.42 dB −44.34 dB

It is observed in Figure 11.3 that the learning curves tend to the same
MSD value predicted by the theoretical expression (11.156), which provides
a good approximation for the performance of distributed strategies for small
step-sizes. However, it is observed in Figure 11.4 that once the step-size value is
increased, differences in MSD performance arise among the algorithms, with
ATC diffusion exhibiting the lowest (i.e., best) MSD value. The horizontal
lines in this second figure represent the MSD levels that are predicted by
future expression (11.178). This latter expression reflects the effect of higher-
order terms in µmax and generally leads to an enhanced representation for the
error variance of the distributed strategies, while expression (11.156), which
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Figure 11.2: Regression data power (left) and measurement noise profile
(right) across all agents in the network. The covariance matrices are assumed
to be of the form Ru,k = σ2

u,kIM , and the noise and regression data are Gaus-
sian distributed in this simulation.

is the basis for the results in this example, is an expression for the MSD that
is accurate to first-order in µmax. Table 11.1 lists the MSD values that are
predicted by expressions (11.178) and (11.156) at the larger step-size value,
µ = 0.01.

�

Example 11.5 (Is cooperation always beneficial?). We continue with the dis-
cussion from Example 11.3 over MSE networks. If each agent in the network
were to estimate wo on its own in a non-cooperative manner by running its
individual LMS learning rule (3.125), then we know from (4.186) that each
agent will attain the MSD level shown below:

MSDncop,k = µM

2 σ2
v,k (11.157)

along with the average performance across all N agents given by:

MSDncop,av = µM

2

(
1
N

N∑
k=1

σ2
v,k

)
(11.158)

Now assume A is doubly stochastic. Comparing (11.145) with (11.158), it is
obvious that

MSDdist,av = 1
N

MSDncop,av (11.159)

which shows that, for MSE networks, the consensus and diffusion strategies
outperform the average performance of the non-cooperative strategy by a
factor of N . But how do the performance metrics of an agent compare to
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Figure 11.3: Evolution of the learning curves for three strategies, namely,
consensus (7.14), CTA diffusion (7.22), ATC diffusion (7.23), for the smaller
step-size at µ = 0.002.

each other in the distributed and non-cooperative modes of operation? From
(11.145) and (11.157) we observe that if the noise variance is uniform across
all agents, i.e., σ2

v,k ≡ σ2
v , then the MSD of each individual agent in the

distributed solution will be smaller by the same factor N than their non-
cooperative performance. However, when the noise profile varies across the
agents, then the performance metrics of an individual agent in the distributed
and non-cooperative solutions cannot be compared directly: one can be larger
than the other depending on the noise profile. For example, for N = 2, σ2

v,1 =
1, and σ2

v,2 = 9, agent 1 will not benefit from cooperation while agent 2 will.
�

Example 11.6 (MSD performance of MSE networks — Case III). We reconsider
the setting of Examples 8.8 and 8.11, which deals with a variation of MSE
networks where the data model at each agent is instead assumed to be given
by

dk(i) = uk,iw
o
k + vk(i) (11.160)

with the model vectors, wok, being possibly different at the various agents. We
explained in Example 8.11 that the gradient noise process at agent k is given
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Figure 11.4: Evolution of the learning curves for three strategies, namely,
consensus (7.14), CTA diffusion (7.22), ATC diffusion (7.23), for the larger
step-size at µ = 0.01.

by expression (8.127), namely,

sk,i(φk,i−1) = 2
h

(
Ru,k − u∗k,iuk,i

)
(wok − φk,i−1) − 2

h
u∗k,ivk(i) (11.161)

By repeating the arguments of Example 8.8 for the general distributed strat-
egy (8.5), we can similarly show that the limit point, w?, of the network is
given by a relation similar to (8.86), namely,

w? =
(

N∑
k=1

qkRu,k

)−1 ( N∑
k=1

qkRu,kw
o
k

)
(11.162)

where the positive scalars {qk} are the entries of the vector q defined by
(8.50). Using (11.161) we can evaluate the second-order moment Rs,k defined
by (11.8) as follows. We introduce the difference

zk
∆= wok − w?, k = 1, 2, . . . , N (11.163)
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It is clear that zk = 0 when all wok coincide at the same location wo, in which
case we get w? = wo. In general though, the perturbation vectors, {zk} need
not be zero. From (11.161), and using the conditions imposed on the regression
data and noise processes across the agents from Example 6.3, we find that

Rs,k = 4
h2E

(
Ru,k − u∗k,iuk,i

)
zkz
∗
k

(
Ru,k − u∗k,iuk,i

)
+ 4

h2σ
2
v,kRu,k

(11.164)
The first term on the right-hand side involves a fourth-order moment in the
regression data. To evaluate this term in closed-form, we assume that the
regression data is circular and Gaussian-distributed. In that case, it is known
that for any M ×M Hermitian matrix Wk it holds that [206, p.11]:

E
(
uk,iu

∗
k,iWkuk,iu

∗
k,i

)
= Ru,kTr(WkRu,k) + 2

h
Ru,kWkRu,k (11.165)

This expression shows how the (weighted) fourth-order moment of the process
uk,i is determined by its second-order moment, Ru,k. Let

Wk = zkz
∗
k (11.166)

which is a rank-one nonnegative definite Hermitian matrix. Expanding the
first term on the right-hand side of (11.164) and using (11.165), we conclude
that

Rs,k = 4
h2σ

2
v,kRu,k + 4

h2Ru,kTr(WkRu,k) + 4
h2

(
2
h
− 1
)
Ru,kWkRu,k

(11.167)
In particular, for complex data, the above result evaluates to the following
using h = 2:

Rs,k = σ2
v,kRu,k + Ru,k‖zk‖2Ru,k (complex data) (11.168)

Each agent k in the network is associated with an individual cost of the form
Jk(w) = E |dk(i) − uk,iw|2. We now assume that the regression covariance
matrices are of the form Ru,k = σ2

u,kIM . In this case, expression (11.168) for
Rs,k simplifies to

Rs,k =
(
σ2
v,k + σ2

u,k‖zk‖2
)
σ2
u,kIM

∆= σ̄2
v,kσ

2
u,kIM (complex data) (11.169)

where we introduced the modified noise variance

σ̄2
v,k

∆= σ2
v,k + σ2

u,k‖zk‖2 (11.170)
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Consequently, the expressions for {Hk, Gk} become (compare with (11.152)):

Hk = σ2
u,k

[
IM 0
0 IM

]
, Gk = σ̄2

v,kσ
2
u,k

[
IM ×
× IM

]
(11.171)

We can assess the performance of the resulting consensus network (cf. Exam-
ple 7.2) or diffusion network (cf. Example 7.3) by substituting these values
into (11.138), and using h = 2 for complex data, to get:

MSDdist,k = MSDdist,av = M

2

(
N∑
k=1

µ2
kp

2
kσ̄

2
v,kσ

2
u,k

)(
N∑
k=1

µkpkσ
2
u,k

)−1

(11.172)
If the combination matrix A happens to be doubly stochastic, then p = 1/N .
Substituting pk = 1/N into (11.172) gives

MSDdist,k = MSDdist,av = M

2N

(
N∑
k=1

µ2
kσ̄

2
v,kσ

2
u,k

)(
N∑
k=1

µkσ
2
u,k

)−1

(11.173)
On the other hand, if the combination weights {a`k} are selected according to
the averaging rule (11.148), we would then substitute (11.150) into (11.153)
to give

MSDdist,k = MSDdist,av

= M

2

(
N∑
k=1

nk

)−1( N∑
k=1

µ2
kn

2
kσ̄

2
v,kσ

2
u,k

)(
N∑
k=1

µknkσ
2
u,k

)−1

(11.174)

If the step-sizes are uniform across all agents, the above expression becomes

MSDdist,k = MSDdist,av = µM

2

(
N∑
k=1

nk

)−1( N∑
k=1

n2
kσ̄

2
v,kσ

2
u,k

)(
N∑
k=1

nkσ
2
u,k

)−1

(11.175)

We illustrated this result numerically earlier in Figure 8.5 while discussing
the convergence of the network towards its Pareto limit point.

�

Example 11.7 (Higher-order MSD terms). We explained earlier in Sec. 4.5,
while motivating the definition of the MSD metric, that expressions of the
form (11.37) help assess the size of the error variance, E‖w̃k,i‖2, in steady-
state and for sufficiently small step-sizes (i.e., in the slow adaptation regime).
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The computation leads to an expression for the MSD that is first-order in
µmax, as can be ascertained from (11.118).

If we revisit the derivation of (11.118) in the proof of Lemma 11.3, we
will observe that this expression was obtained by eliminating the contribution
of the higher-order term, O(µ2

max), which appears in the expansion (11.120).
We can motivate an alternative expression for assessing the size of the error
variance, E‖w̃k,i‖2, by retaining the higher-order term that is available (i.e.,
known) rather than neglecting it. It is expected that, by doing so, the resulting
performance expression will generally provide a more accurate representation
for the error variance, especially at larger step-sizes; we illustrated this be-
havior already in the simulations of Example 11.4 — recall Figure 11.4. The
alternative performance expression can be motivated as follows.

Similarly to (4.83)–(4.84), the argument that led to (11.45) would estab-
lish the following two expressions for the limit superior and limit inferior of
the error variance at each agent k (see, e.g., (11.107) and (11.109)):

lim sup
i→∞

1
2E‖w̃

e
k,i‖2 = 1

h
Tr(JkX ) +O

(
µ1+γm

max
)

(11.176)

lim inf
i→∞

1
2E‖w̃

e
k,i‖2 = 1

h
Tr(JkX )−O

(
µ1+γm

max
)

(11.177)

with the same common positive constant Tr(JkX ); this constant is equal to
the quantity that appears on the left-hand side of (11.120). Relations (11.176)–
(11.177) indicate that we can also employ the quantity 1

hTr(JkX ) to assess
the size of the error variance, E‖w̃k,i‖2, in steady-state for small step-sizes.
Subsequently, by averaging over all agents, we can similarly use the quantity

1
hNTr(X ) to assess the size of the network error variance, 1

NE‖w̃i‖2, also in
steady-state and for small step-sizes. If we recall (11.58), then this argument
suggests the following alternative expressions for evaluating the network error
variance:

MSDdist,av = 1
hN

∞∑
n=0

Tr [BnY (B∗)n] (11.178)

= 1
hN

(
bvec

(
YT))T (I −F)−1bvec (IhMN ) (11.179)

where we continue to use the notation MSD to represent this value. As we
already know from the proof of Lemma 11.3, if we expand the right-hand side
of (11.179) in terms of powers of µmax, then the first term in this expansion
(i.e., the one that is linear in µmax) will be given by expression (11.118).

�
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11.4 Excess-Risk Performance

We can similarly determine closed-form expressions for the excess-risk
performance of the individual agents and for the network.

Theorem 11.4 (Network ER performance). Consider a network of N interact-
ing agents running the distributed strategy (8.46) with a primitive matrix
P = A1AoA2. Assume the aggregate cost (9.10) and the individual costs,
Jk(w), satisfy the conditions in Assumptions 6.1 and 10.1. Assume further
that the first and fourth-order moments of the gradient noise process satisfy
the conditions of Assumption 8.1 with the second-order moment condition
(8.115) replaced by the fourth-order moment condition (8.121). Assume also
(11.11). Then, it holds that

lim sup
i→∞

1
2E‖w̃

e
k,i−1‖2H̄ = 1

2Tr(QkX ) +O
(
µ1+γm

max
)

(11.180)

lim sup
i→∞

1
2N

(
E‖w̃e

i−1‖2(IN⊗H̄)
)

= 1
2N Tr(H̄X ) +O

(
µ1+γm

max
)

(11.181)

for the same quantities defined earlier in Theorem 11.2 and where

H̄ = IN ⊗ H̄ = diag{H̄, H̄, . . . , H̄} (11.182)
Qk = diag{ 0hM , . . . , 0hM , H̄, 0hM , . . . , 0hM } (11.183)

with the matrix H̄ defined by (11.36) appearing in the k−block location of
Qk. Moreover, it further holds that

Tr(QkX ) =
(
bvec

(
YT))T (I −F)−1bvec (Qk) (11.184)

Tr(H̄X ) =
(
bvec

(
YT))T (I −F)−1bvec

(
H̄
)

(11.185)

and, for large enough i, the convergence rate of the excess-risk measure to-
wards its steady-state region (11.180) is given by the same expression (11.47).
Furthermore, the ER performance for the individual agents and for the net-
work are given by:

ERdist,k = ERdist,av = h

4

(
N∑
k=1

qk

)−1

Tr
(

N∑
k=1

q2
kRs,k

)
(11.186)
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Proof. We start from relation (11.84) but select Σ now as the solution to the
following Lyapunov equation:

Σ− B∗ΣB = H̄ (11.187)

and repeat the argument that led to (11.106)–(11.107) to conclude that ex-
pressions (11.180)–(11.181) hold.

With regards to expression (11.186), we first note from (11.35) and
(11.180) that we need to evaluate the limit:

ERdist,k = µmax ·
(

lim
µmax→0

lim sup
i→∞

1
µmax

(
bvec

(
YT))T (I −F)−1bvec(Qk)

)
(11.188)

We focus on the right-most factor inside the above expression. Using the low-
rank factorization (9.244), we have(

bvec
(
YT))T (I −F)−1bvec(Qk) = O(µ2

max)+ (11.189)(
bvec

(
YT))T (p⊗ I2M )⊗b(p⊗ I2M )Z−1 (1T ⊗ I2M

)
⊗b
(
1T ⊗ I2M

)
bvec (Qk)

Using the block Kronecker product property (11.86), it can be verified that(
1T ⊗ I2M

)
⊗b
(
1T ⊗ I2M

)
bvec(Qk) = vec(H̄) (11.190)

Let x = Z−1vec(H̄). Then, the same argument that led to (11.128) will show
that the 2M × 2M matrix X = unvec(x) is the unique solution to the Lya-
punov equation (

N∑
k=1

qk

)
H̄X + XH̄

(
N∑
k=1

qk

)
= H̄ (11.191)

so that

X = 1
2

(
N∑
k=1

qk

)−1

I2M (11.192)

Repeating the derivation that led to (11.132) we arrive at

(
bvec

(
YT))T (I −F)−1bvec(H) = 1

2

(
N∑
k=1

qk

)−1

Tr
(

N∑
k=1

q2
kGk

)
+O(µ2

max)

(11.193)
Substituting into the right-hand side of (11.188) and evaluating the limit we
arrive at (11.186) after recalling from (11.12) that

Tr(Gk) =
{

Rs,k (real data)
2Rs,k (complex data) (11.194)
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Example 11.8 (ER performance of consensus and diffusion networks). We spe-
cialize the result of Theorem 11.4 to the same consensus and diffusion strate-
gies from Example 11.2. In this case we get

ERdist,k = ERdist,av = h

4Tr

( N∑
k=1

µkpk

)−1( N∑
k=1

µ2
kp

2
kRs,k

) (11.195)

where h = 1 for real data and h = 2 for complex data. When the step-sizes
are uniform across all agents, µk ≡ µ, and using the fact that the entries pk
add up to one, the above expression simplifies to

ERdist,k = ERdist,av = µh

4

(
N∑
k=1

p2
kRs,k

)
(11.196)

�

Example 11.9 (Performance of diffusion learner). We generalize the scenario
of Example 7.4 and consider a collection of N learners cooperating to mini-
mize some arbitrary strongly-convex function J(w) over a strongly-connected
network, namely,

wo
∆= arg min

w
J(w) (11.197)

where J(w) is the average of some loss measure, say, J(w) = EQ(w;xk,i). As
before, each learner k receives a streaming sequence of real-valued data vectors
{xk,i, i = 1, 2, . . .} that arise from some fixed distribution X . We assume the
agents run a consensus or diffusion strategy, say, the ATC diffusion strategy
(7.19): 

ψk,i = wk,i−1 − µk∇wTQ(wk,i−1;xk,i)
wk,i =

∑
`∈Nk

a`k ψ`,i (11.198)

The gradient noise vector corresponding to each individual agent k is given
by

sk,i(wk,i−1) = ∇wTQ(wk,i−1;xk,i) − ∇wTEQ(wk,i−1;xk,i) (11.199)

so that
sk,i(wo) = ∇wTQ(wo;xk,i) (11.200)

Since we are assuming the distribution of the random process xk,i is stationary
and fixed across all agents, it follows that

Rs,k = E∇wTQ(wo;xk,i) [∇wTQ(wo;xk,i)]T ≡ Rs, k = 1, 2, . . . , N
(11.201)
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Substituting into (11.186), and using h = 1 for real data, we conclude that
the excess-risk of the diffusion solution (and of consensus as well) is given by

ERdist,av = 1
4

(
N∑
k=1

µkpk

)−1( N∑
k=1

µ2
kp

2
k

)
Tr (Rs) (11.202)

If we assume uniform step-sizes, µk ≡ µ for k = 1, 2, . . . , N , and use the fact
that the {pk} add up to one, then expression (11.202) reduces to

ERdist,av = µ

4

(
N∑
k=1

p2
k

)
Tr (Rs) (11.203)

For comparison purposes, we reproduce below ER expression (5.98) for the
centralized solution from Example 5.3:

ERcent = µ

4

(
1
N

)
Tr(Rs) (11.204)

For doubly-stochastic combination matrices A, it holds that pk = 1/N so that
(11.203) reduces to (11.204).

We illustrate these results numerically for the logistic risk function (7.24)
from Example 7.4, namely,

J(w) ∆= ρ

2‖w‖
2 + E

{
ln
(

1 + e−γk(i)hT
k,iw
)}

(11.205)

Figure 11.5 shows the connected network topology with N = 20 agents used
for this simulation. All agents are assumed to employ the same step-size pa-
rameter, i.e., µk ≡ µ, and they have non-trivial self-loops so that the neighbor-
hood of each agent includes the agent itself. The resulting network is therefore
strongly-connected.

The corresponding consensus, CTA diffusion, and ATC diffusion strategies
with uniform step-sizes across the agents take the following forms:
ψk,i−1 =

∑
`∈Nk

a`k w`,i (consensus)

wk,i = (1− ρµ)ψk,i−1 + µγk(i)hk,i
(

1
1 + eγk(i)hT

k,i
wk,i−1

) (11.206)

and
ψk,i−1 =

∑
`∈Nk

a`k w`,i (CTA diffusion)

wk,i = (1− ρµ)ψk,i−1 + µγk(i)hk,i

(
1

1 + eγk(i)hT
k,i
ψk,i−1

) (11.207)
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Figure 11.5: A connected network topology consisting of N = 20 agents
employing the Metropolis rule (8.100). Each agent k is assumed to belong its
neighborhood Nk.

and
ψk,i = (1− ρµ)wk,i−1 + µγk(i)hk,i

(
1

1 + eγk(i)hT
k,i

wk,i−1

)
wk,i =

∑
`∈Nk

a`k ψ`,i (ATC diffusion)
(11.208)

where the combination weights {a`k} arise from the Metropolis rule (8.100).
This rule leads to a doubly-stochastic matrix, A, so that the entries of the
Perron eigenvector are given by pk = 1/N . In this way, the ER performance
level (11.203) for the above distributed strategies reduces to

ERdist,av = µ

4

(
1
N

)
Tr(Rs) (11.209)

Figures 11.6 and 11.7 plot the evolution of the ensemble-average learning
curves, E {J(wi−1)− J(wo)}, for consensus, ATC diffusion, and CTA diffu-
sion for two choices of the step-size parameter: a smaller value at µ = 1×10−4

and a second value that is three times larger at µ = 3 × 10−4. The curves
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Figure 11.6: Evolution of the learning curves for three strategies, namely,
consensus (11.206), CTA diffusion (11.207), and ATC diffusion (11.208), with
all agents employing the smaller step-size µ = 1× 10−4.

are obtained by averaging the trajectories {J(wi−1) − J(wo)} over 100 re-
peated experiments. The labels on the vertical axes in the figures refer to the
learning curves by writing ERdist,av(i), with an iteration index i. Each exper-
iment involves running the consensus (11.206) or diffusion (11.207)–(11.208)
logistic recursions with ρ = 10 and h = 1 for real data {γk(i),hk,i}, where
the dimension of the feature vectors {hk,i} is M = 50. The data used for the
simulation originate from the alpha data set [223]; we use the first 50 features
for illustration purposes so that M = 50. To generate the trajectories for the
experiments in this example, the optimal wo and the gradient noise covariance
matrix, Rs, are first estimated off-line by applying a batch algorithm to all
data points. For the data used in this experiment we have Tr(Rs) ≈ 131.48.

It is observed in Figure 11.6 that the learning curves tend towards the
ER value predicted by the theoretical expression (11.209), which provides a
good approximation for the performance of distributed strategies for small
step-sizes. However, it is observed in Figure 11.7 that once the step-size value
is increased, differences in ER performance arise among the algorithms, with
ATC diffusion exhibiting the lowest (i.e., best) ER value. The horizontal lines
in the second figure represent the ER levels that are predicted by the future
expression (11.210). This latter expression reflects the effect of higher-order
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terms in µmax and generally leads to an enhanced representation for the mean
excess cost, while expression (11.209), which is the basis for the results in this
example, is an expression for the ER that is accurate to first-order in µmax.
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Figure 11.7: Evolution of the learning curves for three strategies, namely,
consensus (11.206), CTA diffusion (11.207), and ATC diffusion (11.208), with
all agents employing the larger step-size µ = 3× 10−4.

�

Example 11.10 (Higher-order ER terms). We explained earlier following
(11.39) that the ER metric (11.33) assesses the size of the mean fluctua-
tion of the normalized aggregate cost, E

{
J̄glob,?(wk,i−1)− J̄glob,?(w?)

}
, in

steady-state and for sufficiently small step-sizes (i.e., in the slow adaptation
regime). The computation leads to an expression for the ER that is first-order
in µmax, as can be ascertained from (11.186).

If we revisit the derivation of (11.186) in the proof of Theorem 11.3, we will
observe that this expression was obtained by eliminating the contribution of
the higher-order term, O(µ2

max), which appears in the expansion (11.189). We
can motivate an alternative expression for assessing the size of the mean cost
fluctuation by retaining the higher-order term that is available (i.e., known)
rather than neglecting it. It is expected that, by doing so, the resulting per-
formance expression will generally provide a more accurate representation for
the mean cost fluctuation, especially at larger step-sizes; we illustrated this
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behavior in Figure 11.7. In a manner similar to Example 11.7, we can moti-
vate the following enhanced expression for the excess mean cost, which reflects
contributions from higher-order powers of µmax as well:

ERdist,av = 1
2N

(
bvec

(
YT))T (I −F)−1bvec

(
H̄
)

(11.210)

where we continue to use the notation ER to represent this value. As we
already know from the proof of Theorem 11.3, if we expand the right-hand
side of (11.210) in terms of powers of µmax, then the first term in this expansion
(i.e., the one that is linear in µmax) will be given by expression (11.186).

�

11.5 Comparing Consensus and Diffusion Strategies

Using results from the previous sections, we can compare some per-
formance properties of diffusion and consensus networks. Recall from
(8.7)–(8.10) that the consensus and diffusion strategies correspond to
the following choices for {Ao, A1, A2} in terms of a single combination
matrix A in the general description (8.46):

consensus: Ao = A, A1 = IN = A2 (11.211)
CTA diffusion: A1 = A, A2 = IN = Ao (11.212)
ATC diffusion: A2 = A, A1 = IN = Ao (11.213)

Example 11.11 (Diffusion outperforms consensus over MSE networks). Expres-
sion (11.138) indicates that the MSD performance of the consensus and dif-
fusion strategies are identical to first-order in the step-size parameters, as
already anticipated by the results in Figures 11.3 and 11.4. We now examine
the MSD performance level more closely by considering higher-order terms as
well. More specifically, we resort to the alternative expression (11.178).

The following example is a generalization of a similar discussion from
[248]. Let us consider a situation in which all agents in a strongly-connected
network employ the same step-size, i.e., µk ≡ µ, and that the diffusion and
consensus strategies from (8.46) are implemented with the same combination
matrix, A. Without loss in generality, we consider the case of real-valued data.
Let us assume further that the Hessian matrices of all individual costs, Jk(w),
evaluate to the same value at the reference point w?, namely,

∇2
wJk(w?) ≡ H, k = 1, 2, . . . , N (11.214)
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for some constant matrix H. We also assume that the gradient noise variances
{Gk} approach the same value in steady-state apart from some scaling to
account for the possibility of different noise power levels across the agents,
i.e., we assume that the {Gk} have the form:

Gk ≡ σ2
v,kG, k = 1, 2, . . . , N (11.215)

for some constant matrix G. For example, these two conditions on
{∇2

wJk(w?), Gk} are readily satisfied by the class of MSE networks defined
earlier in Example 6.3 when the regression covariance matrices are uniform
across all agents, Ru,k ≡ Ru for k = 1, 2, . . . , N . Indeed, if we write down
an expression similar to (8.15) for the gradient noise process at each agent k,
namely,

sk,i(φk,i−1) = 2
(
Ru − uT

k,iuk,i
)
φ̃k,i−1 − 2uT

k,ivk(i) (11.216)

then we conclude that

Rs,k
∆= lim

i→∞
E
[
sk,i(w?)sT

k,i(w?) |F i−1
]

= 4σ2
v,kRu (11.217)

so that, using the definitions (11.12), we obtain for the case of real-data:

∇2
wJk(w?) = 2Ru ≡ H, Gk = 4σ2

v,kRu ≡ σ2
v,kG (11.218)

with G = 2H in this case.
We are interested in comparing the MSD performance of diffusion and

consensus networks under conditions (11.214)–(11.215). If desired, we can
also compare against the performance of the non-cooperative solution. For
this latter comparison to be meaningful, we would need to assume that all
individual costs, Jk(w), have the same minimizer so that the distributed and
the non-cooperative implementations would be seeking the same minimizer. If
we were only interested in comparing the consensus and diffusion strategies,
then there is no need to assume that the individual costs have the same
minimizer; the argument given below would still apply.

We collect the noise power scalings into an N ×N diagonal matrix

Rv = diag{σ2
v,1, σ

2
v,2, . . . , σ

2
v,N} (11.219)

Then, it holds from (11.53) and (11.215) that S can be expressed as the
Kronecker product:

S = Rv ⊗G (11.220)
Using the series representation (11.178) we have

MSDdist,av = 1
hN

∞∑
n=0

Tr [BnY (B∗)n] (11.221)
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where h = 1 for real data and, from the expressions in Theorem 11.2, the
matrices B and Y are given by the following relations for the various strategies:


Bncop = IN ⊗ (IhM − µH), Yncop = µ2(Rv ⊗G)
Bcons = AT ⊗ IhM − µ(IhM ⊗H), Ycons = µ2(Rv ⊗G)
Batc = AT ⊗ (IhM − µH), Yatc = µ2(ATRvA⊗G)
Bcta = AT ⊗ (IhM − µH), Ycta = µ2(Rv ⊗G)

(11.222)
We already know from Example 10.1 that, in general, ρ(Bdiff) ≤ ρ(Bncop)
so that diffusion strategies have a stabilizing effect. For the current data
structure, it holds that these spectral radii are equal. Indeed, since A is a
left-stochastic matrix, its spectral radius is given by ρ(A) = 1. Then,

ρ(Bdiff) = ρ[AT ⊗ (IhM − µH)]
= ρ(A) ρ(IhM − µH)
= ρ(IhM − µH)
= ρ(Bncop) (11.223)

On the other hand, let λ`(A) denote any of the eigenvalues of A. Since we
know that 1 ∈ {λ`(A)}, it then follows:

ρ(Bncop) = max
1≤m≤2M

|1− µλm(H)|

≤ max
1≤`≤N

max
1≤m≤2M

|λ`(A)− µλm(H)|

(8.40)= ρ(Bcons) (11.224)

In other words, we arrive at the following conclusion for the scenario under
study:

ρ(Bdiff) = ρ(Bncop) ≤ ρ(Bcons) (11.225)

It follows from this result that the convergence rate of the diffusion network
is generally superior to the convergence rate of the consensus network.

Not only the convergence rate is superior, but the MSD performance of the
diffusion network is also superior. To see this, we first note that for consensus
implementations, it is customary to employ a doubly-stochastic matrix A (see
Appendix E in [208]). For example, a left-stochastic A that is also symmetric
will be doubly-stochastic. For the derivation that follows, we shall therefore
assume that A is symmetric, i.e., A = AT; the argument can be extended
to matrices A that are “close-to-symmetric” (i.e., diagonalizable with left-
eigenvectors {xk} that are practically orthogonal to each other) [248]. It is
sufficient for this example to consider the case of symmetric combination
policies, A.
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Since A is now diagonalizable, it admits a Jordan canonical decomposition
of the form [27, 99, 104, 113]:

AT = XDX−1 (11.226)

where D is a diagonal matrix with the eigenvalues of A, and X is a similarity
transformation. Let {xn} denote the columns of X and let {y∗n} denote the
rows of X−1. Then, it follows from (11.226) and the fact that XX−1 = IN
that 

ATxn = λn(A)xn
y∗`A

T = λ`(A)y∗`
y∗`xk = δ`k
`, k = 1, 2, . . . , N

(11.227)

so that the {xn} correspond to the right eigenvectors of AT and the {y∗m}
correspond to the left eigenvectors of AT. We assume the eigenvectors {xn}
are normalized to satisfy

‖xn‖2 = 1, n = 1, 2, . . . , N (11.228)

Since A is symmetric, then X is an orthonormal matrix, i.e.,

x∗`xk = δ`k (11.229)

Under conditions (11.214)–(11.215), and for sufficiently small step-size µ to
ensure mean-square stability, we now verify that diffusion networks lead to
better MSD performance (i.e., smaller MSD values) than consensus networks.
In particular, we verify that the ATC diffusion strategy achieves the lowest
network MSD in comparison to the other strategies:

MSDatc
dist,av ≤ MSDcta

dist,av ≤ MSDncop,av (11.230)
MSDatc

dist,av ≤ MSDcons
dist,av (11.231)

Furthermore, if it holds that

1 ≤ µλmin(H) < 2 (11.232)

then we verify that the consensus strategy is the worst even in comparison to
the non-cooperative strategy:

MSDatc
dist,av ≤ MSDcta

dist,av ≤ MSDncop,av ≤ MSDcons
dist,av (11.233)

To see this, we introduce the eigen-decompositions of the matrices A and
H into (11.221) and compare the resulting MSD expressions for the various
strategies. Let {λm(H) > 0} denote the eigenvalues of the Hermitian and
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positive-definite matrix H with orthonormal eigenvectors denoted by {zm}
(m = 1, 2, . . . , hM):

Hzm = λm(H)zm, m = 1, 2, 3, . . . , hM (11.234)

Substituting the eigen-decompositions of A from (11.227) andH from (11.234)
into (11.221) gives, after some algebra:

MSDatc
dist,av = µ2

hN

N∑
k=1

hM∑
m=1

|λk(A)|2 ‖yk‖2Rv ‖zm‖
2
G

1− |λk(A)|2 [1− µλm(H)]2 (11.235)

MSDcta
dist,av = µ2

hN

N∑
k=1

hM∑
m=1

‖yk‖2Rv ‖zm‖
2
G

1− |λk(A)|2 [1− µλm(H)]2 (11.236)

MSDcons
dist,av = µ2

hN

N∑
k=1

hM∑
m=1

‖yk‖2Rv ‖zm‖
2
G

1− |λk(A)− µλm(H)|2 (11.237)

MSDncop,av = µ2

hN

N∑
k=1

hM∑
m=1

‖yk‖2Rv ‖zm‖
2
G

1− (1− µλm(H))2 (11.238)

Now note that since |λk(A)| ≤ 1, it is obvious that

MSDatc
dist,av ≤ MSDcta

dist,av ≤ MSDncop,av (11.239)

To compare ATC diffusion and consensus, it can be verified that the ratio
of each term on the right-hand side of (11.235) to the corresponding term in
(11.237) is smaller or equal to one [248]:

|λk(A)|2
(
1− |λk(A)− µλm(H)|2

)
1− |λk(A)|2 (1− µλm(H))2 ≤ 1 (11.240)

so that
MSDatc

dist,av ≤ MSDcons
dist,av (11.241)

We can further verify that the performance of the consensus strategy is worse
than the non-cooperative strategy when the step-size satisfies 1 ≤ µλmin(H) <
2. This result is established by verifying that the ratio of the individual terms
appearing in the sums (11.237)-(11.238) is upper bounded by one [248]:

1− |λk(A)− µλm(H)|2

1− (1− µλm(H))2 ≤ 1 (11.242)

�
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Example 11.12 (MSD performance of consensus and diffusion networks). The
following example specializes the results of Example 11.11 to the case of MSE
networks from Example 6.3. We reconsider the two-agent network from Ex-
ample 10.2 with both agents running either the LMS consensus strategy (7.13)
or the LMS diffusion strategies (7.22)–(7.23) albeit on real data (for which
h = 1). We assume

µ1 = µ2 ≡ µ (11.243)
Ru,1 = Ru,2 ≡ σ2

uIhM (11.244)
0 < µσ2

u < 1 (11.245)

The second condition (11.244) ensures that H = 2σ2
uIM . The third condition

(11.245) ensures that both agents are individually stable in the mean since
the matrix Bncop = IN ⊗ (IhM − µH) from Example 11.11 will be stable.

The eigenvalues of A defined by (10.129) are at λ1(A) = 1 and λ2(A) =
1− a− b. Using the notation of Example 11.11, this situation corresponds to
the case 

Rv = diag{σ2
v,1, σ

2
v,2}

G = 4σ2
u IM

H = 2σ2
u IM

(11.246)

In this case, expressions (11.235)–(11.238) reduce to (using h = 1 for real
data):

MSDatc
dist,av = 2µ2σ2

uM

[
y∗1Rvy1

1− (1− 2µσ2
u)2 + y∗2Rvy2(1− a− b)2

1− (1− a− b)2(1− 2µσ2
u)2

]
(11.247)

MSDcta
dist,av = 2µ2σ2

uM

[
y∗1Rvy1

1− (1− 2µσ2
u)2 + y∗2Rvy2

1− (1− a− b)2(1− 2µσ2
u)2

]
(11.248)

MSDcons
dist,av = 2µ2σ2

uM

[
y∗1Rvy1

1− (1− 2µσ2
u)2 + y∗2Rvy2

1− (1− a− b− 2µσ2
u)2

]
(11.249)

MSDncop,av = 2µ2σ2
uM

[
y∗1Rvy1

1− (1− 2µσ2
u)2 + y∗2Rvy2

1− (1− 2µσ2
u)2

]
(11.250)

Note that the first terms inside the brackets of (11.247)-(11.250) are the same.
Then, it can be verified that these MSD values are related as follows depending
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on the region in space where the parameters (a, b) lie:



MSDcons
dist,av ≤ MSDcta

dist,av, if 0 ≤ a+ b ≤ 1−2µσ2
u

1−µσ2
u

MSDcons
dist,av ≥ MSDcta

dist,av, if 1−2µσ2
u

1−µσ2
u
≤ a+ b < 2(1− µσ2

u)

MSDcons
dist,av ≤ MSDncop, av, if 0 ≤ a+ b ≤ 2(1− 2µσ2

u)

MSDcons
dist,av ≥ MSDncop, av, if 2(1− 2µσ2

u) ≤ a+ b < 2(1− µσ2
u)

(11.251)

Figure 11.8: Comparison of the network MSD for N = 2 agents operating
on complex-valued data. The consensus strategy is unstable when a and b lie
above the dashed line in region I; it performs well in region III. ATC diffusion
is superior in all three regions.
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For example, the first relation can be established as follows:

MSDcons
dist,av ≤ MSDcta

dist,av

⇔ (1− a− b− 2µσ2
u)2 ≤ (1− a− b)2(1− 2µσ2

u)2

⇔ (a+ b)2 − 2(a+ b)(1− 2µσ2
u) ≤ [−2(a+ b) + (a+ b)2](1− 2µσ2

u)2

⇔ (a+ b)2 [1− (1− 2µσ2
u)2]− 2(a+ b)(1− 2µσ2

u)[1− (1− 2µσ2
u)] ≤ 0

⇔ 0 ≤ (a+ b) ≤ 4(1− 2µσ2
u)µσ2

u

1− (1− 2µσ2
u)2

⇔ 0 ≤ (a+ b) ≤ 1− 2µσ2
u

1− µσ2
u

(11.252)

and similarly for the other inequalities. We can therefore divide the a × b
plane into three regions I, II, and III, as shown in Figure 11.8, where each
region represents one possible relation among the MSD levels of the various
strategies. The ATC diffusion strategy is seen to be superior in all regions,
while the consensus strategy is worse than the non-cooperative strategy in
region I and is also unstable in the mean for values of (a, b) lying above the
dashed line in that region, i.e., for a + b > 2(1 − µσ2

u), as can be verified by
following an argument similar to (10.135).

�

Example 11.13 (Higher-order terms in the MSD expression). Continuing with
Example 11.12, we can rework expression (11.247) for MSDatc

dist,av into a more
familiar form (and similarly for the other expressions). Thus, consider the
eigenvectors {xn, ym} defined by (11.227). Since A is left-stochastic, we have
AT1 = 1. Note, however, from the definition of the eigenvectors {xn} that
they need to satisfy the normalization condition (11.228). This means that we
can select the first eigenvector as

x1 = 1√
N
1 (11.253)

It then follows from the condition y∗1x1 = 1 that

y∗11 =
√
N (11.254)

so that the entries of the right-eigenvector y1 add up to
√
N . Now recall from

definition (11.136) for the Perron eigenvector p that its entries must add up to
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one. Both p and y1 are right-eigenvectors for A associated with the eigenvalue
at one. Therefore, p and y1 are related as follows:

p = 1√
N
y1 (11.255)

Using this result, and the fact that µ is sufficiently small and that we are
dealing with a two-agent network in this example (so that N = 2), we can
rewrite (11.247) to first-order in µ as follows:

MSDatc
dist,av = 2µ2σ2

uM
y∗1Rvy1

4µσ2
u − 4µ2σ4

u

= 2µM Np∗Rvp

4− 4µσ2
u

≈ µM

2 2
( 2∑
k=1

p2
kσ

2
v,k

)
, since N = 2 and µ is small

= µM

2∑
k=1

p2
kσ

2
v,k (11.256)

and we recover the analogue of expression (11.144) for real-data.
�



12
Benefits of Cooperation

Example 11.5 focused on MSE networks with quadratic costs and
showed that for adaptation and learning under doubly-stochastic com-
bination policies, it is not necessarily the case that every agent will ben-
efit from cooperation with its neighbors. Some agents can see their per-
formance degraded relative to what they would have attained had they
operated independently of the other agents and in a non-cooperative
manner. We verify in this chapter that the same conclusion holds for
more general costs: doubly-stochastic combination policies enhance the
average network performance albeit at the possible expense of some in-
dividual agents having their performance degrade relative to the non-
cooperative scenario. One useful question to consider is whether it is
possible to select combination matrices, A, that ensure that distributed
(consensus or diffusion) networks will outperform the non-cooperative
strategy both in terms of the overall average performance and the in-
dividual agent performance. The choice of A will generally need to
be left-stochastic. We again recall that in order to carry a meaning-
ful comparison with non-cooperative implementations, it is necessary
to assume that all individual costs, Jk(w), share the same global mini-
mizer so that w? = wo. It is also necessary to assume uniform step-sizes

624
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across all agents since the performance of the non-cooperative agents
is influenced by the step-sizes. Similarly, a meaningful comparison be-
tween distributed and centralized implementations requires that they
employ the same step-size parameter and that both implementations
approach the same limit point and, therefore, we also need to have
w? = wo. For these reasons, we shall assume in the sequel that

µk ≡ µ, k = 1, 2, . . . , N (12.1)

For ease of reference we recall the expressions for the MSD perfor-
mance of distributed (consensus and diffusion), centralized, and non-
cooperative strategies for sufficiently small step-sizes, for both individ-
ual agents (when applicable) and for the average network performance:

MSDcent = µ

2Nh Tr

( N∑
k=1

Hk

)−1 ( N∑
k=1

Gk

) (12.2)

MSDncop,k = µ

2h Tr
(
H−1
k Gk

)
(12.3)

MSDncop,av = µ

2Nh Tr
[

N∑
k=1

H−1
k Gk

]
(12.4)

MSDdist,k = MSDdist,av = µ

2hTr

( N∑
k=1

pkHk

)−1 ( N∑
k=1

p2
kGk

) (12.5)

In the analysis that follows, we assume that the various strategies are
employing the same construction for their gradient vectors and that
the moment matrices {Gk} can be taken to be the same in all imple-
mentations. The matrices {Hk, Gk} are defined by (11.12) in terms of
the Hessian matrices of the individual costs, evaluated at w? = wo, and
in terms of the second-order moments of the gradient noise processes
across the agents.

12.1 Doubly-Stochastic Combination Policies

Consider first the case in which the combination matrix, A, used by the
consensus strategy (7.9) and the diffusion strategies (7.18) and (7.19) is
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doubly stochastic. Then, the Perron eigenvector p defined by (11.136)
is given by p = 1/N so that all its entries are equal to 1/N . In this
case, expressions (12.2) and (12.5) lead to the conclusion that:

MSDdist,k = MSDdist,av = MSDcent (12.6)

That is, the distributed consensus and diffusion strategies are able to
attain the same MSD performance level as the centralized solution.
Since we already showed in (5.80) that the centralized solution outper-
forms the non-cooperative solution, we conclude that the distributed
solutions also outperform the non-cooperative solution:

MSDdist,av = MSDcent ≤ MSDncop,av (12.7)

Result (12.7) is in terms of the average network performance (obtained
by averaging the MSD levels of the individual agents). In this way,
the result establishes that the average MSD performance of the dis-
tributed solution is superior (i.e., lower) than the average MSD per-
formance attained by the agents in a non-cooperative implementation.
This conclusion motivates the following inquiry: is the improvement in
network performance attained at the expense of deterioration in the
performance of some of the agents? In other words, will the perfor-
mance of some agents in the distributed solution become worse than
what it would be if they operate independently? If this is the case, then
result (12.7) would mean that in moving from non-cooperation to coop-
eration, some agents see their performance improve while other agents
see their performance degrade in such a manner that the net effect for
the network is a better (i.e., lower) average MSD value. We now verify
that this is indeed the case for doubly-stochastic combination policies.

From (12.3) and (12.5) we observe that, to first-order in the step-
size parameter, the MSD of the individual agents in the distributed
implementation will be smaller (and, hence, better) than the MSD of
the individual agents in the non-cooperative implementation only when
for each k = 1, 2, . . . , N :

1
N

Tr

( N∑
k=1

Hk

)−1 ( N∑
k=1

Gk

) ≤ Tr(H−1
k Gk) (12.8)



12.1. Doubly-Stochastic Combination Policies 627

Unfortunately, this condition may or may not hold as illustrated by
the next example. Agents for which the condition is violated would
experience deterioration in their MSD level from cooperation. Before
presenting the example, though, we mention that there are situations
where condition (12.8) holds for all agents, in which case all agents will
benefit from cooperation. This happens, for example, when the Hessian
matrices,Hk, and the gradient noise covariances,Gk, are uniform across
the agents, namely, when

Hk ≡ H, Gk ≡ G, k = 1, 2, . . . , N (12.9)

The condition also holds when the following two requirements hold for
each k = 1, 2, . . . , N :

Hk ≡ H (12.10)
1
N

Tr
[
N∑
k=1

H−1Gk

]
≤ N Tr(H−1Gk) (12.11)

We summarize the main conclusion so far in the following statement.
We illustrated this conclusion earlier in Example 11.5.

Lemma 12.1 (Doubly-stochastic combination policies). Assume all agents em-
ploy the same step-size parameter and that the individual costs are strongly-
convex and their minimizers coincide with each other. For doubly stochastic
combination matrices it holds that

MSDdist,av = MSDcent ≤ MSDncop,av (12.12)

Example 12.1 (Doubly-stochastic policies over MSE networks). We reconsider
the setting of Example 11.4, which deals with MSE networks operating on
real-valued data and refer to the strongly-connected network of Figure 11.1
with N = 20 agents. We assume uniform step-sizes, µk ≡ µ = 6 × 10−4,
and uniform regression covariance matrices of the form Ru,k = σ2

uIM where
σ2
u = 2. In this setting, we have

Hk = 2σ2
uIM ≡ H, Gk = 4σ2

v,k σ
2
uIM , θ2

k = 2Mσ2
v,k (12.13)
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We consider two scenarios. In the first case, the agents run the ATC diffusion
strategy (7.23) with the Metropolis combination weights (8.100), namely,

ψk,i = wk,i−1 + 2µuT
k,i [dk(i)− uk,iwk,i−1]

wk,i =
∑
`∈Nk

a`k ψ`,i (12.14)

The Metropolis weights result in a doubly-stochastic combination matrix, A,
so that pk = 1/N . In the second case, the agents transfer the data to a fusion
center running the centralized strategy (5.13), i.e.,

wi = wi−1 + µ

(
1
N

N∑
k=1

2uT
k,i(dk(i)− uk,iwi−1)

)
(12.15)

The resulting MSD performance levels are given by expressions (12.2) and
(12.5), which in the current setting reduce to (using h = 1 for real data):

MSDcent = MSDdist,av = µM

N

(
1
N

N∑
k=1

σ2
v,k

)
(12.16)

We illustrate these results numerically in Figure 12.1 for the two algorithms
listed above running on complex-valued data {dk(i),uk,i} generated according
to the model dk(i) = uk,iw

o+vk(i), withM = 10 and where the noise profile is
the same one shown earlier in the left plot of Figure 11.2. The unknown vector
wo is generated randomly and its norm is normalized to one. Figure 12.1 plots
the evolution of the ensemble-average learning curves, 1

NE‖w̃i‖2 for diffusion
and E‖w̃i‖2 for centralized and weighted centralized. The curves are obtained
by averaging simulated trajectories over 100 repeated experiments. The label
on the vertical axis in the figure refers to the learning curves by writing
MSD(i), with an iteration index i. It is observed both strategies tend towards
the same MSD level that is predicted by the theoretical expression (12.16).

�

12.2 Left-Stochastic Combination Policies

The previous analysis shows that under doubly-stochastic combina-
tion policies, cooperation among the agents enhances the network MSD
performance albeit possibly at the expense of deterioration in the per-
formance of some individual agents. A useful question to consider is
whether it is possible to select combination matrices A that will ensure
that distributed (consensus or diffusion) networks will outperform the
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Figure 12.1: Evolution of the learning curves for two strategies: ATC diffusion
(12.14) with Metropolis combination weights vs. centralized (12.15).

non-cooperative strategy both in terms of the overall network perfor-
mance and the individual agent performance. We need to search over
the larger set of left-stochastic matrices A since we already know that
doubly-stochastic matrices A may not be sufficient to guarantee this
property.

From expression (12.3) we observe that the performance of each
agent in the non-cooperative mode of operation is dependent on its
Hessian matrix, Hk. We therefore focus on the important special case
in which these Hessian matrices are uniform across the agents:

Hk ≡ H, k = 1, 2, . . . , N (12.17)

As explained earlier, this scenario is common in important situations
of interest such as the MSE networks of Example 6.3 and in machine
learning applications where all agents minimize the same cost function
as in Examples 7.4 and 11.9. For a given network topology, we then
consider the problem of minimizing the MSD level of the distributed
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strategies under these conditions, namely,

Ao
∆= arg min

A∈A
Tr
(

N∑
k=1

p2
kH
−1Gk

)
subject to Ap = p, 1Tp = 1, pk > 0

(12.18)

where the symbol A denotes the set of allN×N primitive left-stochastic
matrices A whose entries {a`k} satisfy conditions (7.10). To solve the
above problem, we start by introducing the nonnegative scalars:

θ2
k

∆= Tr(H−1Gk), k = 1, 2, . . . , N (12.19)

and refer to them as gradient-noise factors (since they incorporate in-
formation about the gradient noise moments, Gk). Comparing with
(12.3), the scalar θ2

k is seen to be proportional to the MSD level at
agent k in the non-cooperative mode of operation. Interpreting every
A ∈ A as the probability transition matrix of an irreducible aperiodic
Markov chain [169, 186], and using a construction procedure developed
in [42, 106], it was argued in [276] that one choice for an optimal Ao
that solves optimization problems of the form (12.18) is the following
left-stochastic matrix (which we refer to as the Hastings combination
rule).

Lemma 12.2 (Hastings rule). The following combination matrix, denoted by
Ao with a superscript o, is a solution to the optimization problem (12.18):

ao`k =


θ2
k

max{ nkθ2
k, n`θ

2
` }

, ` ∈ Nk\{k}

1−
∑

m∈Nk\{k}

aomk, ` = k

(12.20)

where nk = |Nk| denotes the cardinality of Nk or the degree of agent k (i.e.,
number of its neighbors). The entries of the corresponding Perron eigenvector
are given by

pok = 1
θ2
k

(
N∑
`=1

1
θ2
`

)−1

, k = 1, 2, . . . , N (12.21)
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Proof. We first consider the optimization problem (12.18) without the eigen-
vector constraint, Ap = p, and minimize instead over the positive scalars {pk}:

pok
∆= arg min

pk

N∑
k=1

p2
kθ

2
k subject to 1Tp = 1, pk > 0 (12.22)

It is easy to verify that the solution to this problem is given by (12.21). Next,
we verify that the matrix Ao defined by (12.20) is a left-stochastic primitive
matrix that has po = col{pok} as its Perron eigenvector.

To begin with, it is straightforward to verify from (12.20) that Ao is left-
stochastic. We now establish that Aopo = po, i.e., for every 1 ≤ ` ≤ N :

N∑
k=1

ao`kp
o
k = po` (12.23)

For this purpose, we note first that for any ` 6= k, the following balanced
relation holds:

ao`k p
o
k =

(
θ2
k

max{ nkθ2
k, n`θ

2
` }

)
1
θ2
k

(
N∑
`=1

1
θ2
`

)−1

=
(

1
max{ nkθ2

k, n`θ
2
` }

) ( N∑
`=1

1
θ2
`

)−1

= aok` p
o
` (12.24)

so that

N∑
k=1

ao`kp
o
k =

∑
k 6=`

ao`kp
o
k + a``p

o
`

(12.24)=
∑
k 6=`

aok`p
o
` + a``p

o
`

=
∑
k=1

aok`p
o
`

=
(∑
k=1

aok`

)
po`

= po` (since Ao is left-stochastic) (12.25)

It remains to show that Ao is primitive. To do so, and in view of Lemma 6.1,
it is sufficient to show that aokk > 0 for some k. This property actually holds
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for all diagonal entries aokk in this case. Indeed, note that since

ao`k = θ2
k

max{ nkθ2
k, n`θ

2
` }
≤ θ2

k

nkθ2
k

≤ 1
nk

(12.26)

we get ∑
k 6=`

ao`k =
∑

`∈Nk\{k}

ao`k

≤
∑

`∈Nk\{k}

1
nk

= nk − 1
nk

(12.27)

which implies that

aokk = 1−
∑

`∈Nk\{k}

ao`k

≥ 1− nk − 1
nk

= 1
nk

> 0 (12.28)

The Hastings rule is a fully-distributed solution — each agent k only
needs to obtain the products {n`θ2

`} from its neighbors to compute the
combination weights {ao`k}. Substituting (12.21) into (12.18), we find
that the resulting optimal value for the distributed network MSD is:

MSDo
dist,av = µ

2h

(
N∑
`=1

1
θ2
`

)−1

(12.29)

At the same time, it follows from (12.5) that the MSD performance of
the distributed network for any doubly-stochastic (d.s.) matrix A is:

MSDd.s.
dist,av = µ

2N2h

(
N∑
`=1

θ2
`

)
(12.30)
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Now, using the following algebraic property [206], which is valid for
any scalars {θ2

`}:

N2 ≤
(

N∑
`=1

θ2
`

)(
N∑
`=1

1
θ2
`

)
(12.31)

we conclude that

MSDo
dist,av ≤ MSDd.s.

dist,av ≤ MSDncop,av (12.32)

so that, as expected, the MSD of the distributed (consensus or dis-
tributed) network with the optimal left-stochastic matrix, Ao, is also
superior to the MSD of the non-cooperative network. More importantly,
though, this optimal choice for A leads to the following performance
level at the individual agents in the distributed solution:

MSDo
dist,k = µ

2h

(
N∑
`=1

1
θ2
`

)−1

≤ µ

2h

(
1
θ2
k

)−1

(12.3)= MSDncop,k, k = 1, 2, . . . , N (12.33)

so that, to first-order in the step-size parameter, the individual agent
performance in the optimized distributed network is improved across
all agents relative to the non-cooperative case:

MSDo
dist,k ≤ MSDncop,k, k = 1, 2, . . . , N (12.34)

We summarize the main conclusion in the following statement.

Lemma 12.3 (Left-stochastic combination policies). Assume all agents employ
the same step-size parameter and that the individual costs are strongly-convex
and their minimizers coincide with each other. Assume further that the Hes-
sian matrices evaluated at the optimal solution, wo, are uniform across all
agents as in (12.17). For the left-stochastic Hastings policy (12.20) it holds
that

MSDo
dist,av ≤ MSDd.s.

dist,av ≤ MSDncop,av (12.35)
MSDo

dist,k ≤ MSDncop,k, k = 1, 2, . . . , N (12.36)
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Example 12.2 (Optimal combination policy for MSE networks). Let us recon-
sider the setting of Example 11.3, which deals with MSE networks. We as-
sume uniform step-sizes and uniform regression covariances, i.e., µk ≡ µ and
Ru,k ≡ Ru for k = 1, 2, . . . , N . In this setting we have

Hk =
[
Ru 0
0 RT

u

]
≡ H, Gk = σ2

v,k

[
Ru ×
× RT

u

]
, θ2

k = 2Mσ2
v,k

(12.37)
For these values of {Hk, Gk}, the optimization problem (12.18) reduces to

Ao
∆= arg min

A∈A

N∑
k=1

p2
kσ

2
v,k

subject to Ap = p, 1Tp = 1, pk > 0

(12.38)

which is of course the same problem we would be motivated to optimize had we
started from the MSD expression (11.147). Using (12.20), an optimal solution
is given by

ao`k =



σ2
v,k

max{ nkσ2
v,k, n`σ

2
v,` }

, ` ∈ Nk\{k}

1−
∑

m∈Nk\{k}

aomk, ` = k

(12.39)

with

MSDo
dist,k = MSDo

dist,av = µM

2

(
N∑
`=1

1
σ2
v,`

)−1

(12.40)

Note that

MSDo
dist,k ≤

µM

2

(
1
σ2
v,k

)−1
(12.3)= MSDncop,k (12.41)

so that the individual agent performance in the optimized distributed network
is improved across all agents relative to the non-cooperative case.

�

Example 12.3 (Optimal MSD combination policy for online learning). We revisit
Example 11.9, which deals with a collection of N learners. Using the notation
of that example we have that, in this case, the gradient-noise factors {θ2

k} are
now uniform:

θ2
k ≡ θ2 = Tr(H−1Rs) (12.42)
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Substituting into expression (12.20) for Hastings rule, we find that the opti-
mal combination coefficients reduce to the following so-called Metropolis rule,
which we encountered earlier in Example 8.9:

ao`k =


1

max{ nk, n` }
, ` ∈ Nk\{k}

1−
∑

m∈Nk\{k}

aomk, ` = k
(12.43)

Therefore, the optimal combination policy happens to be doubly-stochastic in
this case. Observe that the above combination coefficients now depend solely
on the degrees of the agents (i.e., the extent of their connectivity). Moreover,
from (12.29) and using h = 1 for real data, the optimal MSD value is given
by

MSDo
dist,av = µ

4

(
1
N

)
Tr(H−1Rs) (12.44)

which, in this case, agrees with the performance of the centralized solution
given by (12.2). On the other hand, for arbitrary left-stochastic combination
matrices A, the MSD performance of the distributed (consensus and diffusion)
solutions can be deduced from (12.5) and would be given by

MSDdist,av = µ

4

(
N∑
k=1

p2
k

)
Tr(H−1Rs) (12.45)

�

12.3 Comparison with Centralized Solutions

The third question we consider in this chapter is to compare the optimal
MSD performance of the distributed consensus and diffusion solutions
(resulting from the use of the Hastings rule (12.20)), with the MSD per-
formance of the centralized solution under the same condition (12.17)
of uniform Hessian matrices. In this case, from expressions (12.2) and
(12.29), the MSD levels of the centralized and (optimized) distributed
solutions are given by:

MSDcent = µ

2N2h

(
N∑
`=1

θ2
`

)
(12.46)

MSDo
dist,av = µ

2h

(
N∑
`=1

1
θ2
`

)−1

(12.47)
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Using the inequality (12.31) again, we readily conclude that, to first-
order in the step-size parameter,

MSDo
dist,av ≤ MSDcent (12.48)

so that the optimized distributed network running the consensus strat-
egy (7.9) or the diffusion strategies (7.18) or (7.19) with the Hasting
combination rule (12.20) outperforms the centralized solution (5.22),
which we repeat below for ease of reference

wi = wi−1 − µ

(
1
N

N∑
k=1
∇̂w∗Jk(wi−1)

)
, i ≥ 0 (12.49)

The conclusion that the distributed solutions outperform the central-
ized solution may seem puzzling at first. However, this result follows
from the fact that the optimized combination coefficients (12.20)
for the distributed implementations exploit information about the
gradient noise factors, {θ2

`}. This information is not used by the
centralized algorithm (12.49). We can of course modify (12.49) to
include information about the gradient noise factors as well.

Weighted Centralized Strategy
One way to modify the centralized solution (12.49) is as follows [279].
We incorporate the positive weighting coefficients {pok} into the cen-
tralized update equation:

wi = wi−1 − µ

(
N∑
k=1

pok ∇̂w∗Jk(wi−1)
)
, i ≥ 0 (12.50)

where the pok were defined earlier in (12.21):

pok
∆= 1

θ2
k

(
N∑
`=1

1
θ2
`

)−1

, k = 1, 2, . . . , N (12.51)

The MSD performance of the weighted centralized solution (12.50) can
be verified to match that of the optimized distributed solution (12.47).
Indeed, compared with (12.49), we can interpret algorithm (12.50) as
corresponding to the centralized stochastic gradient implementation
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that would result from minimizing instead the following modified global
cost

Jglob,b(w) ∆=
N∑
k=1

Jbk(w) (12.52)

where each individual cost is a scaled version of the original cost:

Jbk(w) ∆= Npok Jk(w) (12.53)

In this way, the gradient noise vectors that result from using the mod-
ified costs {Jbk(w)} will be scaled by the same factors {Npok} relative
to the gradient noise vectors that result from using the original costs
{Jk(w)}. Specifically, if we denote the individual gradient noise process
corresponding to implementation (12.49) by

sk,i(wi−1) = ∇̂w∗Jk(wi−1)−∇w∗Jk(wi−1) (12.54)

then the gradient noise process that corresponds to implementation
(12.50) will be given by

sbk,i(wi−1) ∆= ∇̂w∗J
b

k(wi−1)−∇w∗Jbk(wi−1)
= Npok sk,i(wi−1) (12.55)

under the reasonable expectation that the gradient vector approxima-
tion, ∇̂w∗J

b

k(wi−1), is similarly scaled by Npok. Consequently, the limit-
ing moment matrices corresponding to the new gradient noise vectors,
{sbk,i(wo)}, will be scaled multiples of the moment matrices correspond-
ing to the previous gradient noise vectors {sk,i(wo)}, i.e.,

Rbs,k = (Npok)2Rs,k (12.56)
Rbq,k = (Npok)2Rq,k, k = 1, 2, . . . , N (12.57)

It follows from definition (5.56) that the matrices {Hb, Gbk} for the
weighted centralized solution (12.50) are related to the matrices
{H,Gk} for the original centralized solution (12.49) as follows:

Hb = NpokH (12.58)
Gbk = (Npok)2Gk, k = 1, 2, . . . , N (12.59)
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and, therefore, the corresponding gradient noise factors {θ2
k, (θbk)2} are

related as (
θbk

)2
= Npokθ

2
k, k = 1, 2, . . . , N (12.60)

Substituting into (12.46) we find that the MSD level for the weighted
centralized solution, denoted by MSDwcen is given by

MSDwcen = µ

2N2h

N∑
`=1

(
θb`

)2

= µ

2N2h

N∑
`=1

Npo`θ
2
`

(12.51)= µ

2h

(
N∑
`=1

1
θ2
`

)−1

(12.47)= MSDo
dist,av (12.61)

We conclude that it is possible to modify the centralized solution into
the weighted form (12.50) such that the MSD performance of the
optimal distributed solution matches the MSD performance of the
weighted centralized solution.

Example 12.4 (Comparing distributed and centralized solutions). We reconsider
the setting of Example 11.3, which deals with MSE networks. We assume uni-
form step-sizes, µk ≡ µ = 0.001, and real-valued data with uniform regression
covariance matrices of the form Ru,k = σ2

uIM where σ2
u is chosen randomly

from within the range [1, 2]. In this setting, we have

Hk = 2σ2
uIM ≡ H, Gk = 4σ2

v,k σ
2
uIM , θ2

k = 2Mσ2
v,k (12.62)

We consider three scenarios. In the first case, the agents run the ATC
diffusion strategy (7.23), namely,

ψk,i = wk,i−1 + 2µuT
k,i [dk(i)− uk,iwk,i−1]

wk,i =
∑
`∈Nk

ao`k ψ`,i
(12.63)

where the combination weights {ao`k} are the Hastings weights from (12.39).
In the second case, the agents transfer the data to a fusion center running the
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Figure 12.2: A connected network topology consisting of N = 20 agents
employing the averaging rule (11.148).

conventional (un-weighted) centralized strategy (5.13), i.e.,

wi = wi−1 + µ

(
1
N

N∑
k=1

2uT
k,i(dk(i)− uk,iwi−1)

)
(12.64)

In the third case, the fusion center employs a weighted centralized solution of
the form:

wi = wi−1 + µ

(
N∑
k=1

2pokuT
k,i(dk(i)− uk,iwi−1)

)
(12.65)

where the {pok} are the entries of the Perron vector given by (12.21), which in
the current setting reduces to:

pok = 1
σ2
v,k

(
N∑
`=1

1
σ2
v,`

)−1

, k = 1, 2, . . . , N (12.66)

The resulting MSD performance levels are given by expressions (12.46)–
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(12.47) and (12.61) using h = 1:

MSDcent = µ

2N2

(
N∑
`=1

θ2
`

)
(12.67)

MSDwcent = MSDo
dist,av = µ

2

(
N∑
`=1

1
θ2
`

)−1

(12.68)

where θ2
` = 2Mσ2

v,`.
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Figure 12.3: Regression data power (left) and measurement noise profile
(right) across all agents in the network. The covariance matrices are assumed
to be of the form Ru,k = σ2

uIM , and the noise and regression data are Gaussian
distributed in this simulation.

We illustrate these results numerically for the connected network topology
shown in Figure 12.2 with N = 20 agents. The measurement noise variances,
{σ2

v,k}, and the power of the regression data, are shown in the plots of Fig-
ure 12.3, respectively. All agents are assumed to have a non-trivial self-loop
so that the neighborhood of each agent includes the agent itself as well. The
resulting network is therefore strongly-connected.

Figure 12.4 plots the resulting learning curves for the three algorithms
listed above: ATC diffusion, centralized, and weighted centralized running
on real-valued data {dk(i),uk,i} generated according to the model dk(i) =
uk,iw

o + vk(i), with M = 10. The unknown vector wo is generated ran-
domly and its norm is normalized to one. The figure plots the evolution of
the ensemble-average learning curves, 1

NE‖w̃i‖2 for diffusion and E‖w̃i‖2 for
centralized and weighted centralized. The curves are obtained by averaging
simulated trajectories over 100 repeated experiments. The labels on the verti-
cal axes in the figures refer to the learning curves by writing MSD(i), with an
iteration index i. It is seen in the figure that the MSD level that is attained
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Figure 12.4: Evolution of the learning curves for ATC diffusion (12.63),
un-weighted centralized strategy (12.64), and weighted centralized strategy
(12.65).

by the diffusion strategy is better (lower) than the MSD level that is attained
by the un-weighted centralized strategy, in agreement with the theoretical
result (12.48). On the other hand, the same figure shows that the weighted
centralized solution (12.65) eliminates the degradation in performance, again
in agreement with the theoretical result (12.61).

�

12.4 Excess-Risk Performance

We focused in the previous sections on the MSD performance measure.
The same conclusions extend to the ER performance measure and,
therefore, we shall be brief. To begin with, for a meaningful comparison
with the non-cooperative solution, we shall assume in this section that
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all cost functions are uniform across the agents, namely,

Jk(w) ≡ J(w), k = 1, 2, . . . , N (12.69)

The ER performance levels for the non-cooperative, centralized, and
distributed strategies are then given by

ERcent = µh

4

( 1
N2

)
Tr
(

N∑
k=1

Rs,k

)
(12.70)

ERncop,k = µh

4 Tr (Rs,k) (12.71)

ERncop,av = µh

4

( 1
N

)
Tr
(

N∑
k=1

Rs,k

)
(12.72)

ERdist,k = ERdist,av = µh

4 Tr
(

N∑
k=1

p2
kRs,k

)
(12.73)

For doubly-stochastic combination matrices, and to first-order in
the step-size parameter, it again holds that

ERdist,av = ERcent = 1
N

ERncop,av (12.74)

This result is in terms of the average network performance (obtained
by averaging the ER levels of the individual agents). In this way, the
result establishes that the average ER performance of the distributed
solution is N−fold superior (i.e., lower) than the average ER perfor-
mance attained by the agents in a non-cooperative solution. However,
from (12.71) and (12.73) we observe that the ER of the individual
agents in the distributed implementation will be smaller (and, hence,
better) than the ER of the individual agents in the non-cooperative
implementation only when for each k = 1, 2, . . . , N :

1
N

N∑
k=1

Tr (Rs,k) ≤ NTr(Rs,k) (12.75)

Unfortunately, this condition may or may not hold. For example, if
all the {Rs,k} are uniform across the agents, then the condition is
clearly satisfied and the performance of all individual agents will im-
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prove through cooperation. On the other hand, if we consider the ex-
ample N = 2, Rs,1 = rIM and Rs,2 = 9rIM for some r > 0. Then,

1
N

N∑
k=1

Tr (Rs,k) = 5rIM (12.76)

which is larger than 2Rs,1 but smaller than 2Rs,2. In this case, agent 2
will benefit from cooperation while agent 1 will not.

We can then seek a left-stochastic policy that optimizes the ER
level by solving

Ao
∆= arg min

A∈A
Tr
(

N∑
k=1

p2
kRs,k

)
subject to Ap = p, 1Tp = 1, pk > 0

(12.77)

The solution to (12.77) can be obtained in a manner similar to the
solution of the earlier problem (12.18). The only difference is that the
parameters θ2

k should now be defined as follows:

θ2
k

∆= Tr(Rs,k), k = 1, 2, . . . , N (12.78)

in terms of the moment matrices {Rs,k} alone — compare with (12.19).
These parameters can then be used in (12.20) to construct the cor-
responding Hastings combination rule. The resulting (optimized) ER
value will be

ERo
dist,av = µh

4

(
N∑
`=1

1
θ2
`

)−1

(12.79)

and it again holds that

ERodist,av ≤ ERd.s.
dist,av = 1

N
ERncop,av (12.80)

so that, as expected, the ER of the distributed (consensus or dis-
tributed) network with an optimal left-stochastic matrix, Ao, is also
superior to the ER of the non-cooperative scenario. More importantly,
though, this optimal choice for A leads again to

ERodist,k ≤ ERncop,k, k = 1, 2, . . . , N (12.81)
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so that the individual agent performance in the optimized distributed
network is improved across all agents relative to the non-cooperative
case.

Example 12.5 (Comparing distributed and centralized learners). We reconsider
the numerical example at the end of Example 11.11, which deals with logistic
networks operating on real data {γk(i),hk,i} originating from the alpha data
set [223]. We consider the same network topology shown earlier in Figure 11.5
with N = 20 agents employing uniform step-sizes, µk ≡ µ. We already know
from the result of Example 12.3 that the (optimal) Hastings rule reduces to
the Metropolis rule (12.43), which is doubly-stochastic. Therefore, the entries
of the corresponding Perron eigenvector are pok = 1/N .

In this example, we compare the performance of two algorithms, ATC
diffusion and the weighted centralized strategy, for the minimization of the
(regularized) logistic risk function (11.205). The algorithms take the following
form in this case:

ψk,i = (1− ρµk)wk,i−1 + µγk(i)hk,i
(

1
1 + eγk(i)hT

k,i
wk,i−1

)
wk,i =

∑
`∈Nk

a`k ψ`,i (ATC diffusion)

(12.82)

and

wi = (1− ρµ)wi−1 + µ

N

N∑
k=1

γk(i)hk,i
(

1
1 + eγk(i)hT

k,i
wi−1

)
(weigh. centr.)

(12.83)
In this case, and since the combination policy is doubly-stochastic, the ER
performance of both algorithms will tend towards similar values. Using ex-
pression (12.79) with h = 1 for real data, this level is given by

ERcent = ERodist,av = µ

4

(
N∑
`=1

1
θ2
`

)−1

= µ

4N Tr(Rs) (12.84)

where we used (12.78) to note that

θ2
` ≡ θ2 = Tr(Rs) (12.85)

Figure 12.5 plots the evolution of the ensemble-average learning curves,
E {J(wi−1)− J(wo)}, for the above ATC diffusion and weighted centralized
strategies using µ = 1 × 10−4. The curves are obtained by averaging the
trajectories {J(wi−1)− J(wo)} over 100 repeated experiments. The label on
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the vertical axis in the figure refers to the learning curves by writing ER(i),
with an iteration index i. Each experiment involves running the diffusion
strategy (12.82) or the weighted centralized strategy (12.83) with ρ = 10. To
generate the trajectories for the experiments in this example, the optimal
wo and the gradient noise covariance matrix, Rs, are first estimated off-line
by applying a batch algorithm to all data points. For the data used in this
experiment we have Tr(Rs) ≈ 131.48. It is observed in the figure that the
learning curves tend towards the ER value predicted by the theoretical
expression (12.84).
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Figure 12.5: Evolution of the learning curves for the diffusion and weighted
centralized strategies (12.82)–(12.83), with all agents employing the step-size
µ = 1× 10−4.
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13
Role of Informed Agents

We assumed in our presentation so far that all agents in the network
have continuous access to data measurements and are able to evaluate
their gradient vector approximations. However, it is observed in nature
that the behavior of biological networks is often driven more heavily by
a small fraction of informed agents as happens, for example, with bees
and fish [12, 22, 125, 219]. This phenomenon motivates us to examine
in this chapter multi-agent networks where only a fraction of the agents
are informed, while the remaining agents are uninformed.

13.1 Informed and Uninformed Agents

Informed agents are defined as those agents that are capable of evalu-
ating their gradient vector approximation continuously from streaming
data and of performing the two tasks of adapting their iterates and con-
sulting with their neighbors. Uninformed agents, on the other hand, are
incapable of performing adaptation but can still participate in the con-
sultation process with their neighbors. In this way, uninformed agents
continue to assist in the diffusion of information across the network
and act primarily as relay agents. We illustrate these two definitions

646
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by considering a strongly-connected network running, for example, the
ATC diffusion strategy (7.19). When an agent k is informed, it employs
a strictly positive step-size and performs the two steps of adaptation
and combination:

(informed)


ψk,i = wk,i−1 −

2µ
h
∇̂w∗Jk(wk,i−1)

wk,i =
∑
`∈Nk

a`k ψ`,i
(13.1)

where h = 1 for real data and h = 2 for complex data. When an agent
is uninformed, we set its step-size parameter to zero, µk = 0, so that
they are unable to perform the adaptation step but continue to perform
the aggregation step. Their update equations therefore reduce to

(uninformed)


ψk,i = wk,i−1
wk,i =

∑
`∈Nk

a`k ψ`,i (13.2)

which collapse into the more compact form:

wk,i =
∑
`∈Nk

a`k w`,i−1 (13.3)

Although unnecessary for our treatment, we will assume for simplicity
of presentation that the step-size parameter is uniform and equal to µ
across all informed agents:

µk =
{
µ, (informed agent)
0, (uninformed agent) (13.4)

We will also focus on diffusion and consensus networks. Recall from
(8.7)–(8.10) that the consensus and diffusion strategies correspond to
the following choices for {Ao, A1, A2} in terms of a single combination
matrix A in the general description (8.46):

consensus: Ao = A, A1 = IN = A2 (13.5)
CTA diffusion: A1 = A, A2 = IN = Ao (13.6)
ATC diffusion: A2 = A, A1 = IN = Ao (13.7)
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13.2 Conditions on Cost Functions

We recall the definition of the aggregate cost function for the case when
all agents are informed:

Jglob(w) ∆=
N∑
k=1

Jk(w) (13.8)

Let NI denote the set of indices of informed agents in the network:

NI
∆= {k : such that µk = µ > 0} (13.9)

The number of elements in NI is denoted by

NI = |NI | (13.10)

The remaining agents are uninformed. We assume the network has at
least one informed agent so that NI ≥ 1.

Now, observe from the definitions of informed and uninformed
agents that if some agent ko happens to be uninformed, then infor-
mation about its gradient vector and, hence, cost function Jko(w), is
excluded from the overall learning process. For this reason, the effective
global cost that the network will be minimizing is redefined as

Jglob,eff(w) ∆=
∑
k∈NI

Jk(w) (13.11)

where the sum is over the individual costs of the informed agents.
Clearly, if the individual costs share a common minimizer (which is
the situation of most interest to us in this chapter), then the global
minimizers of (13.8) and (13.11) will coincide. In general, though, the
minimizers of these global costs may be different, and the minimizer of
(13.11) will change with the setNI . For this reason, whenever necessary,
we shall write wo(NI) to highlight the dependency of the minimizer of
(13.11) on the set of informed agents.

In this chapter, whenever we refer to the global cost, we will be re-
ferring to the effective global cost (13.11) since entries from uninformed
agents are excluded. It is this global cost, along with the individual costs
of the informed agents, that we now need to assume to satisfy the con-
ditions in Assumption 6.1. Specifically, the individual cost functions,
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Jk(w) for k ∈ NI , are each twice-differentiable and convex, with at least
one of them being νd−strongly convex. Moreover, the effective aggre-
gate cost function, Jglob,eff(w), is also twice-differentiable and satisfies

0 < νd
h
IhM ≤ ∇2

w J
glob,eff(w) ≤ δd

h
IhM (13.12)

for some positive parameters νd ≤ δd. In other words, condi-
tions that we introduced in the earlier chapters on the cost func-
tions {Jglob(w), Jk(w), k = 1, 2, . . . , N} will now need to be sat-
isfied by the informed agents and by the effective global cost,
{Jglob,eff(w), Jk(w), k ∈ NI}. For example, the smoothness condition
(10.1) on the individual cost functions will now be required to be sat-
isfied by the informed agents. Likewise, the gradient noise processes
at the informed agents will need to satisfy the conditions in Assump-
tion 8.1 or the fourth-order moment condition (8.121), as well as the
smoothness condition (11.10) on their covariance matrices.

The limit point of the network will continue to be denoted by w?
and it is now defined as unique minimum of the following weighted
aggregate cost function, Jglob,eff,?(w), from (8.53), namely,

Jglob,eff?(w) ∆=
∑
k∈NI

µkpkJk(w) (13.13)

where the sum is again defined over the set of informed agents, and
where the {pk} are the entries of the Perron eigenvector of the primitive
combination matrix A:

Ap = p, 1Tp = 1, pk > 0 (13.14)

The limit vector, w?, that results from (13.13) is again dependent on
the set of informed agents. For this reason, whenever necessary, we
shall also write w?(NI) to highlight the dependency of the minimizer
of (13.13)on NI .

Under these adjustments, with requirements now imposed on the
informed agents and with the network still assumed to be strongly-
connected, it can be verified that the multi-agent network continues to
be stable in the mean-square sense and in the mean sense, namely, for
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all agents k = 1, 2, . . . , N (informed and uninformed alike):

lim sup
i→∞

‖E w̃k,i‖ = O(µ) (13.15)

lim sup
i→∞

E‖w̃k,i‖2 = O(µ) (13.16)

These facts are justified as follows. With regards to mean-square-error
stability, we refer to the general proof in step (c) of Theorem 9.1. The
two main differences that will occur if we repeat the argument relate
to expressions (9.33) and (9.58), which now become

D11,i−1 =
∑
k∈NI

µpkH
T
k,i−1 (13.17)

0 =
∑
k∈NI

µpkb
e
k (13.18)

with the sums evaluated over the set of informed agents. It will continue
to holds that D11,i−1 > 0 in view of condition (13.12). Likewise, result
(13.18) will hold in view of (13.13) from which we conclude that w?
now satisfies ∑

k∈NI

µpk∇w Jk(w?) = 0 (13.19)

With regards to mean stability, if we refer to the proof of Theorem 9.3,
we will again conclude that the matrix B remains stable since the ma-
trix D11 defined by (9.195) will now become

D11 =
∑
k∈NI

µpkH
T
k (13.20)

and it remains positive-definite.

13.3 Mean-Square-Error Performance

The results in the sequel reveal some interesting facts about adapta-
tion and learning in the presence of informed and uninformed agents
[213, 247, 250]. For example, it will be seen that when the set of in-
formed agents is enlarged, the convergence rate of the network will
become faster albeit at the expense of possible deterioration in mean-
square-error performance. In other words, the MSD and ER perfor-
mance metrics do not necessarily improve with a larger proportion of
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informed agents. The arguments in this chapter extend the presentation
from [213] to the case of complex-valued arguments.

Thus, consider strongly-connected networks running the consensus
or diffusion strategies (7.9), (7.18), or (7.19). We recall from expression
(11.118) that, when all agents are informed, the MSD performance of
these distributed solutions is given by:

MSDdist,av = µ

2h Tr

( N∑
k=1

pkHk

)−1 ( N∑
k=1

p2
kGk

) (13.21)

We also recall from (11.139) that the convergence rate of the error
variances, E‖w̃k,i‖2, towards this MSD value is given by

αdist = 1− 2µλmin

{
N∑
k=1

pkHk

}
+ o(µ) (13.22)

in terms of the smallest eigenvalue of the sum of weighted Hessian
matrices. In the above expression, the parameter αdist ∈ (0, 1) and
the smaller the value of αdist is, the faster the convergence behavior
becomes.

If we now consider the case where some agents are uninformed, and
repeat the derivation that led to (11.47) and (11.118), we will find that
the same result still hold if we set µk = 0 for the uninformed agents
[68, 213, 247, 250], namely,

αdist = 1− 2µλmin

 ∑
k∈NI

pkHk

+ o(µ) (13.23)

and

MSDdist,k = MSDdist,av = µ

2h Tr


 ∑
k∈NI

pkHk

−1  ∑
k∈NI

p2
kGk




(13.24)
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where the sums are over the set k ∈ NI .
Observe now that since the entries of p are positive for primitive

left-stochastic matrices A, it is clear from (13.23) that, for small step-
sizes, if the set of informed agents is enlarged from NI to

N ′
I ⊃ NI (13.25)

then the convergence rate improves (i.e., faster convergence with αdist
becoming smaller). However, from (13.24), the network MSD may
decrease, remain unchanged, or increase depending on the values of
{Hk, Gk}. This situation is illustrated in Figure 13.1.

Figure 13.1: Enlarging the set of informed agents improves the convergence rate
but does not necessarily improve the MSD network performance.

Note that the previous statements compare the convergence rates
and MSD levels relative to the minimizers w?(NI) and w?(N ′

I ) of
the weighted effective costs (13.13) that would correspond to the sets
NI and N ′

I . These minimizers are generally different and, therefore,
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these comparisons amount to determining how well and how fast the
network configuration, NI or N ′

I , converge towards their respective
limit points. The next example describes the useful scenario when the
two minimizers, w?(NI) and w?(N ′

I ), coincide since the corresponding
individual costs will share a common minimizer.

Example 13.1 (Role of informed agents over MSE networks). For the MSE net-
work of Example 6.3 with uniform step-sizes and uniform covariance matrices,
i.e., µk ≡ µ and Ru,k ≡ Ru > 0, we have

Hk =
[
Ru 0
0 RT

u

]
≡ H, Gk = σ2

v,k

[
Ru ×
× RT

u

]
(13.26)

Moreover, all costs Jk(w) share the same minimizer so that w? = wo for
any set of informed agents. Using h = 2 for complex data, it follows that
expressions (13.23) and (13.24) reduce to

αdist ≈ 1− 2µλmin(Ru)
(∑
k∈NI

pk

)
(13.27)

MSDdist,av = µM

h

(∑
k∈NI

pk

)−1 (∑
k∈NI

p2
kσ

2
v,k

)
(13.28)

where the symbol ≈ in the expression for αdist signifies that we are ignoring
the higher-order term o(µ) for sufficiently small step-sizes. It is now clear that
if the set of informed agents is enlarged to N ′

I ⊃ NI , then the convergence
rate improves (i.e., faster convergence with αdist becoming smaller). However,
from (13.28), the network MSD may decrease, remain unchanged, or increase
depending on the values of the noise variances {σ2

v,k} at the new informed
agents. We illustrate this behavior by considering two cases of interest.

Assume first that A is doubly-stochastic. Then, pk = 1/N and the above
expressions reduce to:

αdist ≈ 1− 2µ
(
NI
N

)
λmin(Ru) (13.29)

MSDdist,av = µM

h

1
N

(
1
NI

∑
k∈NI

σ2
v,k

)
(13.30)

It is seen that if we add a new informed agent of index k′ /∈ NI , then the
convergence rate improves because NI increases but the MSD performance of
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the network will get worse if 1
NI + 1

∑
k∈NI+1

σ2
v,k

 >

(
1
NI

∑
k∈NI

σ2
v,k

)
(13.31)

where NI+1 = NI ∪ {k′} or, equivalently, if

σ2
v,k′ >

1
NI

∑
k∈NI

σ2
v,k (13.32)

That is, the MSD performance gets worse if the incoming noise power at
the newly added agent is worse than the average noise power of the existing
informed agents.

Let us consider next the case in which the combination weights {a`k} are
selected according to the averaging rule (which is left-stochastic):

a`k =
{

1/nk, ` ∈ Nk
0, otherwise (13.33)

in terms of the degrees of the various agents. Recall that nk is equal to the
number of neighbors that agent k has. It can be verified that the Perron
eigenvector p is given by:

p =
(

N∑
k=1

nk

)−1


n1
n2
...
nN

 (13.34)

In this case, expressions (13.27) and (13.28) reduce to

αdist ≈ 1− 2µλmin(Ru)

(∑
k∈NI

nk∑N

k=1 nk

)
(13.35)

MSDdist,av = µM

h

(
1∑N

k=1 nk

) (
1∑

k∈NI
nk

) (∑
k∈NI

n2
kσ

2
v,k

)
(13.36)

It is again seen that if we add a new informed agent k′ /∈ NI , then the
convergence rate improves. However, the MSD performance of the network
will get worse if(

1∑
k∈NI+1

nk

)  ∑
k∈NI+1

n2
kσ

2
v,k

 >

(
1∑

k∈NI nk

) (∑
k∈NI

n2
kσ

2
v,k

)
(13.37)
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or, equivalently, if

nk′ σ
2
v,k′ >

(∑
k∈NI

nk

)−1 (∑
k∈NI

n2
kσ

2
v,k

)
(13.38)

where the degrees of the agents are now involved in the inequality in addition
to the noise variances. The above condition can be expressed in terms of a
weighted harmonic mean as follows. Introduce the inverse variables

xk
∆= 1

nkσ2
v,k

, k ∈ NI (13.39)

which consist of the inverses of the noise variances scaled by nk. Let xH denote
the weighted harmonic mean of these variables, with weights {nk}, which is
defined as

xH
∆=
(∑
k∈NI

nk

)(∑
k∈NI

nk
xk

)−1

(13.40)

Then, condition (13.38) is equivalent to stating that

x′k
∆= 1

nk′ σ2
v,k′

< xH (13.41)

That is, the MSD performance will get worse if the new inverse variable, x′k,
is smaller than the weighted harmonic mean of the inverse variables {xk}
associated with the existing informed agents.

We illustrate these results numerically for the case of the averaging rule
(13.33) with uniform step-sizes across the agents set at µk ≡ µ = 0.002. Fig-
ure 13.2 shows two versions of the connected network topology with N = 20
agents used in the simulations. In one version, the topology has 14 informed
agents and 6 uninformed agents. In the second version, two of the previously
uninformed agents are transformed back to the informed state so that the
topology now ends up with 16 informed agents. The measurement noise vari-
ances, {σ2

v,k}, and the power of the regression data, assumed uniform and of
the form Ru,k = σ2

uIM , are shown in the right and left plots of Figure 13.3,
respectively.

Figure 13.4 plots the evolution of the ensemble-average learning curves,
1
NE‖w̃i‖2, for the ATC diffusion strategy (13.1)–(13.2). The curves are ob-
tained by averaging the trajectories { 1

N ‖w̃i‖2} over 200 repeated experi-
ments. The label on the vertical axis in the figure refers to the learning
curve 1

NE‖w̃i‖2 by writing MSDdist,av(i), with an iteration index i. Each
experiment involves running the ATC diffusion strategy (13.1)–(13.2) with
h = 2 on complex-valued data {dk(i),uk,i} generated according to the model
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Figure 13.2: A connected network topology consisting of N = 20 agents
employing the averaging rule (13.33). Two simulations are performed in this
example. In one simulation, the topology on the left is used with 14 informed
agents and 6 uninformed agents. In a second simulation, the topology on the
right is used where two of the previously uninformed agents are transformed
back to the informed state.

dk(i) = uk,iw
o + vk(i), with M = 10. The unknown vector wo is generated

randomly and its norm is normalized to one. The solid horizontal lines in the
figure represent the theoretical MSD values obtained from (13.36) for the two
scenarios shown in Figure 13.2, namely,

MSD(NI) ≈ −50.19 dB, MSD(N
′

I ) ≈ −49.40 dB (13.42)

where N ′

I denotes the enlarged set of informed agents shown on the right-
hand side of Figure 13.2. It is observed in this simulation that when the set of
informed agents is enlarged by adding agents #13 and #19, the convergence
rate is improved while the MSD value is degraded by about 0.79dB.

�

Example 13.2 (Performance degradation under fixed convergence rate). We con-
tinue with Example 13.1 and the case of the averaging rule (13.33). The cur-
rent example is based on the discussion from [250] and its purpose is to show
that even if we adjust the convergence rate of the network to remain fixed
and invariant to the proportion of informed agents, the MSD performance of
the network can still deteriorate if the set of informed agents is enlarged. To
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Figure 13.3: Measurement noise profile (right) and regression data power
(left) across all agents in the network. The covariance matrices are assumed
to be of the form Ru,k = σ2

uIM , and the noise and regression data are Gaussian
distributed in this simulation.

see this, we set the step-size to the following normalized value:

µ = µo

(∑
k∈NI

nk

)−1

(13.43)

for some small µo > 0, and where the normalization is over the sum of the
degrees of the informed agents. Note that this selection of µ depends on NI .
For this choice of µ, the convergence rate given by (13.35) becomes

αdist ≈ 1− 2µo λmin(Ru)
(

N∑
k=1

nk

)−1

(13.44)

which is independent of NI . Therefore, no matter how the set NI is adjusted,
the convergence rate of the network remains fixed. At the same time, the MSD
level (13.36) becomes

MSDdist,av = µoM

2

(
1∑N

k=1 nk

) (
1∑

k∈NI nk

)2 (∑
k∈NI

n2
kσ

2
v,k

)
(13.45)

Some straightforward algebra will show that if we add a new informed agent
k′ /∈ NI , then the MSD performance of the network will get worse if the
parameters {n′k, σ2

v,k′} satisfy the inequality:

nk′ > 2
(∑
k∈NI

nk

)[(∑
k∈NI nk

)2
σ2
v,k′∑

k∈NI n
2
kσ

2
v,k

− 1
]−1

(13.46)
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Figure 13.4: Evolution of the learning curves for the ATC diffusion strategy
(13.1)–(13.2) using µ = 0.002 and the averaging rule (13.33).

We now verify that there exist situations under which the above requirement
is satisfied so that the network MSD will end up increasing (an undesirable
effect) even though the convergence rate has been set to a constant value.

Consider first the case in which all agents have the same degree, say,
nk ≡ n for all k. Then, condition (13.46) becomes

σ2
v,k′ >

(
2 + 1

NI

)(
1
NI

∑
k∈NI

σ2
v,k

)
(13.47)

That is, if the new added noise variance is sufficiently larger than the average
noise variance at the informed agents, then deterioration in performance will
occur.

Our second example assumes the noise variances are uniform across all
agents, say, σ2

v,k ≡ σ2
v for all k. Then, condition (13.46) becomes

n′k > 2
(∑
k∈NI

nk

)[(∑
k∈NI nk

)2(∑
k∈NI n

2
k

) − 1
]−1

(13.48)
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so that if the degree of the new added agent is sufficiently large, then deteri-
oration in performance will occur. The results in these two cases suggest that
it is beneficial to keep few highly noisy or highly connected agents uninformed
and for them to participate only in the aggregation task (13.2) and to act as
relays.

�

13.4 Controlling Degradation in Performance

The previous arguments indicate that the MSD performance need not
improve with the addition of informed agents. The deterioration in
network performance can be controlled through proper selection of the
combination weights, for example, when the matrix A is selected ac-
cording to the Hastings rule (12.20). Recall that, under the condition
of uniform step-sizes and uniform Hessian matrices, and assuming all
agents are informed, i.e.,

µk ≡ µ > 0, Hk ≡ H, k = 1, 2, . . . , N (13.49)

we derived earlier in (12.21) the following expression for the entries of
the optimized Perron eigenvector:

pok = 1
θ2
k

(
N∑
`=1

1
θ2
`

)−1

, k = 1, 2, . . . , N (13.50)

Now, assume the gradient noise factors, {θ2
k}, that result from assuming

all agents are informed are known. Assume further that the partially
informed network under study in this chapter (with both informed and
uninformed agents) employs the Hastings rule (12.20) that would result
from using the above Perron vector entries. Substituting these entries
into (13.23) and (13.24) we find that the convergence rate and the MSD
level of the partially informed network are now given by

αdist ≈ 1− 2µλmin(H)

 ∑
k∈NI

1
θ2
k

( N∑
k=1

1
θ2
k

)−1

(13.51)

MSDdist,av = µ

2h

(
N∑
k=1

1
θ2
k

)−1

(13.52)
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We observe that when the agents employ the Hastings rule, the network
MSD level becomes independent of NI (and, hence, does not change
with the addition of informed agents), while the convergence rate de-
creases (becomes faster) as the set of informed agents is enlarged (since
the expression for αdist depends on NI).

13.5 Excess-Risk Performance

We can repeat the analysis of the previous sections and examine how
the excess-risk (ER) performance of distributed solutions varies as a
function of the fraction of informed agents in the network. The treat-
ment is similar and so we shall be brief. In a manner similar to the
study of the MSD metric, the ER performance of distributed solutions
with NI informed agents can be deduced from (11.186) and is given
by:

ERdist,k = ERdist,av = µh

4

 ∑
k∈NI

pk

−1

Tr

 ∑
k∈NI

p2
kRs,k

 (13.53)

where the sum of the {pk} does not evaluate to one anymore because
this sum runs over k ∈ NI only and not over the entire set of agents.
It is again seen from (13.53) that the ER level of the network may
increase, remain unchanged, or decrease with the addition of informed
agents.

Example 13.3 (Role of informed agents in online learning). We revisit Exam-
ple 11.9, which deals with a collection of N learners. Using h = 1 for real
data, the ER performance level for the distributed solution, using NI informed
agents with step-size µk ≡ µ, can be deduced from (13.53) as

ERdist,av = µ

4

(∑
k∈NI

pk

)−1 (∑
k∈NI

p2
k

)
Tr (Rs) (13.54)

In particular, it is seen that if we add a new informed agent of index k′ /∈ NI ,
then the ER performance levels will get worse if

pk′ >

(∑
k∈NI

pk

)−1 (∑
k∈NI

p2
k

)
(13.55)
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This condition is in terms of the entries {pk}, which are determined by the
combination policy, A. We again consider two choices for the combination
matrices.

Assume first that A is doubly-stochastic (such as the Metropolis rule
(12.43)) so that pk = 1/N . Then, condition (13.55) cannot be satisfied and
we conclude that, for this case, the addition of informed agents cannot degrade
network performance. Indeed, in this scenario, it can be readily seen that the
ER expression (13.54) reduces to

ERdist,av = µ

4

(
1
N

)
Tr (Rs) (13.56)

Both of these expressions are independent of NI ; it is worth noting that in the
current problem, the Hastings rule (12.20) reduces to the doubly-stochastic
Metropolis rule (12.43), which explains why the ER result (13.56) is indepen-
dent of NI .

Let us consider next the case in which the combination weights {a`k}
are selected according to the averaging rule (13.33). Using (13.34), condition
(13.55) would then indicate that the network ER level will degrade if the
degree of the newly added informed agent satisfies:

nk′ >

(∑
k∈NI

nk

)−1 (∑
k∈NI

n2
k

)
(13.57)

�



14
Combination Policies

We end our exposition by commenting on the selection of the combina-
tion policy, A. Although unnecessary, we assume in this chapter that
all agents are informed so that their step-sizes are strictly positive. It
is clear from the performance expression (11.118) that the combina-
tion weights {a`k} that are used by the consensus (7.9) and diffusion
strategies (7.18) and (7.19) influence the performance of the distributed
solution in a direct manner. Their influence is reflected by the entries
{pk}, defined earlier through (11.136), namely,

MSDdist,k = MSDdist,av = 1
2hTr

( N∑
k=1

µkpkHk

)−1 ( N∑
k=1

µ2
kp

2
kGk

) (14.1)

There are several ways by which the coefficients {a`k} can be selected.
On one hand, many existing combination policies rely on static se-
lections for these coefficients, i.e., selections that are fixed during the
adaptation and learning process and do not change with time. On the
other hand, the discussion will reveal that it is important to consider
selections where these coefficients are also adapted over time, and are
allowed to evolve dynamically alongside the learning mechanism. This

662
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latter area of investigation is evolving steadily and there are already
some useful adaptive combination policies proposed in the literature.
We comment on some of them in a future section.

14.1 Static Combination Policies

To begin with, Table 14.1 is extracted from [208] and lists some common
static choices for selecting the combination weights {a`k} for a network
with N agents. In the table, the symbol nk = |Nk| denotes the degree of
agent k, which is equal to the size of its neighborhood, and the symbol
nmax denotes the maximum degree across the network:

nmax
∆= max

1≤k≤N
nk (14.2)

The Laplacian rule, which appears in the second line of the table, re-
lies on the use of the Laplacian matrix of the network and a positive
scalar, β. The Laplacian matrix is a symmetric matrix whose entries
are constructed as follows [41, 82, 143, 208]:

[L]`k =


n` − 1, if k = `

−1, if k 6= ` and ` ∈ Nk
0, otherwise

(14.3)

The Laplacian matrix has several useful properties and conveys im-
portant information about the network topology [208, App. B]. For
example, (a) L is always nonnegative-definite; (b) the entries on each
of its rows add up to zero; and (c) its smallest eigenvalue is zero. More-
over, (d) the multiplicity of zero as an eigenvalue for L is equal to the
number of connected subgraphs of the network topology. Accordingly,
a graph is connected if, and only if, the second smallest eigenvalue of
L (also called the algebraic connectivity of the graph) is nonzero.

It is observed from the constructions in Table 14.1 that the values
of the combination weights {a`k} are solely determined by the degrees
(and, hence, the extent of connectivity) of the agents. As explained
in [208], while such selections may be appropriate in some applica-
tions, they can nevertheless lead to degraded performance in the con-
text of adaptation and learning over networks [232]. This is because
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these weighting schemes ignore the gradient noise profile across the
network.

Table 14.1: Static selections for the combination matrix A = [a`k]. The second
column indicates whether the resulting matrix is left-stochastic or doubly stochastic.

Entries of combination matrix A Type of A
1. Averaging rule [39]:

a`k =
{

1/nk, if ` ∈ Nk
0, otherwise left-stochastic

2. Laplacian rule [215, 265]:

a`k = 1− β[L]`k, β > 0 symmetric and
doubly-stochastic

3. Laplacian rule using β = 1/nmax :

a`k =


1/nmax, if k 6= ` are neighbors
1− (nk−1)

nmax
, k = `

0, otherwise

symmetric and
doubly-stochastic

4. Laplacian rule using β = 1/N
(or maximum-degree rule [266]) :

a`k =

 1/N, if k 6= ` are neighbors
1− (nk − 1)/N, k = `

0, otherwise

symmetric and
doubly-stochastic

5. Metropolis rule [106, 167, 265]:

a`k =


1

max{nk,n`} , if k 6= ` are neighbors
1−

∑
m∈Nk\{k}

amk, k = `

0, otherwise

symmetric and
doubly-stochastic

6. Relative-degree rule [58]:

a`k =

 n`

( ∑
m∈Nk

nm

)−1

, if ` ∈ Nk

0, otherwise
left-stochastic
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14.2 Need for Adaptive Policies

One way to capture the gradient noise profile across the network is by
means of the factors {θ2

k} defined earlier in (12.19) and (12.78):

θ2
k

∆=
{

Tr(H−1Gk) (for MSD performance)
Tr(Rs,k) (for ER performance) (14.4)

where Gk is also dependent on the gradient noise variance, Rs,k, in view
of definition (11.12). Now, since some agents can be noisier (with larger
θ2
k) than others, it becomes important to take into account the amount
of noise that is present at the agents and to assign more or less weights
to interactions with neighbors in accordance to their noise level. For
example, if some agent k can determine which of its neighbors are the
noisiest, then it can assign smaller combination weights to its interac-
tion with these neighbors. One difficulty in employing this strategy is
that the noise factors {θ2

`} are unknown beforehand since their values
depend on the unknown noise moments {G`, Rs,`}. It therefore becomes
necessary to devise noise-aware schemes that enable agents to estimate
the noise factors {θ2

`} of their neighbors in order to assist them in the
process of selecting proper combination coefficients. It is also desirable
for these schemes to be adaptive so that they can track variations in
the noise moments over time. The techniques described in this chapter
are motivated by the procedures developed in [208, 244, 280]; variations
appear in [95, 270]. We first consider an example to illustrate the idea.

Example 14.1 (Noise variance estimation over MSE networks). We continue
with the MSE network from Example 12.1 where we assumed uniform step-
sizes and uniform regression covariance matrices, i.e., µk ≡ µ andRu,k ≡ Ru >
0 for k = 1, 2, . . . , N . Recall that for these networks, the data {dk(i),uk,i}
are assumed to be related via the linear regression model:

dk(i) = uk,iw
o + vk(i), k = 1, 2, . . . , N (14.5)

where the variance of the noise is denoted by σ2
v,k = E |vk(i)|2. We derived

in Example 12.2 the (optimal) combination coefficients in the form of the
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Hastings rule (12.39), namely,

ao`k =


σ2
v,k

max{ nkσ2
v,k, n`σ

2
v,` }

, ` ∈ Nk\{k}

1−
∑

m∈Nk\{k}

aomk, ` = k
(14.6)

and noted that the gradient noise factors in this case are given by θ2
k =

2Mσ2
v,k; they are therefore proportional to the measurement noise power,

σ2
v,k. It is clear that rule (14.6) takes into account the size of the noise powers,
{σ2

v,`}, at the agents. Moreover, in this particular construction, only the noise
levels of the two interacting agents are directly involved in the computation
of their combination weights; no other agents from the neighborhood of agent
k are involved in the calculation.

A second combination construction is motivated in [280] for MSE net-
works by solving an alternative optimization problem than the one that led
to the Hastings rule (12.39) or (14.6). We shall describe this alternative con-
struction further ahead in (14.27). For now, we simply state that the resulting
combination rule for the case under study in this example, and which we shall
refer to as the relative-variance rule [206], takes the following form:

ao`k =


1
σ2
v,`

( ∑
m∈Nk

1
σ2
v,m

)−1

, ` ∈ Nk

0, otherwise
(14.7)

Comparing with (14.6), we note that in this second rule, the interaction be-
tween agents k and ` is more broadly dependent on the noise profile across
the entire neighborhood of agent k. In particular, neighbors with smaller noise
power relative to the neighborhood are assigned larger weights.

For every agent k, both rules (14.6) and (14.7) still require knowledge of
the noise variances {σ2

v,`}. This information is generally unavailable but can
be estimated by agent k as follows — see the derivation that leads to (14.53)
in the next section. Assume, for illustration purposes, that the agents are
running the ATC LMS diffusion strategy (7.23):

ψk,i = wk,i−1 + µu∗k,i [dk(i)− uk,iwk,i−1]
wk,i =

∑
`∈Nk

a`k ψ`,i (14.8)

Then, agent k can estimate the noise variance, σ2
v,`, by running the recursion:

γ2
`k(i) = (1− ζ)γ2

`k(i− 1) + ζ ‖ψ`,i −wk,i−1‖2, ` ∈ Nk (14.9)
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where 0 < ζ � 1 is a small positive coefficient, e.g., ζ = 0.1. This recursion
relies on smoothing the energy of the difference between the intermediate
iterate, ψ`,i, received from neighbor ` and the existing iterate wk,i−1 at agent
k. The resulting energy measure provides an indication of the amount of noise
that is present at agent ` since it can be verified that asymptotically [208] —
see also (14.55):

Eγ2
`k(i) ≈ µ2σ2

v,`Tr(Ru), i� 1 (14.10)

with the limit being proportional to σ2
v,`. Therefore, the running variables

{γ2
`k(i)} can be used by agent k as scaled estimates for the noise variances.

These variables can then be used in place of the noise variances in rules
(14.6) and (14.7) to adapt the combination weights over time. Under this
construction, each agent k ends up running nk recursions of the form (14.9),
one for each of its neighbors, in order to update the necessary variables
{γ2

`k(i), ` ∈ Nk}.
�

14.3 Hastings Policy

Before discussing adaptive constructions for the combination weights,
we present two combination policies that are noise-aware. We already
encountered one such policy when we derived the Hastings rule earlier
in Sec. 12.2 — see expression (12.20). Here we review it briefly before
discussing the second policy, known as the relative variance rule. Recall
that the Hastings rule was derived under the condition of uniform step-
sizes and uniform Hessian matrices, namely,

µk ≡ µ, Hk ≡ H, k = 1, 2, . . . , N (14.11)

The rule followed from the solution to the optimization problem (12.18)
and led to

ao`k =


θ2
k

max{ nkθ2
k, n`θ

2
` }

, ` ∈ Nk\{k}

1−
∑

m∈Nk\{k}
aomk, ` = k

(14.12)

Observe how the entries of this policy are dependent on the gradient-
noise factors:

θ2
k

∆= Tr(H−1Gk), k = 1, 2, . . . , N (14.13)
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Observe also that these factors are not only dependent on Gk but that
they also depend on the Hessian matrix information, H. In compari-
son, the relative-variance policy described in the next section will be
independent of H. Recall from the derivation in Sec. 12.2 that the
above Hastings rule is a solution to the optimization problem (12.18);
it therefore minimizes the network MSD. While deriving the Hastings
rule in Sec. 12.2, we formulated the problem in the context of cost
functions, {Jk(w)}, that share a common minimizer. In this case, the
minimizer, wo, of the aggregate cost, Jglob(w), defined by (8.44) will
be invariant under the combination policy, A. For this reason, we can
interpret Hastings rule (14.12) as providing a combination policy that
results in the smallest possible MSD relative to the same fixed limit
point wo.

14.4 Relative-Variance Policy

We now describe a second noise-aware policy to select the combination
weights; this second rule will be independent of the Hessian matrix
information, H.

Recall that the Hastings rule was derived by working with the MSD
expression (12.5), which results from keeping the first-order term in the
MSD expression (11.178). The second policy that we shall derive here,
and which we refer to as the relative-variance policy, is instead based
on working with the alternative MSD expression (11.178). The deriva-
tion of this second policy does not require the uniformity conditions
(14.11). Since the MSD performance levels of the distributed (consen-
sus and diffusion) strategies (7.9), (7.18), and (7.19) agree to first-order
in the step-size parameters, we shall motivate the combination rule by
considering the ATC diffusion implementation.

To begin with, we know from (11.178) that the MSD performance
of the ATC diffusion network (7.19) can be evaluated by means of the
following series expression for sufficiently small step-sizes:

MSDatc
dist,av = 1

hN

∞∑
n=0

Tr [BnatcYatc (B∗atc)
n] (14.14)

where h = 1 for real data and h = 2 for complex data, and where the
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matrix quantities {Batc,Yatc} are defined as follows:

Batc = AT (IhMN −MH) (14.15)
Yatc = ATMSMA (14.16)

which in turn are defined in terms of the quantities:

M = diag {µ1IhM , µ2IhM , . . . , µNIhM} (14.17)
S = diag{G1, G2, . . . , GN} (14.18)
R = diag {H1, H2, . . . ,HN} (14.19)
A = A⊗ IhM (14.20)

and ⊗ is the Kronecker product operation.
Starting from (14.14), we pose the problem of seeking a left-

stochastic combination matrix A that solves:

Ao
∆= arg min

A∈A

∞∑
n=0

Tr [BnatcYatc (B∗atc)
n]

subject to AT1 = 1, a`k ≥ 0, a`k = 0 if ` /∈ Nk

(14.21)

However, solving problem (14.21) is generally non-trivial and we replace
it by a more tractable problem. Specifically, we replace the cost in
(14.21) by an upper bound and minimize this upper bound instead.
Indeed, it is shown in [208, Sec. 8.2] that the following inequality holds
for a stable matrix Batc:

∞∑
n=0

Tr [BnatcYatc (B∗atc)
n] ≤ cTr(Yatc) (14.22)

for some finite positive constant c that is independent of A. In other
words, the series is upper bounded by a multiple of the trace of Yatc,
which happens to be the first term of the series itself. Therefore, instead
of minimizing the series in (14.21), we replace the problem by that of
minimizing its first term, namely,

min
A∈A

Tr(Yatc)

subject to AT1 = 1, a`k ≥ 0, a`k = 0 if ` /∈ Nk
(14.23)
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Using definition (14.16), the trace of Yatc can be expressed in terms of
the combination coefficients {a`k} as follows:

Tr(Yatc) =
N∑
k=1

N∑
`=1

µ2
` a

2
`k Tr(G`) (14.24)

and it is seen that problem (14.23) can be decoupled into N separate
optimization problems, one for each row of A:

min
{a`k}N`=1

N∑
`=1

µ2
` a

2
`k Tr(G`), k = 1, . . . , N

subject to
N∑
`=1

a`k = 1, a`k ≥ 0, a`k = 0 if ` /∈ Nk

(14.25)

With each agent `, we associate the following nonnegative scalar, which
is proportional to the trace of the gradient noise moment matrix G`:

γ2
`

∆= µ2
` Tr(G`), ` = 1, 2, . . . , N (14.26)

The factor γ2
` so defined plays a role similar to the factor θ2

` defined
earlier in (14.13) for the Hastings rule; note that both factors contain
information about the noise moment matrix, G`.

Lemma 14.1 (Relative-variance rule). The following combination matrix, de-
noted by Ao with a superscript o, is a solution to the optimization problem
(14.25):

ao`k =


1
γ2
`

( ∑
m∈Nk

1
γ2
m

)−1

, if ` ∈ Nk

0, otherwise
(14.27)

In the above construction, agent k combines the iterates from its
neighbors in proportion to 1/γ2

` . The result is physically meaningful.
Agents with smaller noise power, relative to the neighborhood noise
power, are assigned larger weights.
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Example 14.2 (Relative-variance rule for MSE networks). We return to the
setting of Example 14.1, which deals with MSE networks. The agents employ
uniform step-sizes and the data have uniform regression covariance matrices,
i.e., µk ≡ µ and Ru,k ≡ Ru for k = 1, 2, . . . , N . In this case,

Gk = σ2
v,k

[
Ru ×
× RT

u

]
(14.28)

so that expression (14.27) reduces to expression (14.7), namely,

ao`k = 1
σ2
v,`

( ∑
m∈Nk

1
σ2
v,m

)−1

, ` ∈ Nk (14.29)

If the step-sizes are not uniform across the agents, then expression (14.27)
would instead reduce to

ao`k = 1
µ2
`σ

2
v,`

( ∑
m∈Nk

1
µ2
mσ

2
v,m

)−1

, ` ∈ Nk (14.30)

If both the step-sizes and the covariance matrices are not uniform across the
agents, then expression (14.27) would lead to:

ao`k = 1
µ2
`σ

2
v,`Tr(Ru,`)

( ∑
m∈Nk

1
µ2
mσ

2
v,mTr(Ru,m)

)−1

, ` ∈ Nk (14.31)

�

14.5 Adaptive Combination Policy

To evaluate the relative-variance weights (14.27), the agents still need
to know the gradient noise factors, {γ2

` }, defined by (14.26). We mo-
tivate in this section a procedure for estimating these factors in an
adaptive manner.

To begin with, we recall the definitions of the original and weighted
aggregate cost functions:

Jglob(w) ∆=
N∑
k=1

Jk(w) (14.32)

Jglob,?(w)
(8.53)

∆=
N∑
k=1

qkJk(w) (14.33)
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whose unique minima are denoted by wo and w?, respectively. The
individual costs, {Jk(w)}, are assumed to share a common minimizer
and, hence, wo = w?, i.e.,

∇w Jk(w?) = 0, k = 1, 2, . . . , N (14.34)

The common minimizer assumption ensures that the location of the
global solution, wo or w?, is fixed and invariant under A. This is a useful
condition especially when A is implemented in an adaptive manner and
varies with time.

We illustrate the construction of the adaptive combination policy
by considering the ATC diffusion strategy (7.19), which is repeated
here for ease of reference:

ψk,i = wk,i−1 − µk∇̂w∗Jk(wk,i−1)
wk,i =

∑
`∈Nk

a`k ψ`,i
(14.35)

A similar construction applies to the CTA diffusion strategy (7.18) and
the consensus strategy (7.9). The following result forms the basis for
the procedure developed in this section for estimating the factors {γ2

` }.

Lemma 14.2 (Useful expression for γ2
` ). Consider a network of N interacting

agents running the distributed strategy (14.35) with a primitive left-stochastic
matrix A. Under the same conditions in the statement of Theorem 9.2, it holds
that

E‖ψe`,i −we
`,i−1‖2 = γ2

` + o(µ2
max), for i� 1 (14.36)

Proof. Using the mean-value theorem (D.20) from the appendix and (14.34)
we note that we can write at an arbitrary agent `:[

∇w∗J`(w`,i−1)
∇wTJ`(w`,i−1)

]
= −

(∫ 1

0
∇2
wJ`(w? − rw̃`,i−1)dr

)
w̃e
`,i−1

(8.138)= −H`,i−1w̃
e
`,i−1 (14.37)

where w̃`,i−1 = w? −w`,i−1 and

w̃e
`,i−1

∆=
[

w̃`,i−1(
w̃∗`,i−1

)T

]
(14.38)
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Therefore, in terms of the extended vectors and replacing the approximate
gradient in terms of the sum of the true gradient and the gradient noise
process, we can write for any arbitrary agent `:

‖ψe`,i −we
`,i−1‖2

(14.35)= µ2
`

∥∥∥∥∥
[

se`,i(we,i−1)(
se∗`,i(we,i−1)

)T

]
+
[
∇w∗J`(w`,i−1)
∇wTJ`(w`,i−1)

]∥∥∥∥∥
2

(14.37)= µ2
` ‖se`,i(w`,i−1)−H`,i−1w̃

e
`,i−1‖2

(14.34)= µ2
` ‖se`,i(w`,i−1)‖2 + µ2

`‖H`,i−1w̃
e
`,i−1‖2 −

2µ2
` Re

[
w̃e∗
`,i−1H`,i−1s

e
`,i(w`,i−1)

]
(14.39)

Now, we can deduce from an argument similar to (11.30) and from (11.8)
that, for i� 1, and for sufficiently small step-sizes:

E‖se`,i(w`,i−1)‖2 = Tr(Gs,`) + O(µγ
′/2

max) (14.40)

where γ′ = min{γ, 2} and γ ∈ (0, 4]. Likewise, we can deduce from an argu-
ment similar to (9.280) that, for small step-sizes and for i� 1:

E‖H`,i−1w̃
e
`,i−1‖2 ≤ aE‖w̃e

`,i−1‖4
(9.107)= O(µ2

max) (14.41)

for some constant a that is independent of µmax. Moreover, using the inequal-
ities |x∗y| ≤ ‖x‖ ‖y‖ for any vectors x and y, and (Ea)2 ≤ Ea2 for any scalar
real-valued random variable a, we have

E
[ ∣∣w̃e∗

`,i−1H`,i−1s
e
`,i(w`,i−1)

∣∣ |F i−1
]

≤
∥∥w̃e∗

`,i−1H`,i−1
∥∥ E

[
‖se`,i(w`,i−1)‖ |F i−1

]
≤

√∥∥w̃e∗
`,i−1H`,i−1

∥∥2
√

E
[
‖se`,i(w`,i−1)‖2 |F i−1

]
(9.280)
≤

√
a
∥∥w̃e

`,i−1
∥∥4
√
E
[
‖se`,i(w`,i−1)‖2 |F i−1

]
(8.118)
≤

√
a
∥∥w̃e

`,i−1
∥∥4
√

(β2
` /h

2)‖w̃e
`,i−1‖2 + 2σ2

s,`

≤
√
a
∥∥w̃e

`,i−1
∥∥2
[
(β`/h)‖w̃e

`,i−1‖+
√

2σs,`
]

=
√
aβ`
h

∥∥w̃e
`,i−1

∥∥3 +
√

2aσ2
s,` ‖w̃

e
`,i−1‖2 (14.42)
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where h = 1 for real data and h = 2 for complex data. Taking expectations
of both sides of (14.42), and using (9.11) and (9.107), we conclude that for
small step-sizes and for i� 1:

E
∣∣w̃e∗

`,i−1H`,i−1s
e
`,i(w`,i−1)

∣∣
≤
√
aβ`
h

E
∥∥w̃e

`,i−1
∥∥3 +

√
2aσ2

s,` E‖w̃
e
`,i−1‖2

≤
√
aβ`
h

(
E
∥∥w̃e

`,i−1
∥∥4
)3/4

+
√

2aσ2
s,` E‖w̃

e
`,i−1‖2

=
√
aβ`
h

(
O(µ2

max)
)3/4 +

√
2aσ2

s,`O(µmax)

=
√
aβ`
h

O(µ3/2
max) +

√
2aσ2

s,`O(µmax)

= O(µmax) (14.43)

Using the fact that |Re(z)| ≤ |z| for any complex number, we deduce from
(14.43) that

E
∣∣Re [w̃e∗

`,i−1H`,i−1s
e
`,i(w`,i−1)

]∣∣ = O(µmax) (14.44)

Substituting these results into (14.39) we conclude that for i � 1 we can
write:

E‖ψe`,i −we
`,i−1‖2 = µ2

`Tr(Gs,`) + O

(
µ

min{3,2+ γ′
2 }max

)
(14.26)= γ2

` + O
(
µ

min{3,2+ γ
2 }max

)
= γ2

` + o(µ2
max) (14.45)

as desired.

Result (14.45) shows that, for sufficiently small step-sizes, if we
can approximate the limiting value of the variance that appears on
the left-hand side of (14.36), after sufficient iterations have elapsed,
then we would be able to estimate the desired factor γ2

` . We can esti-
mate this variance iteratively by using at least one of two constructions.
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Construction I: Agent-Centered Calculation
First, observe that

E
∥∥∥ψe`,i −we

`,i−1

∥∥∥2
= 2E

∥∥∥ψ`,i −w`,i−1
∥∥∥2

(14.46)

where the extended 2M × 1 vectors {ψe`,i,we
`,i−1} are replaced by the

regular M × 1 vectors {ψ`,i,w`,i−1}. Then, agent ` can estimate its
variance parameter by running a smoothing filter of the following form:

γ̂2
` (i) = (1− ζ`) γ̂2

` (i− 1) + ζ` ‖ψ`,i − w`,i−1‖2 (14.47)

where the quantities {ψ`,i,w`,i−1} that are needed to run the recursion
are available at agent k. In this recursion, the notation γ̂2

` (i) denotes the
estimator for γ2

` that is computed by agent ` at iteration i. Moreover,
0 < ζ` � 1 is a positive scalar much smaller than one. Note that under
expectation, expression (14.47) gives

E γ̂2
` (i) = (1− ζ`)E γ̂2

` (i− 1) + ζ` E‖ψ`,i −w`,i−1‖2 (14.48)

so that after sufficient iterations and using (14.36):

E γ̂2
` (i) ≈ γ2

` /2, for i� 1 (14.49)

That is, the estimator γ̂2
` (i) converges on average to the desired mea-

sure γ2
` (scaled by 1/2); the scaling is irrelevant because it will appear

in both the numerator and denominator of the expression for ao`k in the
relative-variance rule (14.27) and will therefore cancel out. Each agent
` can then share the estimator γ̂2

` (i) with its neighbors. That is, in
this implementation, agent ` shares both ψ`,i and γ̂2

` (i) with its neigh-
bors. Using the iterates γ̂2

` (i), we can then replace the relative-variance
weights (14.27) by their adaptive counterparts and write:

ao`k(i) = 1
γ̂2
` (i)

 ∑
m∈Nk

1
γ̂2
m(i)

−1

, ` ∈ Nk (14.50)

Equations (14.47) and (14.50) provide one adaptive construction for the
relative-variance combination weights {ao`k}. These adaptive weights
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would be used in (14.35) to evaluate wk,i, and the process continues.
The above procedure is valid for both real and complex data.

Adaptive relative-variance rule (agent-centered)
(individual costs have a common minimizer)
for each time instant i ≥ 0 repeat:
for each neighbor ` of agent k = 1, 2, . . . , N do :

y`,i
∆= ψ`,i − w`,i−1 (ATC diffusion)

γ̂2
`(i) = (1− ζ`) γ̂2

`(i− 1) + ζ` ‖y`,i‖2

ao`k(i) = 1
γ̂2
`(i)

( ∑
m∈Nk

1
γ̂2
m(i)

)−1

, ` ∈ Nk

end
end

(14.51)

Construction II: Neighbor-Centered Calculation
There is an alternative implementation where we move the estimation
of the parameter γ2

` into the neighbors of agent `; this mode of operation
removes the need for transmitting γ̂2

` (i) from agent ` to its neighbors.
This advantage, however, comes at the expense of added computations
as follows. Note that agent k now only has access to the iterate ψ`,i that
it receives from its neighbor `. Agent k does not have access to w`,i−1 in
the ATC diffusion implementation. To overcome this difficulty, we can,
for example, replace w`,i−1 by wk,i−1 since for i � 1, the iterates at
the various agents approach w? within O(µmax) with high probability
and, hence,

E
∥∥∥ψ`,i −w`,i−1

∥∥∥2
≈ E

∥∥∥ψ`,i −wk,i−1
∥∥∥2

(14.52)

With this substitution, agent k can now estimate the variance γ2
` of its

neighbor locally by running a smoothing filter of the following form:

γ2
`k(i) = (1− ζk)γ2

`k(i− 1) + ζk ‖ψ`,i − wk,i−1‖2 (14.53)
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where the quantities {ψ`,i,wk,i−1} that are needed to run the recursion
are available at agent k. In this recursion, we are employing the no-
tation γ2

`k(i), with two subscripts, to denote the estimator for γ2
` that

is computed by agent k at iteration i. Thus, observe that now several
estimators for the same quantity γ2

` are being computed: one by each
neighbor of agent `. Again, under expectation, expression (14.53) gives

Eγ2
`k(i) = (1− ζk)Eγ2

`k(i− 1) + ζk E‖ψ`,i −wk,i−1‖2 (14.54)
so that, again, after sufficient iterations and using (14.36):

Eγ2
`k(i) ≈ γ2

` /2, for i� 1 (14.55)
That is, the estimator γ2

`k(i) converges on average to the desired mea-
sure γ2

` (scaled by 1/2); the scaling is again irrelevant. Using the it-
erates γ2

`k(i), we can replace the relative-variance weights (14.27) by
their adaptive counterparts and write:

ao`k(i) = 1
γ2
`k(i)

 ∑
m∈Nk

1
γ2
mk(i)

−1

, ` ∈ Nk (14.56)

Equations (14.53) and (14.56) provide another adaptive construction
for the relative-variance combination weights {ao`k}. These adaptive
weights would then be used in (14.35) to evaluate wk,i, and the process
continues.

Adaptive relative-variance rule (neighbor-centered)
(individual costs have a common minimizer)
for each time instant i ≥ 0 repeat:
for each neighbor ` of agent k = 1, 2, . . . , N do :

y`k,i
∆= ψ`,i − wk,i−1 (ATC diffusion)

γ2
`k(i) = (1− ζk)γ2

`k(i− 1) + ζk ‖y`k,i‖2

ao`k(i) = 1
γ2
`k(i)

( ∑
m∈Nk

1
γ2
mk(i)

)−1

, ` ∈ Nk

end
end

(14.57)
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Example 14.3 (Detecting intruders and agent clustering). The following ex-
ample is extracted from [214]. Allowing diffusion networks to adjust their
combination coefficients in real-time enables the agents to assign smaller or
larger weights to their neighbors depending on how well they contribute to
the inference task. This capability can be exploited by the network to ex-
clude harmful neighbors (such as intruders) [273]. For example, over MSE
networks, the ATC diffusion strategy (7.23) with the adaptive combination
weights (14.57) will take the following form.

ATC diffusion with adaptive combination weights
set γ2

`k(−1) = 0 for all k = 1, 2, . . . , N and ` ∈ Nk.

for i ≥ 0 and for every agent k do :
ψk,i = wk,i−1 + 2µ

h u
∗
k,i [dk(i)− uk,iwk,i−1]

γ2
`k(i) = (1− ζ)γ2

`k(i− 1) + ζ ‖ψ`,i −wk,i−1‖2, ` ∈ Nk

a`k(i) = γ−2
`k

(i)∑
m∈Nk

γ−2
mk

(i)
, ` ∈ Nk

wk,i =
∑
`∈Nk

a`k(i)ψ`,i

end

(14.58)

Figure 14.1 illustrates the ability of networks running algorithm (14.58) to
detect intrusion, and also to perform agent clustering. The figure shows a
network with N = 20 agents. One of the agents, say, agent `o, is an intruder
and it feeds its neighbors irrelevant data such as sending them wrong iter-
ates ψ`o,i. In some other applications, agent `o may not be an intruder but is
simply subject to measurements {d`o ,u`o,i} that arise from a different model,
wN, than the model wo. The figure on the left shows the state of the combi-
nation weights after 300 diffusion iterations: the thickness of the edges reflect
the size of the combination weights assigned to them; thicker edges corre-
spond to larger weights. Observe how the edges connecting to the intruder
are essentially cut-off by the algorithm. The figure on the right illustrates
the ability of diffusion strategies to perform agent clustering (i.e., to separate
into groups agents that are influenced by two different models, wN and wo).
Agents do not know beforehand which of their neighbors are influenced by
which model. They also do not know which model is influencing their own
data. By allowing agents to adapt their combination coefficients on the fly, it
becomes possible for the agents to cut their links over time to neighbors that
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are sensing a different model than their own. The net effect is that agents end
up being clustered in two groups. Cooperation between the members of the
same group then leads to the estimation of {wN, wo}.

clustering
intruder

Figure 14.1: The figure on the left shows how diffusion cuts the links to
the intruder. The figure on the right illustrates the clustering ability of the
network.

�

Example 14.4 (Adapting combination weights over MSE networks). We illus-
trate the performance of adaptive combination rules over MSE networks of the
form described earlier in Example 6.3. We employ uniform step-sizes across
the agents, µk = µ = 0.001. Figure 14.2 shows the connected network topol-
ogy with N = 20 agents used for this simulation, with the measurement noise
variances, {σ2

v,k}, and the power of the regression data, assumed of the form
Ru,k = σ2

u,kIM , shown in the left and right plots of Figure 14.3, respectively.
Figure 14.4 plots the evolution of the ensemble-average learning curves,

1
NE‖w̃i‖2, for the ATC diffusion strategy (14.58) using four different
combination rules: the left-stochastic uniform or averaging rule (11.148), the
doubly-stochastic Metropolis rule (12.43), the relative-variance rule (14.31),
and the adaptive combination rule (14.58) with uniform ζk = ζ = 0.01.
The curves are obtained by averaging the trajectories { 1

N ‖w̃i‖2} over 100
repeated experiments. The label on the vertical axis in the figure refers to
the learning curves 1

NE‖w̃i‖2 by writing MSDdist,av(i), with an iteration
index i. Each experiment involves running the diffusion strategy with h = 2
on complex-valued data {dk(i),uk,i} generated according to the model



680 Combination Policies

dk(i) = uk,iw
o + vk(i), with M = 10. The unknown vector wo is generated

randomly and its norm is normalized to one.
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Figure 14.2: A connected network topology consisting of N = 20 agents
employing the averaging rule (11.148).
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Figure 14.3: Measurement noise profile (left) and regression data power
(right) across all agents. It is assumed that Ru,k = σ2

u,kIM , and the noise
and regression data are Gaussian distributed.
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theory (11.153)
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Figure 14.4: Evolution of the learning curves for the ATC diffusion strategy
(14.58) using four different combination rules: the left-stochastic uniform or
averaging rule (11.148), the doubly-stochastic Metropolis rule (12.43), the
relative-variance rule (14.31), and the adaptive combination rule (14.58) with
uniform ζk = ζ = 0.01.

It is further observed in the figure that the learning curve of the relative-
variance rule tends to the MSD value predicted by the theoretical expression
(11.153) with the entries {pk} corresponding to the Perron eigenvector that is
associated with the combination policy (14.31), which reduces to the following
expression in the example under consideration:

ao`k = 1
σ2
v,`σ

2
u,`

( ∑
m∈Nk

1
σ2
v,mσ

2
u,m

)−1

, ` ∈ Nk (14.59)

It is also observed from Figure 14.4 that the adaptive rule is able to learn
the noise factors {γ2

` } and to attain a performance level that is expected from
the relative-variance rule. However, the convergence rate of the adaptive rule
is clearly slower than the uniform and Metropolis rules: this is because of the
additional adaptation process that is involved in learning the noise factors
{γ2
` } and the combination coefficients {a`k(i)}. Schemes for speeding up the
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ATC adaptive combination rule (14.58)
after switching from uniform rule at i=1000

Figure 14.5: Evolution of the learning curves for the ATC diffusion strategy
(14.58) using three different combination rules: the left-stochastic uniform or
averaging rule (11.148), the adaptive combination rule (14.58) with uniform
ζk = ζ = 0.01, and the same adaptive rule except that it is activated at
i = 1000; during the initial 1000 iterations the network employs the uniform
rule while the combination weights are being adapted.

convergence of the adaptive combination rule are proposed in [270] and [95].
One idea is based on training the network initially by using a static rule, such
as the uniform rule, while the combination weights are being adapted and
subsequently switch to the adaptive combination rule. Criteria for selecting
the switching time is developed in these references. Figure 14.5 illustrates this
construction where the switching time occurs at i = 1000. It is seen that the
adaptive combination rule is able to recover the faster convergence rate of the
uniform rule.

�



15
Extensions and Conclusions

This work provides an overview of strategies for adaptation, learning,
and optimization over networks. Particular attention was given to the
constant step-size case in order to enable solutions that are able to
adapt and learn continuously from streaming data. There are of course
several other important aspects of distributed strategies that were not
covered in this work. Following [207, 208], we comment briefly on some
of them and provide relevant references for the benefit of the reader.

15.1 Gossip and Asynchronous Strategies

It is possible to train networks whereby agents are not required to
continually interact with all their neighbors at each time instant.
Instead, agents may select a subset of their neighbors (or even a single
neighbor) at every iteration. Figure 15.1 illustrates this situation
graphically. The figure shows three successive instances of a network
with the active edges highlighted by thicker lines. At each of these
instants, agents select randomly a subset of their neighbors and share
data with them over the selected links.

683
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Figure 15.1: Three successive instances of a network with random selection
of neighbors during the consultation process. The active edges are highlighted
by the thicker lines. At each of these instants, agents select randomly a subset
of their neighbors and share data with them over the selected links.

Criteria can be developed for determining which and how many
neighbors to select. One simple strategy is to pick one neighbor at a
time randomly, which is the case with useful gossip implementations
for distributed processing (see, e.g., [14, 24, 43, 87, 137, 158, 201, 221]).
For example, the ATC LMS diffusion implementation (7.23) based on
the selection of a single neighbor per iteration would take the following
form [201]:

ψk,i = wk,i−1 + 2
hµku

∗
k,i [dk(i)− uk,iwk,i−1]

agent k picks randomly a neighbor `o ∈ Nk
wk,i = akψk,i + (1− ak)ψ`o,i

(15.1)

where h = 2 for complex data and h = 1 for real data, and where
the scalar ak ∈ [0, 1] denotes a convex combination coefficient. Use-
ful variations that incorporate energy or game-theoretic considerations
can also be pursued [102, 127]. One can also consider variations where
agents share with their neighbors a subset of the entries in their vector
iterates [9].

Moreover, an implicit assumption made in our presentation has
been that all agents act synchronously. At every iteration, each agent
completes its adaptation step before its neighbors initiate their combi-
nation steps. One can also study asynchronous implementations that
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are subject to random events such as random data arrival times, ran-
dom agent failures, random link failures, random topology changes, etc.
There exist several studies in the literature on the performance of con-
sensus and gossip-type strategies in response to asynchronous events
or changing topologies [43, 124, 134–137, 195, 226, 242]. There are also
studies in the context of diffusion strategies [158, 231, 277]. With the
exception of the latter references on diffusion, most existing works in-
vestigate either pure averaging algorithms without streaming data, or
assume noise-free data, or rely on the use of diminishing step-size se-
quences. In the works [277, 278], a fairly detailed analysis is carried out
in the context of adaptation and learning with constant step-sizes. For
example, the ATC diffusion update (7.19) in an asynchronous environ-
ment would take the following form:

ψk,i = wk,i−1 − µk(i)∇̂w∗Jk(wk,i−1)

wk,i =
∑

`∈N k,i

a`k(i)ψ`,i
(15.2)

where the {µk(i),a`k(i)} are now time-varying and random step-sizes
and combination coefficients, and N k,i denotes the random neighbor-
hood of agent k at time i. The underlying network is therefore randomly
varying. Two of the main results established in [277, 278], following
techniques similar to this work, are that, under some independence
conditions on the random events, the asynchronous network continues
to be mean-square stable for sufficiently small step-sizes. Moreover,
its convergence rate and MSD performance compare well to those of
the synchronous network that is constructed by employing the average
values for the step-sizes and the average values for the combination
coefficients, namely,

αasync = αsync + O
(
µ1+1/N2

max

)
(15.3)

MSDasync,av = MSDsync,av + O (µmax) (15.4)

where µmax is now defined in terms of an upper bound on the random
step-size parameters (and is sufficiently small). In other words, the
convergence rate remains largely unaffected by asynchronous events at
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the expense of a deterioration in the order of O(µmax) in MSD per-
formance. These results help justify the remarkable robustness and
resilience properties of cooperative networks in the face of random fail-
ures at multiple levels: agents, links, data, and topology.

15.2 Noisy Exchanges of Information

We ignored in our presentation the effect of perturbations during the
exchange of information among neighboring agents. These perturba-
tions can arise from different sources, including noise over the commu-
nication links, quantization effects (e.g., [13, 87, 203]), attenuation and
fading effects. To model distortions over links, one can introduce, for ex-
ample, additive noise components and attenuation components into the
steps involving the exchange of iterates among neighboring agents. This
situation is illustrated generically in Figure 15.2 for an agent k receiving
data from its neighbors {`, 4, 7}. The scalars {γ`k(i), ` ∈ Nk} model
attenuation or fading effects and the noise sources {v`k(i), ` ∈ Nk}
model additive noise components over the edges linking the neighbors
to agent k. Such distortions influence the performance of distributed
strategies as follows.

For example, in the diffusion LMS network of Example 7.3, the
same iterate ψ`,i is broadcast by agent ` to all its neighbors. When this
is done, different noise sources interfere with the exchange of ψ`,i over
each of the edges that link agent ` to its neighbors. Thus, agent k will
end up receiving the perturbed iterate:

ψ`k,i = γ`k(i)ψ`,i + v
(ψ)
`k,i (15.5)

where v(ψ)
`k,i denotes the additive noise component over the edge from `

to k, and γ`k(i) denotes the attenuation effect. The actual ATC diffu-
sion implementation ends up being:

ψk,i = wk,i−1 + µku
∗
k,i [dk(i)− uk,iwk,i−1]

wk,i =
∑
`∈Nk

a`kψ`k,i
(15.6)

with the {ψ`k,i} appearing in the combination step in (15.6) in place of
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Figure 15.2: Data {ψ`,i} sent to agent k from its neighbors undergo additive
noise perturbations, represented by the noise sources {v`k(i), ` ∈ Nk}, as
well as attenuation or fading effects, represented by the scaling coefficients
{γ`k(i), ` ∈ Nk}.

ψ`,i. It is seen that the perturbations interfere with the quality of the
iterates {wk,i}. Studying the degradation in performance that results
from these noisy exchanges, and developing adaptive combination rules
that counter the effect of such degradation, can be pursued by extend-
ing the mean-square analysis of the earlier chapters. Readers can refer
to [1, 141, 208, 244, 274, 280] for results on diffusion strategies and to
[135, 166] for results on consensus strategies.

15.3 Exploiting Temporal Diversity

We can also develop distributed strategies that incorporate an addi-
tional temporal processing step besides the spatial aggregation step
[76, 151, 152, 208]. The temporal step is reminiscent of momentum-type
techniques proposed for gradient descent optimization [11, 21, 176, 177]
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in that the agents update their states by relying on additional past
values of their iterates besides the most recent iterates. Note, for in-
stance, that in the LMS diffusion strategies of Example 7.3, each agent
shares information locally with its neighbors through a process of spa-
tial cooperation represented by the aggregation step. We can add a
temporal dimension to this cooperative behavior as follows. For exam-
ple, in the ATC LMS implementation (7.23), rather than have each
agent k rely solely on the current weight iterates received from its
neighbors, {ψ`,i, ` ∈ Nk}, agent k can also be allowed to store and
process its present and past weight iterates, say, L of them as in
{ψk,j , j = i, i − 1, . . . , i − L + 1}. There are several ways by which
temporal processing can be added. The following equations describe
one possibility for MSE networks of the form described in Example 6.3
[152]:

ψk,i = wk,i−1 + 2
hµku

∗
k,i [dk(i)− uk,iwk,i−1]

φk,i =
L−1∑
j=0

fkjψk,i−j (temporal processing)

wk,i =
∑
`∈Nk

a`kφ`,i (spatial processing)

(15.7)

where h = 1 for real data and h = 2 for complex data, and the coeffi-
cients {fkj} are chosen to satisfy

fkj ≥ 0,
L−1∑
j=0

fkj = 1 (15.8)

In this way, previous weight iterates are smoothed and used to help
counter the effect of noise over the communication links. Figure 15.3
illustrates the three steps of adaptation (A), temporal processing (T),
and spatial processing (S) that are involved in the implementation
(15.7). The order of these three steps can be interchanged, thus leading
to other variations of the diffusion implementation. The version listed
above is ATS diffusion, where the order of the letters in “ATS” refers
to the order in which the processing steps appear in the algorithm
implementation. [152].
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Figure 15.3: From left to right: the three steps of adaptation (A), temporal
processing (T), and spatial processing (S) that are involved in the diffusion
implementation (15.7).

Other possibilities for the addition of temporal processing can be
pursued. For example, reference [76] starts from the CTA diffusion
algorithm (7.22) and incorporates a useful projection step between the
combination step and the adaptation step. The projection step uses
the iterate, ψk,i−1, at node k and projects it onto hyperslabs defined
by the current and past raw data. Specifically, the algorithm from [76]
has the following form:



ψk,i−1 =
∑
`∈Nk

a`k w`,i−1

φk,i−1 = P ′k,i[ψk,i−1]

wk,i = φk,i−1 − µk

φk,i−1 −
L−1∑
j=0

fkj Pk,i−j [φk,i−1]


(15.9)

where the notation φ = Pk,i[ψ] refers to the act of projecting the vector
ψ onto the hyperslab Pk,i that consists of all M ×1 vectors z satisfying



690 Extensions and Conclusions

(similarly for the projection P ′k,i):

Pk,i
∆= { z such that |dk(i)− uk,iz| ≤ εk } (15.10)

P
′
k,i

∆=
{
z such that |dk(i)− uk,iz| ≤ ε′k

}
(15.11)

where {εk, ε′k} are positive (tolerance) parameters chosen by the de-
signer to satisfy ε′k > εk. For generic values {d, u, ε}, where d is a scalar
and u is a row vector, the projection operator is described analytically
by the following expression [222]:

P[ψ] = ψ +


u∗

‖u‖2 [d− ε− uψ] , if d− ε > uψ
u∗

‖u‖2 [d+ ε− uψ] , if d+ ε < uψ

0, if |d− uψ| ≤ ε
(15.12)

The projections that appear in (15.9) can be regarded as another ex-
ample of a temporal processing step.

15.4 Incorporating Sparsity Constraints

We may also consider distributed strategies that enforce sparsity con-
straints on the solution vector (e.g., [74, 75, 86, 157]). For example,
in the context of the MSE networks of Example 6.3, we may consider
individual costs of the following modified form:

Jk(w) = E |dk(i)− uk,iw|2 + ρ f(w) (15.13)

where f(w) is some real-valued convex function weighted by some pa-
rameter ρ > 0. The role of f(w) is to help ensure that the solution
vectors are sparse [17, 51, 235]. One ATC diffusion strategy for solving
such problems takes the form [86]:

ek(i) = dk(i)− uk,iwk,i−1 (15.14)
ψk,i = wk,i−1 + µku

∗
k,iek(i) − ρµk ∂f(wk,i−1) (15.15)

wk,i =
∑
`∈Nk

a`k ψ`,i (15.16)

where ∂f(·) denotes a sub-gradient vector for f(w) relative to w. Var-
ious possibilities exist for the selection of f(w) and its sub-gradient
vector. One choice is

∂f(w) = sign(w) (15.17)
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where the entries of the column vector sign(w) are defined as follows
in terms of the individual entries of w:

[sign(w)]m
∆=
{
wm/|wm|, wm 6= 0
0, wm = 0 (15.18)

A second choice is to use instead

∂f(w) =
[ sign(w1)

ε+|w1|
sign(w2)
ε+|w2| . . . sign(wM )

ε+|wM |

]
(15.19)

This second choice has the advantage of selectively shrinking those
components of the iterate wk,i−1 whose magnitudes are comparable to
ε with little effect on components whose magnitudes are much larger
than ε (see, e.g., [51, 73, 147]). Greedy techniques can also be used to
develop useful sparsity-aware diffusion strategies, as shown in [74].

15.5 Distributed Constrained Optimization

Distributed strategies can also be developed for the solution of con-
strained convex optimization problems of the form:

min
w

N∑
k=1

Jk(w)

subject to w ∈W1 ∩W2 ∩ . . . ∩WN

(15.20)

where each Jk(w) is convex and eachWk is a convex set of points w that
satisfy a collection of affine equality constraints and convex inequality
constraints, say, as:

Wk
∆=
{
w : hk,m(w) = 0, m = 1, 2, . . . , Uk

gk,n(w) ≤ 0, n = 1, 2, . . . , Lk
(15.21)

The key challenge in solving such problems in a distributed manner is
that each agent k should only be aware of its cost function, Jk(w), and
its Lk + Uk total constraints. For this reason, some available solution
methods are in effect non-distributed because they require each agent
to know all constraints from across the network [196]. If the feasible set
and the constraints happen to be agent-independent, then such solution
methods become distributed.
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More generally, when solving constrained optimization problems of
the form (15.20) in a distributed manner, it is customary to rely on
the use of useful projection steps in order to ensure that the successive
iterates that are computed by the agents satisfy the convex constraints
— see, e.g., [63, 76, 153, 226, 234, 268]. An insightful overview of the
use of projection methods in optimization problems is given in [234].
We already encountered one example of a projection-based solution
method in (15.9). Nevertheless, solution techniques that rely on the
use of projection operations require the constraint conditions to be
relatively simple in order for the distributed algorithm to be able to
compute the necessary projections analytically (such as projecting onto
the nonnegative orthant) [153, 226, 268]. For example, the following
form of the diffusion CTA strategy (7.18) with projections is used in
[153]:

ψk,i−1 =
∑
`∈Nk

a`k w`,i−1 (15.22)

φk,i = ψk,i−1 − µ(i)∇wTJk

(
ψk,i−1

)
(15.23)

wk,i = PWk
[φk,i] (15.24)

In this construction, the main motivation is to solve a static optimiza-
tion problem (in lieu of adaptation and learning). Thus, note that the
actual gradient vector is employed in (15.23) along with a decaying
step-size sequence. Moreover, the notation PWk

[·] denotes projection
onto the set Wk; each of these sets is required to consist of “simple
constraints” so that the projections can be carried out analytically.
Motivated by these considerations, the work in [237, 238] develops dis-
tributed strategies that circumvent projection steps. The solution relies
on the use of suitably chosen penalty functions and replaces the pro-
jection step by a stochastic approximation update that runs simulta-
neously with the optimization step. One form of this diffusion solution
can be described as follows. We select continuous, convex, and twice-
differentiable functions δIP(x) and δEP(x) that satisfy the properties:
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δIP(x) =
{

0, x ≤ 0
> 0, x > 0 (15.25)

and
δEP(x) =

{
0, x = 0
> 0, x 6= 0 (15.26)

with δIP(x) being additionally a non-decreasing function. For example,
the following continuous, convex, and twice-differentiable functions sat-
isfy these conditions for small ρ:

δIP(x) = max
{

0, x3√
x2 + ρ2

}
, δEP(x) = x2 (15.27)

Using the functions {δIP(x), δEP(x)}, we associate with each agent k
the following penalty function, which takes into account all constraints
at the agent:

pk(w) ∆=
Lk∑
n=1

δIP (gk,n(w)) +
Uk∑
m=1

δEP (hk,m(w)) (15.28)

The penalized ATC diffusion form for solving (15.20) then takes the
following form for any parameter 0 < θ < 1 [237, 238]:

ψk,i = wk,i−1 − µ ∇̂wT Jk(wk,i−1) (15.29)
φk,i = ψk,i − µ1−θ∇wT pk(ψk,i) (15.30)

wk,i =
∑
`∈Nk

a`kφ`,i (15.31)

One of the main conclusions in [237, 238] is that, under certain con-
ditions on the cost and penalty functions and gradient noise, and for
sufficiently small step-sizes µ and a doubly-stochastic combination pol-
icy A, it holds that

lim
µ→0

lim sup
i→∞

E‖wo −wk,i‖2 = 0 (15.32)

where wo denotes the unique optimal solution for (15.20) for a strongly-
convex aggregate cost Jglob(w).

Following [237, 238], we illustrate the operation of the algorithm by
considering the network shown in Figure 15.4 with N = 20 agents
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running the penalized diffusion algorithm (15.29)–(15.31) using the
Metropolis rule (12.43) with µ = 0.002, θ = 0.9, and ρ = 0.001. Each
agent in the network is associated with a mean-square-error cost of the
form Jk(w) = E (dk(i)−uk,iw)2, where the observed data {dk(i),uk,i}
are related to each other via a linear regression model of the form:

dk(i) = uk,iw
• + vk(i) (15.33)

for some unknown model w•. To illustrate the adaptation and tracking
ability of the algorithm, we associate a single linear inequality con-
straint with each agent. Specifically, we set Lk = 1, Uk = 0 and choose:

gk,i(w) = bT
k,iw − zk(i) (15.34)

where {bk,i, zk(i)} are allowed to change with the iteration index, i. If
we introduce the block quantities:
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Figure 15.4: A connected network topology consisting of N = 20 agents
running the penalized diffusion algorithm (15.29)–(15.31).
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Bi
∆= col{bT

1,i, b
T
2,i, . . . , b

T
N,i} (15.35)

zi
∆= col{z1(i), z2(i), . . . , zN (i)} (15.36)

then we have that the global optimization problem that we are inter-
ested in solving is of the form:

min
w

N∑
k=1

E (dk(i)− uk,iw)2

subject to Biw − zi � 0
(15.37)

where the notation a � b, for two vectors a and b, indicates element-
wise comparison of the entries of the vectors. While the projections
associated with the constraints in this problem may be solved ana-
lytically, this setup is simply meant to illustrate the operation of the
penalized diffusion algorithm and its tracking ability.

Figure 15.5: The star indicates the location of the optimal minimizer, woi ,
which is allowed to drift in this simulation to illustrate the tracking ability of
the algorithm. The polygon in the graph denotes the boundary of the feasible
region for each agent. The tiny circles (e.g., in the left-most plot in the first
row) illustrate the location of the iterates by the agents, the line denotes the
average estimated trajectory by the network. As the constraint set changes,
it is observed that the iterates are able to track the minimizer even as the
feasible region shrinks and changes with time.

The statistical distribution of the random processes {uk,i,vk(i)} re-
main invariant for the duration of the simulation; only the constraints
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drift with time. This need not be the case in general, and the diffu-
sion algorithm can also handle non-stationary cost functions; keeping
the cost function fixed facilitates the illustration of the results. The
variance of the noise vk(i) is selected randomly according to a uniform
distribution from within the open interval σ2

v,k ∈ (0, 1). The covariance
matrices Ru,k = EuT

k,iuk,i are generated as Ru,k = QkΛkQT
k , where Qk

is a randomly generated orthogonal matrix and Λk is a diagonal matrix
with random elements also selected uniformly from within the interval
(0, 1). The model vector w• ∈ R2 is chosen randomly. The constraint
set is also initialized randomly and changes as time progresses.

Figure 15.5 illustrates the evolution of the iterates across the agents
as time progresses. It is observed that the agents are attracted to-
wards the feasible region from their initial position and quickly con-
verge towards the true optimizer, woi , which is initially stationary. As
the constraint set changes over time, we observe that each agent’s iter-
ate changes and tracks woi . The magenta line in the figure denotes the
average estimated trajectory by the network.

15.6 Distributed Recursive Least-Squares

We can also apply diffusion strategies to solve recursive least-squares
(RLS) problems in a distributed manner [28, 57, 58]. Consensus-based
solutions also appear in [165, 266, 267]. For example, consider a collec-
tion of N agents observing data {dk(i), uk,i}, which are assumed to be
related via:

dk(i) = uk,iw
o + vk(i) (15.38)

where uk,i is a 1×M regression vector and wo is the M × 1 unknown
vector to be estimated in a least-squares sense by minimizing the global
cost

min
w

λi+1δ‖w‖2 +
i∑

j=0
λi−j

(
N∑
k=1
|dk(j)− uk,jw|2

)
(15.39)

where 0 � λ ≤ 1 is an exponential forgetting factor whose value is
usually close to one. Distributed recursive least-squares (RLS) strate-
gies of the diffusion-type for the solution of (15.39) were developed in
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[57, 58] and they take the following form. Let wk,i denote the estimate
for wo that is computed by agent k at time i. For every agent k, we
start with the initial conditions wk,−1 = 0 and Pk,−1 = δ−1IM , where
Pk,−1 is an M ×M matrix and δ > 0 (usually a small number). Then,
every agent k repeats the calculations listed in (15.40) by cooperating
with its neighbors, where the symbol ← denotes a sequential assign-
ment. The scalars {a`k, c`k} are nonnegative combination coefficients
satisfying for all k = 1, 2, . . . , N :

Diffusion RLS strategy (ATC)
step 1 (initialization by agent k)
ψk,i ← wk,i−1
Pk,i ← λ−1Pk,i−1

step 2 (adaptation)
Update {ψk,i, Pk,i} by iterating over ` ∈ Nk :

ψk,i ← ψk,i +
c`kPk,iu

∗
`,i

1 + c`ku`,iPk,iu∗`,i
(d`,i − u`,iψk,i)

Pk,i ← Pk,i −
c`kPk,iu

∗
`,iu`,iPk,i

1 + c`ku`,iPk,iu∗`,i
end

step 3 (combination)
wk,i =

∑
`∈Nk

a`kψ`,i

(15.40)

c`k ≥ 0,
N∑
k=1

c`k = 1, c`k = 0 if ` /∈ Nk (15.41)

a`k ≥ 0,
N∑
`=1

a`k = 1, a`k = 0 if ` /∈ Nk (15.42)

That is, A = [a`k] is a left-stochastic matrix and C = [c`k] is a right-
stochastic matrix. Figure 15.6 illustrates the exchange of information
that occurs during the adaptation and combination steps in the dif-
fusion implementation. During the adaptation step, agents exchange
their data measurements {d`(i), u`,i} with their neighbors, and during
the consultation step agents exchange their intermediate iterates {ψ`,i}.
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Under some approximations, and for the special choices λ = 1 and
A = C (in which case A becomes doubly stochastic), the diffusion RLS
strategy (15.40) can be reduced to a form given in [267] and which is
described by the following equations:

P−1
k,i =

∑
`∈Nk

a`k
[
P−1
`,i−1 + u∗`,iu`,i

]
(15.43)

qk,i =
∑
`∈Nk

a`k
[
q`,i−1 + u∗`,id`(i)

]
(15.44)

ψk,i = Pk,iqk,i (15.45)
wk,i =

∑
`∈Nk

a`kψ`,i (15.46)

Algorithm (15.43)–(15.46) is computationally more demanding (by one
order of magnitude) than diffusion RLS since step (15.45) requires Pk,i,
which is recovered by inverting the matrix P−1

k,i that is evaluated in the
first step (15.43). The above form was motivated in [267] by using
consensus arguments; reference [208] provides more details on the con-
nections and differences between the diffusion strategy (15.40) and the
above consensus strategy.

Figure 15.6: During the adaptation step 2 in the diffusion RLS implemen-
tation (15.40), agents exchange their data measurements {d`(i), u`,i} (left).
During the consultation step 3, agents exchange their intermediate iterates
{ψ`,i} (right).
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Returning to (15.40), we observe that the second step involves
updating a Riccati-type variable, Pk,i, which is supposed to remain
positive-definite over time. In order to avoid numerical difficulties that
may destroy this critical property, it is often preferred to implement
such update schemes in array form [133, 206], where a Cholesky factor
of Pk,i is updated rather than Pk,i itself. Following arguments similar to
those developed in [206, Ch. 35], the following array form for diffusion
RLS can be motivated. Let

Pk,i
∆= P

1/2
k,i

(
P

1/2
k,i

)∗
(15.47)

denote the Cholesky factorization of Pk,i, where P
1/2
k,i is lower-triangular

with positive entries on its diagonal. Introduce further the scalar and
vector quantities:

γ`k(i)
∆= 1/(1 + c`ku`,iPk,iu

∗
`,i) (15.48)

g`k,i
∆= c

1/2
`k γ`k(i)Pk,iu

∗
`,i (15.49)

Then, the updates in (15.40) can be rewritten as:

e`(i) ← d`(i)− u`,iψk,i (15.50)

ψk,i ← ψk,i + c
1/2
`k

[
g`k,iγ

−1/2
`k (i)

] [
γ
−1/2
`k (i)

]−1
e`(i) (15.51)

Pk,i ← Pk,i − g`k,ig
∗
`k,i/γ`k(i) (15.52)

These updates can be implemented in array form as follows. We form
the pre-array matrix:

D
∆=
[

1 01×M

c
1/2
`k

(
P

1/2
k,i

)∗
u∗`,i

(
P

1/2
k,i

)∗ ] (15.53)

where P 1/2
k,i is the Cholesky factor of the matrix Pk,i appearing on the

right-hand side of (15.52). Next, we determine a unitary transforma-
tion, Θ`k,i, that transforms D into an upper-triangular form with posi-
tive entries on the diagonal. Specifically, we perform the QR factoriza-
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tion of matrix D:[
1 01×M

c
1/2
`k

(
P

1/2
k,i

)∗
u∗`,i

(
P

1/2
k,i

)∗ ]
︸ ︷︷ ︸

D

= Θ`k,i

 γ
−1/2
`k (i) g∗`k,iγ

−1/2
`k (i)

0
(
P

1/2
k,i

)∗


︸ ︷︷ ︸
QR

(15.54)
where the resulting P 1/2

k,i on the right-hand side of the above equation
now refers to the Cholesky factor of the updated matrix Pk,i appearing
on the left-hand side of (15.52). The other quantities in the post-array
(15.54) correspond to what is needed to perform the update (15.51).
In summary, we arrive at the following array form.

Array form of diffusion RLS strategy (ATC)
step 1 (initialization by agent k)
ψk,i ← wk,i−1

P
1/2
k,i ← λ−1/2P

1/2
k,i−1

step 2 (adaptation)
Update {ψk,i, P 1/2

k,i } by iterating over ` ∈ Nk :[
γ
−1/2
`k (i) g∗`k,iγ

−1/2
`k (i)

0
(
P

1/2
k,i

)∗ ]
← QR

([
1 01×M

c
1/2
`k

(
P

1/2
k,i

)∗
u∗`,i

(
P

1/2
k,i

)∗ ])
e`(i)← d`,i − u`,iψk,i

ψk,i ← ψk,i + c
1/2
`k

[
g`k,iγ

−1/2
`k (i)

] [
γ
−1/2
`k (i)

]−1
e`(i)

end
step 3 (combination)
wk,i =

∑
`∈Nk

a`kψ`,i

(15.55)

We illustrate the operation of algorithm (15.55) numerically for
the case of the averaging rule (11.148) for A and the Metropolis rule
(8.100) for C. Figure 15.7 shows the connected network topology with
N = 20 agents used for this simulation. Figure 15.8 plots the evolution
of the ensemble-average learning curves, 1

NE‖w̃i‖2, for the ATC LMS
diffusion strategy (7.23) with uniform step-size µk = 0.005 and for the
array form of the RLS diffusion strategy (15.55) with δ = 1 × 10−6
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Figure 15.7: A connected network topology consisting of N = 20 agents
employing the averaging rule (11.148) for A and the Metropolis rule (8.100)
for C in the diffusion RLS implementation (15.55).

and λ = 0.998. The curves are obtained by averaging the trajectories
{ 1
N ‖w̃i‖2} over 100 repeated experiments. The label on the vertical

axes in the figures refer to the learning curve 1
NE‖w̃i‖2 by writing

MSDdist,av(i), with an iteration index i. Each experiment involves run-
ning the algorithms on real-valued data {dk(i),uk,i} generated accord-
ing to the model dk(i) = uk,iw

o + vk(i), with M = 5. The unknown
vector wo is generated randomly and its norm is normalized to one.

15.7 Distributed State-Space Estimation

Distributed strategies can also be applied to the solution of state-space
filtering and smoothing problems [53, 54, 59, 61, 88, 112, 142, 181, 182].
Here, we describe briefly a diffusion version of the distributed Kalman
filter. Thus, consider a network consisting of N agents observing the
state vector, xi, of size n × 1 of a linear state-space model. At every
time i, every agent k collects a measurement vector yk,i of size p × 1,
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Figure 15.8: Evolution of the learning curves for ATC LMS diffusion (7.23)
and RLS diffusion (15.55).

which is related to the state vector as follows:

xi+1 = Fixi +Gini (15.56)
yk,i = Hk,ixi + vk,i, k = 1, 2, . . . , N (15.57)

The signals ni and vk,i denote state and measurement noises of sizes
n × 1 and p × 1, respectively, and they are assumed to be zero-mean,
uncorrelated and white, with covariance matrices denoted by

E
[
ni
vk,i

] [
nj
vk,j

]∗
∆=
[
Qi 0
0 Rk,i

]
δij (15.58)

The initial state vector, xo, is assumed to have zero mean with

Exox∗o = Πo > 0 (15.59)

and is uncorrelated with ni and vk,i, for all i and k. We further assume
that Rk,i > 0. The parameter matrices {Fi, Gi, Hk,i, Qi, Rk,i,Πo} are
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assumed to be known by node k. Let x̂k,i|j denote a local estimator for
xi that is computed by agent k at time i based on local observations and
on neighborhood data up to time j. The following diffusion strategy was
developed in [54, 59, 61] to approximate predicted and filtered versions
of these local estimators in a distributed manner for data satisfying
model (15.56)–(15.59). For every agent k, we start with x̂k,0|−1 = 0
and Pk,0|−1 = Πo, where Pk,0|−1 is an M ×M matrix. At every time
instant i, every agent k performs the calculations listed in (15.60). In
this implementation, the combination policy A = [a`k] consists of non-
negative scalar coefficients and is left-stochastic. It was argued in Eq.
(17) in [54] that, in general, an enhanced fusion of the local estimators
{ψ`,i} can be attained by employing convex-combination coefficients
defined in terms of certain inverse matrices, {P−1

`,i|i}. This construction,
however, would entail added computational cost and require the shar-
ing of additional information regarding the inverses {P−1

`,i|i}. The imple-
mentation (15.60) shown below from [54] employs scalar combination
coefficients {a`k} in order to reduce the complexity of the resulting al-
gorithm. Reference [117] studies the alternative fusion of the estimators
{ψ`,i} in the diffusion Kalman filter by exploiting information about
the inverses {P−1

`,i|i}.

Time and measurement-form of diffusion Kalman filter
step 1 (initialization by agent k)
ψk,i ← x̂k,i|i−1
Pk,i ← Pk,i|i−1

step 2 (adaptation)
Update {ψk,i, Pk,i} by iterating over ` ∈ Nk :
Re ← R`,i +H`,iPk,iH

∗
`,i

ψk,i ← ψk,i + Pk,iH
∗
`,iR

−1
e

(
y`,i −H`,iψk,i

)
Pk,i ← Pk,i − Pk,iH∗`,iR−1

e H`,iPk,i
end

step 3 (combination)
x̂k,i|i =

∑
`∈Nk

a`kψ`,i

Pk,i|i = Pk,i
x̂k,i+1|i = Fix̂k,i|i
Pk,i+1|i = FiPk,i|iF

∗
i +GiQiG

∗
i

(15.60)
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An alternative representation for the above diffusion Kalman filter
may be obtained in information form by assuming that Pk,i|i−1 > 0
for all k and i. For every agent k, we start with x̂k,0|−1 = 0 and
P−1
k,0|−1 = Π−1

o . At every time instant i, every agent k then performs
the calculations listed in (15.61).

Information form of the diffusion Kalman filter
step 1 (adaptation)

Sk,i =
∑
`∈Nk

H∗`,iR
−1
`,iH`,i

qk,i =
∑
`∈Nk

H∗`,iR
−1
`,i y`,i

P−1
k,i|i = P−1

k,i|i−1 + Sk,i
ψk,i = x̂k,i|i−1 + Pk,i|i

(
qk,i − Sk,ix̂k,i|i−1

)
step 2: (combination)

x̂k,i|i =
∑
`∈Nk

a`kψ`,i

x̂k,i+1|i = Fix̂k,i|i
Pk,i+1|i = FiPk,i|iF

∗
i +GiQiG

∗
i

(15.61)

Step 1 in (15.61) is similar to the update used in the distributed
Kalman filter derived in [181] using consensus-type arguments. One
difference is that reference [181] starts from a continuous-time consen-
sus implementation and discretizes it to arrive at the following update
relation:

x̂k,i|i = ψk,i + ε
∑
`∈Nk

(ψ`,i −ψk,i) (15.62)

which, in order to facilitate comparison with (15.61), can be equiva-
lently rewritten as:

x̂k,i|i = (1 + ε− nkε)ψk,i +
∑

`∈Nk\{k}
εψ`,i (15.63)

where nk denotes the degree of agent k (i.e., the size of its neighbor-
hood). In comparison, the diffusion step in (15.61) can be written as:

x̂k,i|i = akk ψk,i +
∑

`∈Nk\{k}
a`k ψ`,i (15.64)
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Figure 15.9: During the adaptation step 2 in the diffusion Kalman implemen-
tation (15.60), agents exchange data measurements and model measurements
{H`,i, R`,i,y`,i} (left). During the consultation step 3, agents exchange their
intermediate iterates {ψ`,i} (right).

Observe that the weights used in (15.63) are (1+ε−nkε) for the agent’s
estimator, ψk,i, and ε for all other estimators, {ψ`,i}, arriving from the
neighbors of agent k. In comparison, the diffusion step (15.64) employs
a convex combination of the estimators {ψ`,i} with generally different
weights {a`k} for different neighbors [53, 54].

Figure 15.9 illustrates the exchange of information that occurs dur-
ing the adaptation and combination steps in the diffusion Kalman im-
plementations (15.60) or (15.61). During the adaptation step, agents
exchange data measurements and model parameters {H`,i, R`,i,y`,i}
with their neighbors, and during the consultation step agents exchange
their intermediate iterates {ψ`,i}.

Example 15.1 (Tracking a projectile). We illustrate the operation of the
diffusion and consensus Kalman filters numerically for the network shown in
Figure 15.10 with the agents employing the averaging rule (11.148) in the
diffusion case. We consider an application where each of the agents in the
network is tracking a projectile — see Figure 15.11; each agent has access to
noisy measurements of the (x, y)−coordinates of the projectile relative to a
pre-defined coordinate system. We simulate two scenarios. In one case, the
agents run the diffusion Kalman implementation (15.60) and in the second
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case, the agents run the consensus implementation that would result form
using (15.61) with the combination weights shown in (15.63) with ε = 0.001.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Figure 15.10: A connected network topology consisting of N = 20 agents
employing the averaging rule (11.148).

We consider a simplified model and assume the target is moving within
the plane z = 0. Referring to Figure 15.11, the target is launched from location
(xo, yo) at an angle θ with the horizontal axis at an initial speed s. The initial
velocity components along the horizontal and vertical directions are therefore:

sx(0) = s cos θ, sy(0) = s sin θ (15.65)
The motion of the object is governed by Newton’s laws of motion; the accel-
eration along the vertical direction is downwards and its magnitude is given
by g ≈ 10 m/s2. The motion along the horizontal direction is uniform (with
zero acceleration) so that the horizontal velocity component is constant for
all time instants and remains equal to sx:

sx(t) = s cos θ, t ≥ 0 (15.66)

For the vertical direction, the velocity component satisfies the equation of
motion:

sy(t) = s sin θ − gt, t ≥ 0 (15.67)
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Figure 15.11: The object is launched from location (xo, yo) at an angle θ
with the horizontal direction. Under idealized conditions, the trajectory is
parabolic. Using noisy measurements of the target location (x(t), y(t)) by
multiple agents, the objective is to estimate the actual trajectory of the object.

We denote the location coordinates of the object at any time t by (x(t), y(t)).
These coordinates satisfy the differential equations

dx(t)
dt

= sx(t), dy(t)
dt

= sy(t) (15.68)

We sample the equations of motion every T units of time and write

sx(i) ∆= sx(iT ) = s cos θ (15.69)

sy(i) ∆= sy(iT ) = s sin θ − igT (15.70)
x(i+ 1) = x(i) + Tsx(i) (15.71)
y(i+ 1) = y(i) + Tsy(i) (15.72)
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Figure 15.12: Estimated trajectories obtained by the diffusion Kalman im-
plementation (15.60) and by the consensus implementation that results form
using (15.61) with the combination weights shown in (15.63) with ε = 0.001.
The top plot shows the noisy measurements collected by one of the agents.

As such, the dynamics of the moving object can be approximated by the
following discretized state-space equation:

x(i+ 1)
y(i+ 1)
sx(i+ 1)
sy(i+ 1)


︸ ︷︷ ︸

xi+1

=


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

F


x(i)
y(i)
sx(i)
sy(i)


︸ ︷︷ ︸

xi

−


0
0
0
1

 gT
︸ ︷︷ ︸

di

(15.73)

Note that the state vector xi in this model involves four entries. Com-
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pared with (15.56), we see that the state recursion in this case includes a
deterministic driving term, di, and does not include process noise (Gi = 0);
if desired, we may include a process noise term to model disturbances in the
state evolution (such as errors arising from the discretization process). The
deterministic driving term can be incorporated into the statement of the diffu-
sion and consensus filters by modifying the update relation x̂k,i+1|i = Fix̂k,i|i
that appears in the combination steps in the statements (15.60) and (15.61)
by

x̂k,i+1|i = Fix̂k,i|i + di (15.74)

The tracking problem we are interested in is one that estimates and tracks
the state vector xi based on noisy measurements of the location coordinates
of the object by networked agents.

We denote the measurement vector at each agent k at time i by yk,i and
it satisfies:

yk,i =
[

1 0 0 0
0 1 0 0

]
︸ ︷︷ ︸

H


x(i)
y(i)
sx(i)
sy(i)

 + vk,i (15.75)

where vk,i denotes a 2 × 1 zero-mean white noise process with covariance
matrix assumed to be of the form Rk,i = σ2

v,kI2. The variances {σ2
v,k} are

selected randomly from within the interval [0, 0.5]. It is seen that the entries
of the vector yk,i are noisy measurements of the x and y−coordinates of the
location of the moving object. We use the following values in the simulation:

Πo = I4, (xo, yo) = (1, 30), s = 15, T = 0.01, θ = 60o (15.76)

Figure 15.12 plots the actual trajectory, the noisy measurements sampled
by one of the agents, and the averaged recovered trajectory (averaged over
all agents and over 100 experiments) by the diffusion network and by the
consensus network.

�
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Appendices



A
Complex Gradient Vectors

Let g(z) denote a scalar real or complex-valued function of a complex
variable, z. The function g(z) need not be holomorphic in the variable
z and, therefore, it need not be differentiable in the traditional com-
plex differentiation sense (cf. definition (A.3) further ahead). In many
instances though, we are only interested in determining the locations
of the stationary points of g(z). For these cases, it is sufficient to rely
on a different notion of differentiation, which we proceed to motivate
following [3, 47, 107, 111, 116, 197, 206, 218, 251]. We start by defining
complex gradient vectors in this appendix, followed by complex Hessian
matrices in Appendix B. We also explain how the evaluation of gradi-
ent vectors and Hessian matrices gets simplified when the independent
variable z happens to be real-valued. In the treatment that follows, we
examine both situations when the variables {z, z∗} are either scalar-
valued or vector-valued.

A.1 Cauchy-Riemann Conditions

To motivate the alternative differentiation concept, we first review
briefly the traditional definition of complex differentiation. Thus, as-

712
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sume z is a scalar and let us express it in terms of its real and imaginary
parts, denoted by x and y, respectively:

z
∆= x+ jy, j

∆=
√
−1 (A.1)

We can then interpret g(z) as a two-dimensional function of the real
variables {x, y} and represent its real and imaginary parts as functions
of these same variables, say, as u(x, y) and v(x, y):

g(z) ∆= u(x, y) + jv(x, y) (A.2)

We denote the traditional complex derivative of g(z) with respect to z
by g′(z) and define it as the limit:

g′(z) ∆= lim
∆z→0

g(z + ∆z) − g(z)
∆z (A.3)

or, more explicitly,

g′(z) = lim
∆z→0

g(x+ ∆x, y + ∆y) − g(x, y)
∆x+ j∆y (A.4)

where we are writing ∆z = ∆x+ j∆y. For g(z) to be differentiable at
location z, in which case it is also said to be holomorphic at z, then
the above limit needs to exist regardless of the direction from which
z + ∆z approaches z. In particular, if we set ∆y = 0 and let ∆x→ 0,
then the above definition gives that g′(z) should be equal to

g′(z) = ∂u(x, y)
∂x

+ j
∂v(x, y)
∂x

(A.5)

On the other hand, if we set ∆x = 0 and let ∆y → 0 so that ∆z = j∆y,
then the definition gives that the same g′(z) should be equal to

g′(z) = ∂v(x, y)
∂y

− j
∂u(x, y)
∂y

(A.6)

Expressions (A.5) and (A.6) must coincide, which means that the real
and imaginary parts of g(z) should satisfy the conditions:

∂u(x, y)
∂x

= ∂v(x, y)
∂y

∂u(x, y)
∂y

= −∂v(x, y)
∂x

(A.7)
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These are known as the Cauchy-Riemann conditions [5, 197]. It can be
shown that these conditions are not only necessary for a complex func-
tion g(z) to be differentiable at location z, but if the partial derivatives
of u(x, y) and v(x, y) are continuous, then they are also sufficient.

Example A.1 (Real-valued functions). Consider the quadratic function g(z) =
|z|2. It is straightforward to verify that g(x, y) = x2 + y2 so that

u(x, y) = x2 + y2, v(x, y) = 0 (A.8)

Therefore, the Cauchy-Riemann conditions (A.7) are not satisfied in this case
(except at the point x = y = 0). More generally, it is straightforward to verify
that any other (nonconstant) real-valued function, g(z), cannot satisfy (A.7)
except possibly at some locations. It turns out though that real-valued cost
functions of this form are commonplace in problems involving estimation,
adaptation, and learning. Fortunately, in these applications, we are rarely
interested in evaluating the traditional complex derivative of g(z). Instead,
we are more interested in determining the location of the stationary points of
g(z). To do so, it is sufficient to rely on a different notion of differentiation
based on what is sometimes known as the Wirtinger calculus [47, 251, 264],
which we describe next.

�

A.2 Scalar Arguments

We continue with the case in which z ∈ C is a scalar and allow g(z)
to be real or complex-valued so that g(z) ∈ C. We again express z in
terms of its real and imaginary parts as in (A.1), and similarly express
g(z) as a function of both x and y, i.e., as g(x, y). The (Wirtinger)
partial derivatives of g(z) with respect to the complex arguments z
and z∗, which we shall also refer to as the complex gradients of g(z),
are defined in terms of the partial derivatives of g(x, y) with respect to
the real arguments x and y as follows:

∂g(z)
∂z

∆= 1
2

{
∂g(x, y)
∂x

− j
∂g(x, y)
∂y

}
∂g(z)
∂z∗

∆= 1
2

{
∂g(x, y)
∂x

+ j
∂g(x, y)
∂y

} (A.9)
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The above expressions can be grouped together in vector form as: ∂g(z)/∂z

∂g(z)/∂z∗

 = 1
2

[
1 −j
1 j

] ∂g(x, y)/∂x

∂g(x, y)/∂y

 (A.10)

so that, by inversion, it also holds that ∂g(x, y)/∂x

∂g(x, y)/∂y

 =
[

1 1
j −j

] ∂g(z)/∂z

∂g(z)/∂z∗

 (A.11)

The reason why the partial derivatives (A.9) are useful can be readily
seen when g(z) is real-valued, namely, g(z) ∈ R. In that case, and by
definition, a point zo = xo + jyo is said to be a stationary point of
g(z) if, and only if, (xo, yo) is a stationary point of g(x, y). The latter
condition is equivalent to requiring

∂g(x, y)
∂x

∣∣∣∣
x=xo,y=yo

= 0 (A.12)

and
∂g(x, y)
∂y

∣∣∣∣
x=xo,y=yo

= 0 (A.13)

These two conditions combined are turn is equivalent to the following
single condition in terms of the complex gradient vector:

∂g(z)
∂z

∣∣∣∣
z=zo

= 0 (A.14)

In this way, either of the partial derivatives defined by (A.9) enable us
to locate stationary points of the real-valued function g(z). Note that
we are using the superscript notation “o”, as in zo, to refer to stationary
points.

Example A.2 (Wirtinger complex differentiation). We illustrate the definition
of the partial derivatives (A.9) by considering a few examples. We will
observe from the results in these examples that (Wirtinger) complex differ-
entiation with respect to z treats z∗ as a constant and, similarly, complex
differentiation with respect to z∗ treats z as a constant:
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(1) Let g(z) = z2. Then, g(x, y) = (x2 − y2) + j2xy so that from (A.9):

∂g(z)
∂z

= 1
2(4x+ j4y) = 2z, ∂g(z)

∂z∗
= 0 (A.15)

(2) Let g(z) = |z|2. Then, g(x, y) = x2 + y2 and

∂g(z)
∂z

= (x− jy) = z∗,
∂g(z)
∂z∗

= (x+ jy) = z (A.16)

(3) Let g(z) = κ + αz + βz∗ + γ|z|2, where (κ, α, β, γ) are scalar constants.
Then,

∂g(z)
∂z

= α+ γz∗,
∂g(z)
∂z∗

= β + γz (A.17)

�

A.3 Vector Arguments

We consider next the case in which z is a column vector argument, say,
of size M × 1, and whose individual entries are denoted by {zm}, i.e.,

z = col{z1, z2, . . . , zM} ∈ CM (A.18)

We continue to allow g(z) to be real or complex-valued so that g(z) ∈ C.
The (Wirtinger) partial derivative of g(z) with respect to z is again
denoted by ∂ g(z)/∂z and is defined as the row vector:

∂g(z)
∂z

∆=
[
∂g

∂z1

∂g

∂z2
. . .

∂g

∂zM

]
,

{
z is a column
∂g/∂z is a row (A.19)

in terms of the individual (Wirtinger) partial derivatives {∂g/∂zm}.
Expression (A.19) for ∂ g(z)/∂z is also known as the Jacobian of g(z).
We shall refer to (A.19) as the complex gradient of g(z) with respect
to z and denote it more frequently by the alternative notation ∇z g(z),
i.e.,

∇z g(z) ∆=
[
∂g

∂z1

∂g

∂z2
. . .

∂g

∂zM

]
,

{
z is a column
∇z g(z) is a row (A.20)
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There is not a clear convention in the literature on whether the gradient
vector relative to z should be defined as a row vector (as in (A.20)) or
as a column vector; both choices are common and both choices are
useful. We prefer to use the row convention (A.20) because it leads
to differentiation results that are consistent with what we are familiar
with from the rules of traditional differentiation in the real domain —
see Example A.3 below. This is largely a matter of convenience.

Likewise, along with (A.20), we define the complex gradient of g(z)
with respect to z∗ to be the column vector:

∇z∗ g(z) ∆=


∂g/∂z∗1
∂g/∂z∗2

...
∂g/∂z∗M

 ≡ ∂g(z)
∂z∗

,

{
z∗ is a row
∇z∗ g(z) is a column

(A.21)
Observe again the useful conclusion that when g(z) is real-valued, then
a vector zo = xo + jyo is a stationary point of g(z) if, and only if,

∇z g(z)|z=zo = 0 (A.22)

Example A.3 (Complex gradients). Let us again consider a few examples:

(1) Let g(z) = a∗z, where {a, z} are column vectors. Then,

∇z g(z) = a∗, ∇z∗ g(z) = 0 (A.23)

(2) Let g(z) = ‖z‖2 = z∗z, where z is a column vector. Then,

∇z g(z) = z∗, ∇z∗ g(z) = z (A.24)

(3) Let g(z) = κ + a∗z + z∗b + z∗Cz, where κ is a scalar, {a, b} are column
vectors, and C is a matrix. Then,

∇z g(z) = a∗ + z∗C, ∇z∗ g(z) = b+ Cz (A.25)

�
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A.4 Real Arguments

When z ∈ RM is real-valued and the function g(z) ∈ R is real-valued
as well, the gradient vector is still defined as the row vector:

∇z g(z) ∆=
[
∂g

∂z1

∂g

∂z2
. . .

∂g

∂zM

]
,

{
z is a column
∇z g(z) is a row (A.26)

in terms of the traditional partial derivatives of g(z) with respect to the
real scalar arguments {zm}. Likewise, and in a manner that is consistent
with (A.21), we define the gradient vector of g(z) with respect to zT

to be the following column vector:

∇zT g(z) ∆=


∂g/∂z1
∂g/∂z2

...
∂g/∂zM

 ,
{
zT is a row
∇zT g(z) is a column (A.27)

In particular, note the useful relation

∇zT g(z) = [∇z g(z)]T (A.28)

This relation holds for both cases when z itself is real-valued or
complex-valued.

Example A.4 (Quadratic cost functions I). Consider the quadratic function

g(z) = κ+ aTz + zTb+ zTCz (A.29)

where κ is a scalar, {a, b} are column vectors of dimension M × 1 each, and
C is an M ×M symmetric matrix (all of them are real-valued in this case).
Then, it can be easily verified that

∇z g(z) = aT + bT + 2zTC (A.30)

The reason for the additional factor of two in the rightmost term can be jus-
tified by carrying out the calculation of the gradient vector explicitly. Indeed,
if we denote the individual entries of {a, b, z, C} by {am, bm, zm, Cmn}, then

g(z) = κ +
M∑
m=1

(am + bm)zm +
M∑
m=1

M∑
n=1

zmCmnzn (A.31)
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so that

∂g(z)
∂zm

= (am + bm) + 2Cmmzm +
M∑
n 6=m

(Cmn + Cnm)zn

= (am + bm) + 2
M∑
n=1

Cnmzn (A.32)

where we used the fact that C is symmetric and, hence, Cmn = Cnm. Collect-
ing all the partial derivatives into the gradient vector defined by (A.26) we
arrive at (A.30).

Observe that while in the complex case, the arguments z and z∗ are treated
independently of each other during differentiation, this is not the case for the
arguments z and zT in the real case. In particular, since we can express the
inner product zTb as bTz, then the derivative of zTb with respect to z is equal
to the derivative of bTz with respect to z (which explains the appearance of
the term bT in (A.30)).

�

Example A.5 (Quadratic cost functions II). Consider the same quadratic func-
tion (A.29) with the only difference being that C is now arbitrary and not
necessarily symmetric. Then, the same argument from Example A.4 will show
that:

∇z g(z) = aT + bT + zT(C + CT) (A.33)

where 2C in (A.30) is replaced by C + CT.
�



B
Complex Hessian Matrices

Hessian matrices involve second-order partial derivatives, which we
shall assume to be continuous functions of their arguments whenever
necessary. Some effort is needed to define Hessian matrices for func-
tions of complex variables. For this reason, we consider first the case of
real arguments to help motivate the extension to complex arguments.
In this appendix we only consider real-valued functions g(z) ∈ R, which
corresponds to the situation of most interest to us since utility or cost
functions in adaptation and learning are generally real-valued.

B.1 Hessian Matrices for Real Arguments

We continue to denote the individual entries of the column vector z ∈
RM by z = col{z1, z2, . . . , zM}. The Hessian matrix of g(z) ∈ R is an
M ×M symmetric matrix function of z, denoted by H(z), and whose
(m,n)−th entry is constructed as follows:

[H(z)]m,n
∆= ∂2g(z)

∂zm∂zn
= ∂

∂zm

[
∂g(z)
∂zn

]
= ∂

∂zn

[
∂g(z)
∂zm

]
(B.1)

in terms of the partial derivatives of g(z) with respect to the real scalar
arguments {zm, zn}. For example, for a two-dimensional argument z

720
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(i.e., M = 2), the four entries of the 2 × 2 Hessian matrix would be
given by:

H(z) =


∂2g(z)
∂z2

1

∂2g(z)
∂z1∂z2

∂2g(z)
∂z2∂z1

∂2g(z)
∂z2

2

 (B.2)

It is straightforward to recognize that the Hessian matrix H(z) defined
by (B.1) can be obtained as the result of two successive gradient vector
calculations with respect to z and zT in the following manner (where
the order of the differentiation does not matter):

H(z) ∆= ∇zT [∇z g(z)] = ∇z [∇zT g(z)] (M ×M) (B.3)

For instance, using the first expression, the gradient operation ∇z g(z)
generates a 1 ×M (row) vector function and the subsequent differen-
tiation with respect to zT leads to the M ×M Hessian matrix, H(z).
It is clear from (B.3) that the Hessian matrix is indeed symmetric so
that

H(z) = HT(z) (B.4)

A useful property of Hessian matrices is that they help characterize the
nature of stationary points of functions g(z) that are twice continuously
differentiable. Specifically, if zo is a stationary point of g(z) (i.e., a point
where ∇z g(z) = 0), then the following facts hold (see, e.g., [36, 93]):

(a) zo is a local minimum of g(z) if H(zo) > 0, i.e., if all eigenvalues
of H(zo) are positive.

(b) zo is a local maximum of g(z) if H(zo) < 0, i.e., if all eigenvalues
of H(zo) are negative.

Example B.1 (Quadratic cost functions). Consider the quadratic function

g(z) = κ+ aTz + zTb+ zTCz (B.5)

where κ is a scalar, {a, b} are column vectors of dimension M × 1 each, and
C is an M ×M symmetric matrix (all of them are real-valued in this case).
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We know from (A.22) and (A.30) that any stationary point, zo, of g(z) should
satisfy the linear system of equations

Czo = 1
2(a+ b) (B.6)

It follows that zo is unique if, and only if, C is nonsingular. Moreover, in this
case, the Hessian matrix is given by

H = 2C (B.7)

which is independent of z. It follows that the quadratic function g(z) will have
a unique global minimum if, and only if, C > 0.

�

B.2 Hessian Matrices for Complex Arguments

We now extend the definition of Hessian matrices to functions g(z) ∈ R
that are still real-valued but their argument, z ∈ CM , is complex-valued.
This case is of great interest in adaptation, learning, and estimation
problems since cost functions are generally real-valued while their ar-
guments can be complex-valued. The Hessian matrix of g(z) can now
be defined in two equivalent forms by working either with the complex
variables {z, z∗} directly or with the real and imaginary parts {x, y}
of z. In contrast to the case of real arguments studied above in (B.3),
where the Hessian matrix had dimensions M ×M , the Hessian matrix
for complex arguments will be twice as large and will have dimensions
2M × 2M for the reasons explained below.

We start by expressing each entry zm of z in terms of its real and
imaginary components as

zm = xm + jym, m = 1, 2, . . . ,M (B.8)

We subsequently collect the real and imaginary factors {xm} and {ym}
into two real vectors:

x
∆= col{x1, x2, . . . , xM} (B.9)

y
∆= col{y1, y2, . . . , yM} (B.10)

so that
z = x+ jy (B.11)
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Then, we can equivalently express g(z) as a function of 2M real vari-
ables as g(z) = g(x, y). We now proceed to define the Hessian matrix
of g(z) in two equivalent ways by working with either the complex vari-
ables {z, z∗} or the real variables {x, y}. We consider the latter case
first since we can then call upon the earlier definition (B.3) for real
arguments.

B.2.1 First Possibility: Real Hessian Matrix

Since g(x, y) ∈ R is a function of the real arguments {x, y}, we can
invoke definition (B.3) to associate with g(x, y) a real Hessian matrix
H(x, y); its dimensions will be 2M × 2M . This Hessian matrix will in-
volve second-order partial derivatives relative to x and y. For example,
when z = x+ jy is a scalar, then H(x, y) will be 2× 2 and given by:

H(x, y) =


∂2g(x, y)
∂x2

∂2g(x, y)
∂x∂y

∂2g(x, y)
∂y∂x

∂2g(x, y)
∂y2

 , z = x+ jy (B.12)

Likewise, when z is two-dimensional (i.e., M = 2) with entries z1 =
x1 + jy1 and z2 = x2 + jy2, then the Hessian matrix of g(z) will be
4× 4 and given by:

H(x, y) =



∂2g(z)
∂x2

1

∂2g(z)
∂x1∂x2

∂2g(z)
∂x1∂y1

∂2g(z)
∂x1∂y2

∂2g(z)
∂x2∂x1

∂2g(z)
∂x2

2

∂2g(z)
∂x2∂y1

∂2g(z)
∂x2∂y2

∂2g(z)
∂y1∂x1

∂2g(z)
∂y1∂x2

∂2g(z)
∂y2

1

∂2g(z)
∂y1∂y2

∂2g(z)
∂y2∂x1

∂2g(z)
∂y2∂x2

∂2g(z)
∂y2∂y1

∂2g(z)
∂y2

2



(B.13)
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More generally, for arguments z = x+jy of arbitrary dimensionsM×1,
the real Hessian matrix of g(z) can be expressed in partitioned form in
terms of 4 sub-matrices of size M ×M each:

H(x, y) =


∇xT [∇x g(x, y)] ∇xT [∇y g(x, y)]

∇yT [∇x g(x, y)] ∇yT [∇y g(x, y)]


∆=

 HxTx

(
HyTx

)T

HyTx HyTy

 (B.14)

where we introduced the compact notation {HxTx, HyTy, HyTx} to de-
note the following second-order differentiation operations relative to
the variables x and y:

HxTx
∆= ∇xT [∇x g(x, y)]

HyTy
∆= ∇yT [∇y g(x, y)]

HyTx
∆= ∇yT [∇x g(x, y)]

(B.15)

We can express result (B.14) more compactly by working with the
2M × 1 extended vector v that is obtained by stacking x and y into a
single vector:

v
∆= col{x, y} (B.16)

Then, the function g(z) can also be regarded as a function of v, namely,
g(v). It is straightforward to verify that the same Hessian matrix
H(x, y) given by (B.14) can be expressed in terms of differentiation
of g(v) with respect to v as follows (compare with (B.3)):

H(v) ∆= ∇vT [∇v g(v)] = ∇v [∇vT g(v)] = H(x, y) (2M × 2M)
(B.17)

We shall use the alternative representation H(v) more frequently than
H(x, y) and refer to it as the real Hessian matrix. It is clear from expres-
sions (B.14) or (B.17) that the Hessian matrix so defined is symmetric
so that

H(v) = HT(v) (B.18)
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Again, a useful property of the Hessian matrix is that it can be used
to characterize the nature of stationary points of functions g(z) that
are twice continuously differentiable. Specifically, if zo = xo + jyo is
a stationary point of g(z) (i.e., a point where ∇z g(z) = 0), then the
following facts hold for vo = col{xo, yo}:

(a) zo is a local minimum of g(z) if H(vo) > 0, i.e., all eigenvalues
of H(vo) are positive.

(b) zo is a local maximum of g(z) if H(vo) < 0, i.e., all eigenvalues
of H(vo) are negative.

B.2.2 Second Possibility: Complex Hessian Matrix

Besides H(v), we can associate a second Hessian matrix representation
with g(z) by working directly with the complex variables z and z∗

rather than their real and imaginary parts, x and y (or v). We refer to
this second representation as the complex Hessian matrix and we denote
it by Hc(z), with the subscript “c” used to distinguish it from the real
Hessian matrix, H(v), defined by (B.17). The complex Hessian, Hc(z),
is still 2M × 2M and its four block partitions are now defined in terms
of (Wirtinger) complex gradient operations relative to the variables z
and z∗ as follows (compare with (B.14)):

Hc(z)
∆=

 Hz∗z (HzTz)
∗

HzTz (Hz∗z)T

 (2M × 2M) (B.19)

where the M ×M block matrices {Hz∗z, HzTz} correspond to the op-
erations:  Hz∗z

∆= ∇z∗ [∇z g(z)]
HzTz

∆= ∇zT [∇z g(z)]
(B.20)

It is clear from definition (B.19) that the complex Hessian matrix is
now Hermitian so that

Hc(z) = [Hc(z)]∗ (B.21)



726 Complex Hessian Matrices

For example, for the same case (B.12) when z is a scalar, definition
(B.19) leads to:

Hc(z) =


∂2g(z)
∂z∗∂z

∂2g(z)
∂z∗2

∂2g(z)
∂z2

∂2g(z)
∂z∂z∗

 (B.22)

Likewise, for the two-dimensional case (B.13), the complex Hessian
matrix is given by:

Hc(z) =



∂2g(z)
∂z∗1∂z1

∂2g(z)
∂z∗1∂z2

∂2g(z)
∂z∗21

∂2g(z)
∂z∗1∂z

∗
2

∂2g(z)
∂z∗2∂z1

∂2g(z)
∂z∗2∂z2

∂2g(z)
∂z∗2∂z

∗
1

∂2g(z)
∂z∗22

∂2g(z)
∂z2

1

∂2g(z)
∂z1∂z2

∂2g(z)
∂z1∂z∗1

∂2g(z)
∂z1∂z∗2

∂2g(z)
∂z2∂z1

∂2g(z)
∂z2

2

∂2g(z)
∂z2∂z∗1

∂2g(z)
∂z2∂z∗2



(B.23)

Observe further that if we introduce the 2M × 1 extended vector:

u
∆= col

{
z, (z∗)T

}
(B.24)

then we can express Hc(z) in the following equivalent form in terms of
the variable u (compare with (B.17)):

Hc(u) ∆= ∇u∗ [∇u g(u)] = ∇u [∇u∗ g(u)] = Hc(z) (2M × 2M)
(B.25)

B.2.3 Relation Between Both Representations

The two Hessian forms, H(v) and Hc(u), defined by (B.17) and (B.25)
are closely related to each other. Indeed, using (A.10), it can be verified
that [218, 251]: {

Hc(u) = 1
4DH(v)D∗

H(v) = D∗Hc(u)D (B.26)
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where D is the following 2M × 2M block matrix:

D
∆=
[
IM jIM
IM −jIM

]
(B.27)

where IM denotes the identity matrix of size M . It is straightforward
to verify that

DD∗ = 2 I2M (B.28)
so that D is almost unitary (apart from scaling by 1/

√
2).

It follows from (B.26) and (B.28) that the matrices Hc(u) and
1
2H(v) are similar to each other and, hence, the eigenvalues of Hc(u)
coincide with the eigenvalues of 1

2H(v) [104, 113]. We conclude that
the complex Hessian matrix, Hc(u), can also be used to characterize
the nature of stationary points of g(z), just like it was the case with
the real Hessian matrix, H(v). Specifically, if zo = xo+ jyo is a station-
ary point of g(z) (i.e., a point where ∇z g(z) = 0), then the following
facts hold:

(a) zo is a local minimum of g(z) if Hc(uo) > 0, i.e., all eigenvalues
of Hc(uo) are positive.

(b) zo is a local maximum of g(z) if Hc(uo) < 0, i.e., all eigenvalues
of Hc(uo) are negative.

where uo = col
{
zo, (zo∗)T

}
.

For ease of reference, Table B.1 summarizes the various definitions
of Hessian matrices for real-valued functions g(z) ∈ R for both cases
when z is real or complex-valued. In the latter case, there are two
equivalent representations for the Hessian matrix: one representation
is in terms of the real components {x, y} and the second representation
is in terms of the complex components {z, z∗}. The Hessian matrix has
dimensions M ×M when z is real and 2M × 2M when z is complex.
It is customary to use the compact notation ∇2

z g(z) to refer to the
Hessian matrix whether z is real or complex and by that notation we
mean the following:

∇2
z g(z) ∆=

{
∇zT [∇z g(z)], when z is real (M ×M)
∇u∗ [∇u g(u)], when z is complex (2M × 2M) (B.29)



728 Complex Hessian Matrices

Table B.1: Definition of Hessian matrices for real-valued functions g(z) ∈ R for
both cases when z is real-valued or complex-valued.

Hessian matrix variables dimensions

z real H(z) = ∇zT [∇z g(z)] M ×M

H(v) = ∇vT [∇v g(v)] v =
[
x

y

]
z complex 2M × 2M

z = x+ jy Hc(u) = ∇u∗ [∇u g(u)] u =
[

z

(z∗)T

]

Example B.2 (Hessian matrix calculations). Let us illustrate the above
definitions by considering a couple of examples.

(1) Let g(z) = |z|2 = x2 + y2, where z is a scalar. Then,

H(v) =
[

2 0
0 2

]
≡ H, Hc(u) =

[
1 0
0 1

]
≡ Hc (B.30)

In this case, the Hessian matrices turn out to be constant and independent
of v and u.

(2) Consider now

g(z) = |z1|2 + 2Re(z∗1z2) = x2
1 + y2

1 + 2x1x2 + 2y1y2 (B.31)

where z = col{z1, z2} is 2× 1. Then, the Hessian matrices are again indepen-
dent of v and u:

H(v) =


2 2 0 0
2 0 0 0
0 0 2 2
0 0 2 0

 ≡ H, Hc(u) =


1 1 0 0
1 0 0 0
0 0 1 1
0 0 1 0

 ≡ Hc (B.32)

(3) Consider the real-valued quadratic function:

g(z) = κ+ a∗z + z∗a+ z∗Cz (B.33)
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where κ is a real scalar, a is a column vector, and C is a Hermitian matrix.
Then,

Hz∗z = ∇z∗ [∇z g(z)] = C (B.34)
HzTz = ∇zT [∇z g(z)] = 0 (B.35)

so that

Hc(u) =
[
C 0
0 CT

]
≡ Hc (B.36)

H(v) =
[

C + CT j(C − CT)
j(CT − C) C + CT

]
≡ H (B.37)

It follows from the expression for Hc(u) that it is sufficient to examine the
inertia of C to determine the nature of the stationary point(s) of g(z).

�

Example B.3 (Block diagonal Hessian matrix). Observe from definition (B.19)
that the complex Hessian matrix becomes block diagonal whenever HzTz = 0
in which case

Hc(z) =
[
Hz∗z 0

0 (Hz∗z)T

]
(2M × 2M) (B.38)

For example, as shown in the calculation leading to (B.36), block diagonal
Hessian matrices, Hc(z) or Hc(u), arise when g(z) is quadratic in z. Such
quadratic functions are common in design problems involving mean-square-
error criteria in adaptation and learning — see, e.g., expression (2.63) in the
body of the text.

�



C
Convex Functions

Let g(z) ∈ R denote a real-valued function of a possibly vector argu-
ment, z ∈ CM . It is sufficient for our purposes to assume that g(z) is
differentiable whenever necessary (although we shall also comment on
the situation in which g(z) may not be differentiable at some points).
By differentiability here we mean that the (Wirtinger) complex gra-
dient vector, ∇z g(z), and the Hessian matrix, ∇2

z g(z), both exist in
the manner defined in Appendices A and B. In particular, if we ex-
press z in terms of its real and imaginary arguments, z = x+ jy, then
we are assuming that the following partial derivatives exist whenever
necessary:

∂g(x, y)
∂xm

,
∂g(x, y)
∂yn

,
∂2g(x, y)
∂x2

m

,
∂2g(x, y)
∂yn

,
∂2g(x, y)
∂xm∂yn

(C.1)

for n,m = 1, 2, . . . ,M , and where {xm, yn} denote the individual en-
tries of the vectors x, y ∈ RM .

In the sequel, we define convexity for both cases when z ∈ RM is
real-valued and when z ∈ CM is complex-valued. We start with the
former case of real z, which is the situation most commonly studied

730
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in the literature [29, 45, 177, 190]. Subsequently, we explain how the
definitions and results extend to functions of complex arguments, z;
these extensions are necessary to deal with situations that arise in the
context of adaptation and learning in signal processing and communi-
cations problems.

C.1 Convexity in the Real Domain

We assume initially that the argument z ∈ RM is real-valued where,
as already stated earlier, the function g(z) ∈ R is also real-valued. We
discuss three forms of convexity: the standard definition of convexity
followed by strict convexity and then strong convexity.

C.1.1 Convex Sets

We first introduce the notion of convex sets. A set S ⊂ RM is said to
be convex if for any pair of points z1, z2 ∈ S, all points that lie on the
line segment connecting z1 and z2 also belong to S. Specifically,

∀z1, z2 ∈ S and 0 ≤ α ≤ 1 =⇒ αz1 + (1− α)z2 ∈ S. (C.2)

Figure C.1 illustrates this definition by showing two convex sets and
one non-convex set. In the latter case, a segment is drawn between
two points inside the set and it is seen that some of the points on the
segment lie outside the set.

C.1.2 Convexity

The function g(z) is said to be convex if its domain, written as dom(g),
is a convex set and if for any points z1, z2 ∈ dom(g) and for any 0 ≤
α ≤ 1, it holds that

g(αz1 + (1− α)z2) ≤ αg(z1) + (1− α)g(z2) (C.3)

In other words, all points belonging to the line segment connecting
g(z1) to g(z2) lie on or above the graph of g(z) — see the plot on the
left side of Figure C.2. An equivalent characterization of convexity is
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Figure C.1: The two sets on the left are examples of convex sets, while the
set on the right is a non-convex set.

that for any zo and z:

g(z) ≥ g(zo) + [∇z g(zo)] (z − zo) (C.4)

in terms of the inner product between the gradient vector at zo and the
vector difference (z− zo). This condition means that the tangent plane
at zo lies beneath the graph of the function — see the plot on the right
side of Figure C.2.

A useful property of every convex function is that, when a mini-
mum exists, it can only be a global minimum; there can be multiple
global minima but no local minima. That is, any stationary point at
which the gradient vector of g(z) is annihilated can only correspond
to a global minimum of the function; the function cannot have local
maxima, minima, or saddle points. A second useful property of convex
functions, and which follows from (C.4), is that for any z1 and z2:

g(z) convex =⇒ [∇z g(z2)−∇z g(z1)] (z2 − z1) ≥ 0 (C.5)

in terms of the inner product between two differences: the difference in
the gradient vectors and the difference in the vectors themselves. The
above result means that these difference vectors are aligned (i.e., have
a nonnegative inner product). Result (C.5) follows by using (C.4) to
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Figure C.2: Two equivalent characterizations of convexity for differentiable
functions g(z) as defined by (C.3) and (C.4).

write

g(z2) ≥ g(z1) + [∇z g(z1)] (z2 − z1) (C.6)
g(z1) ≥ g(z2) + [∇z g(z2)] (z1 − z2) (C.7)

so that upon substitution of the second inequality into the right-hand
side of the first inequality we obtain

g(z2) ≥ g(z2) + [∇z g(z2)] (z1 − z2) + [∇z g(z1)] (z2 − z1) (C.8)

from which we obtain (C.5).

Example C.1 (Convexity and sub-gradients). Property (C.4) is stated in terms
of the gradient vector of g(z) evaluated at location zo. This gradient vector
exists because we assumed the function g(z) to be differentiable. There exist,
however, cases where the function g(z) need not be differentiable at all points.
For example, for scalar arguments z, the function g(z) = |z| is convex but is
not differentiable at z = 0. For such non-differentiable convex functions, the
characterization (C.4) can be replaced by the statement that the function g(z)
is convex if, and only if, for every zo, a row vector y ∈ ∂g(zo) can be found
such that

g(z) ≥ g(zo) + y(z − zo) (C.9)
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in terms of the inner product between y and the vector difference (z − zo).
The vector y is called a sub-gradient and the notation ∂g(zo) denotes the set
of all possible sub-gradients, also called the sub-differential of g(z) at z = zo;
this situation is illustrated in Figure C.3. When g(z) is differentiable at zo,
then there is a unique sub-gradient vector and it coincides with ∇z g(zo). In
that case, statement (C.9) reduces to (C.4). We continue our presentation by
focusing on differentiable functions g(z).

Figure C.3: A non-differentiable convex function with a multitude of sub-
gradient directions at the point of non-differentiability.

�

Example C.2 (Some useful operations that preserve convexity). It is straight-
forward to verify from the definition (C.3) that the following operations
preserve convexity:

(1) if g(z) is convex then h(z) = g(Az + b) is also convex for any constant
matrix A and vector b. That is, affine transformations of z do not destroy
convexity.

(2) If g1(z) and g2(z) are convex functions, then h(z) = max{g1(z), g2(z)} is
convex. That is, pointwise maximization does not destroy convexity.
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(3) If g1(z) and g2(z) are convex functions, then h(z) = a1g1(z) + a2g2(z) is
also convex for any nonnegative coefficients a1 and a2.

�

C.1.3 Strict Convexity

The function g(z) is said to be strictly convex if the inequalities in (C.3)
or (C.4) are replaced by strict inequalities. More specifically, for any
z1 6= z2 and 0 < α < 1, a strictly convex function should satisfy:

g(αz1 + (1− α)z2) < αg(z1) + (1− α)g(z2) (C.10)

A useful property of every strictly convex function is that, when a
minimum exists, then it is both unique and also the global minimum of
the function. A second useful property replaces (C.5) by the following
statement with a strict inequality for any z1 6= z2:

g(z) strictly convex =⇒ [∇z g(z2)−∇z g(z1)] (z2 − z1) > 0 (C.11)

C.1.4 Strong Convexity

The function g(z) is said to be strongly convex (or, more specifically,
ν−strongly convex) if it satisfies the following stronger condition for
any 0 ≤ α ≤ 1:

g(αz1 + (1− α)z2) ≤ αg(z1) + (1− α)g(z2) − ν

2α(1− α)‖z1 − z2‖2

(C.12)
for some scalar ν > 0, and where the notation ‖ · ‖ denotes the Eu-
clidean norm of its vector argument; although strong convexity can also
be defined relative to other vector norms, the Euclidean norm is suffi-
cient for our purposes. Comparing (C.12) with (C.10) we conclude that
strong convexity implies strict convexity. Therefore, every strongly con-
vex function has a unique global minimum as well. Nevertheless, strong
convexity is a stronger condition than strict convexity so that functions
exist that are strictly convex but not necessarily strongly convex. For
example, for scalar arguments z, the function g(z) = z4 is strictly con-
vex but not strongly convex. On the other hand, the function g(z) = z2

is strongly convex — see Figure C.4. In summary, it holds that:

strong convexity =⇒ strict convexity =⇒ convexity (C.13)
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Figure C.4: The function g(z) = z4 is strictly convex but not strongly convex,
while the function g(z) = z2 is strongly convex. Observe how g(z) = z4 is more
flat around its global minimizer and moves away from it more slowly than in
the quadratic case.

A useful property of strongly convex functions is that they grow
faster than a linear function in z since an equivalent characterization
of strong convexity is that for any zo and z:

g(z) ≥ g(zo) + [∇z g(zo)] (z − zo) + ν

2‖z − zo‖
2 (C.14)

This means that the graph of g(z) is strictly above the tangent plane
at location zo and moreover, for any z, the distance between the graph
and the corresponding point on the tangent plane is at least as large as
the quadratic term ν

2‖z − zo‖
2. In particular, if we specialize (C.14) to

the case in which zo is selected to correspond to the global minimizer
of g(z), i.e., as

zo = zo, where ∇z g(zo) = 0 (C.15)

then we conclude that every strongly convex function satisfies the fol-
lowing useful property for every z:

g(z) − g(zo) ≥ ν

2‖z − z
o‖2, (zo is global minimizer) (C.16)

This property is illustrated in Figure C.5. Another useful property that
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follows from (C.14) is that for any z1, z2:

g(z) strongly convex =⇒ [∇z g(z2)−∇z g(z1)] (z2 − z1) ≥ ν‖z2 − z1‖2

(C.17)

This fact, along with the earlier conclusions (C.5) and (C.11) are
important properties of convex functions. We summarize them in
Table C.1 for ease of reference.

Table C.1: Useful properties implied by the convexity, strict convexity, or strong
convexity of a real-valued function g(z) ∈ R of a real argument z ∈ RM .

g(z) convex =⇒ [∇z g(z2)−∇z g(z1)] (z2 − z1) ≥ 0
g(z) strictly convex =⇒ [∇z g(z2)−∇z g(z1)] (z2 − z1) > 0

g(z) ν−strongly convex =⇒ [∇z g(z2)−∇z g(z1)] (z2 − z1) ≥ ν‖z2 − z1‖2

C.1.5 Hessian Matrix Conditions

We indicated earlier that it is sufficient for our treatment to assume
that the real-valued function g(z) is differentiable whenever necessary.
In particular, when it is twice continuously differentiable, then the prop-
erties of convexity, strict convexity, and strong convexity can be inferred
from the Hessian matrix of g(z) as follows (see, e.g., [177, 190]):

(a) ∇2
z g(z) ≥ 0 for all z ⇐⇒ g(z) is convex.

(b) ∇2
z g(z) > 0 for all z =⇒ g(z) is strictly convex.

(c) ∇2
z g(z) ≥ νIM > 0 for all z ⇐⇒ g(z) is ν−strongly convex.

(C.18)

Since g(z) is real-valued and z is also real-valued in this section, then
the Hessian matrix in this case is M ×M and given by the expression
shown in the first row of Table B.1 and by equation (B.29), namely,

∇2
z g(z) ∆= ∇zT [∇z g(z)] (C.19)
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Figure C.5: For ν−strongly convex functions, the increment g(z1) − g(zo)
grows at least as fast as the quadratic term ν

2‖z1 − zo‖2, as indicated by
(C.16) and where zo is the global minimizer of g(z).

Observe from (C.18) that the positive definiteness of the Hessian
matrix is only a sufficient condition for strict convexity (for example,
the function g(z) = z4 is strictly convex even though its second-order
derivative is not strictly positive for all z). One of the main advantages
of working with strongly convex functions is that their Hessian
matrices are sufficiently bounded away from zero.

Example C.3 (Strongly-convex functions). The following is a list of useful
strongly-convex functions that appear in applications involving adaptation,
learning, and estimation:

(1) Consider the quadratic function

g(z) = κ+ aTz + zTa+ zTCz (C.20)

with a symmetric positive-definite matrix C. The Hessian matrix is ∇2
z g(z) =
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2C, which is sufficiently bounded away from zero for all z since
∇2
z g(z) ≥ 2λmin(C) IM > 0 (C.21)

in terms of the smallest eigenvalue of C. Therefore, such quadratic functions
are strongly convex.

(2) The regularized logistic (or log-)loss function

g(z) = ln
(

1 + e−γh
Tz
)

+ ρ

2‖z‖
2 (C.22)

with a scalar γ, column vector h, and ρ > 0 is also strongly convex. This is
because the Hessian matrix is given by

∇2
z g(z) = ρ IM + hhT

(
e−γh

Tz

(1 + e−γhTz)2

)
≥ ρ IM > 0 (C.23)

(3) The regularized hinge loss function

g(z) = max
{

0, 1− γhTz
}

+ ρ

2‖z‖
2 (C.24)

with a scalar γ, column vector h, and ρ > 0 is also strongly convex, al-
though non-differentiable. This result can be verified by noting that the func-
tion max

{
0, 1− γhTz

}
is convex in z while the regularization term ρ

2‖z‖
2 is

ρ−strongly convex in z.
�

C.2 Convexity in the Complex Domain

We now extend the previous definitions and results to the case in which
z ∈ CM is complex-valued, while g(z) ∈ R continues to be real-valued.
One way to extend the concepts of convexity, strict convexity, and
strong convexity to the case of complex arguments is to view g(z) as
a function of the extended real variable v = col{x, y} ∈ R2M , i.e., to
work with g(v) instead of g(z), where v is defined in terms of the real
and imaginary parts of z, namely, z = x + jy. Observe in particular
that the complex variables z and z∗ can be recovered from knowledge
of v as follows: [

IM jIM
IM −jIM

]
︸ ︷︷ ︸

=D

[
x

y

]
︸ ︷︷ ︸

=v

=
[

z

(z∗)T

]
(C.25)

where the matrix D was introduced earlier in (B.27).
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C.2.1 Convexity

The function g(z) is said to be convex in z if the corresponding function
g(v) is convex in v, i.e., if dom(g(v)) is a convex set and for any v1, v2 ∈
dom(g(v)) and any 0 ≤ α ≤ 1, it holds that:

g(αv1 + (1− α)v2) ≤ αg(v1) + (1− α)g(v2) (C.26)

Since g(z) is real-valued, the above condition can be restated in terms
of the original complex variables z1, z2 ∈ CM as follows:

g(αz1 + (1− α)z2) ≤ αg(z1) + (1− α)g(z2) (C.27)

An equivalent characterization of the convexity condition (C.26) is that
for any vo,

g(v) ≥ g(vo) + [∇v g(vo)] (v − vo) (C.28)
This condition can again be restated in terms of the original complex
variables {z, zo}. To do so, we first need to find the relation between the
gradient vector ∇v g(v) evaluated in the v−domain and the gradient
vector ∇z g(z) evaluated in the z−domain. Thus, recall that v is a
column vector obtained by stacking x and y on top of each other.
Therefore, by referring to definition (A.26), we have that

∇v g(v) =
[
∇x g(x, y) ∇y g(x, y)

]
(C.29)

Multiplying from the right by the matrix D∗ from (B.27) we obtain

∇v g(v) · 12D
∗ = 1

2
[
∇x g(x, y) ∇y g(x, y)

] [ IM IM
−jIM jIM

]
(C.30)

Now consider the following complex gradient vectors, which correspond
to the extension of the earlier definition (A.9) to the vector case for
real-valued functions g(z): ∇z g(z) ∆= 1

2 [∇x g(x, y) − j∇y g(x, y)]
∇z∗ g(z) ∆= 1

2

[
∇xT g(x, y) + j∇yT g(x, y)

] (C.31)

Substituting into the right-hand side of (C.30) we conclude that
1
2 [∇v g(v)]D∗ =

[
∇z g(z) (∇z∗ g(z))T

]
(C.32)
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which is the desired relation between the gradient vectors ∇v g(v) and
∇z g(z). Using (C.25) and (C.32), and noting that g(z) = g(v), we can
now rewrite (C.28) in terms of the original complex variables {z, zo} as
follows:

g(z) ≥ g(zo) + 2Re { [∇z g(zo)] (z − zo) } (C.33)

in terms of the real part of the inner product that appears on the right-
hand side. A useful property that follows from (C.33) is that for any
z1 and z2 :

g(z) convex =⇒ Re { [∇z g(z2)−∇z g(z1)] (z2 − z1) } ≥ 0 (C.34)

C.2.2 Strict Convexity

The function g(z) is said to be strictly convex if the inequalities in
(C.27) or (C.33) are replaced by strict inequalities. For example, for
any z1 6= z2 and 0 < α < 1, a strictly convex function g(z) should
satisfy:

g(αz1 + (1− α)z2) < αg(z1) + (1− α)g(z2) (C.35)

Again, a useful property of every strictly convex function is that, when
a minimum exists, then it is both unique and the global minimum of
the function. Another useful property is that for any z1 6= z2:

g(z) strictly convex =⇒ Re {[∇z g(z2)−∇z g(z1)] (z2 − z1)} > 0
(C.36)

C.2.3 Strong Convexity

The function g(z) is said to be strongly convex (or, more specifically,
ν−strongly convex) in z if g(v) is ν−strongly convex in v, i.e., if g(v)
satisfies the following condition for any 0 ≤ α ≤ 1:

g(αv1 + (1− α)v2) ≤ αg(v1) + (1− α)g(v2) − ν

2α(1− α)‖v1 − v2‖2

(C.37)
for some ν > 0. Using the fact that

‖v1 − v2‖2 = ‖z1 − z2‖2 (C.38)
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the above condition can be restated in terms of the original complex
variables as follows:

g(αz1+(1−α)z2) ≤ αg(z1)+(1−α)g(z2)− ν2α(1−α)‖z1−z2‖2 (C.39)

An equivalent characterization of strong convexity is that for any zo,

g(z) ≥ g(zo) + 2Re {[∇z g(zo)] (z − zo)} + ν

2‖z − zo‖
2 (C.40)

In particular, if we select zo to correspond to the global minimizer of
g(z), i.e.,

zo = zo where ∇z g(zo) = 0 (C.41)

then strongly convex functions satisfy the following useful property:

g(z) − g(zo) ≥ ν

2‖z − z
o‖2, (zo is global minimizer) (C.42)

Another useful property that follows from (C.40) is that for any z1, z2:

g(z) strongly convex =⇒

Re {[∇z g(z2)−∇z g(z1)] (z2 − z1)} ≥ ν

2‖z2 − z1‖2

(C.43)
This fact, along with the earlier conclusions (C.34) and (C.36) are
important properties of convex functions. We summarize them in
Table C.2 for ease of reference.

Table C.2: Useful properties implied by the convexity, strict convexity, or strong
convexity of a real-valued function g(z) ∈ R of a complex argument z ∈ CM .

g(z) convex =⇒ Re { [∇z g(z2)−∇z g(z1)] (z2 − z1) } ≥ 0
g(z) strictly convex =⇒ Re {[∇z g(z2)−∇z g(z1)] (z2 − z1)} > 0

g(z) ν−strongly convex =⇒ Re {[∇z g(z2)−∇z g(z1)] (z2 − z1)} ≥ ν
2 ‖z2 − z1‖2
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C.2.4 Hessian Matrix Conditions

Since g(z) is real-valued and z is now complex-valued, then the Hessian
matrix of g(z) is 2M×2M and given by the expression shown in the last
row of Table B.1 — see (B.29). As before, the properties of convexity,
strict convexity, and strong convexity can be inferred from the Hessian
matrix of g(z) as follows:

(a) ∇2
z g(z) ≥ 0 for all z ⇐⇒ g(z) is convex.

(b) ∇2
z g(z) > 0 for all z =⇒ g(z) is strictly convex.

(c) ∇2
z g(z) ≥ ν

2I2M > 0 for all z ⇐⇒ g(z) is strongly convex.
(C.44)

Observe again that the positive definiteness of the Hessian matrix is
only a sufficient condition for strict convexity. Moreover, the condition
in part (c), with a factor of 1

2 multiplying ν, follows from the following
sequence of arguments:

g(z) is ν−strongly convex ⇐⇒ g(v) is ν−strongly convex
(C.18)⇐⇒ H(v) ≥ νI2M > 0, for all v

⇐⇒ 1
4DH(v)D∗ ≥ ν

4DD
∗ (B.28)= ν

2 I > 0
(B.26)⇐⇒ Hc(u) ≥ ν

2 I2M > 0 (C.45)

where we used the notation H(v) and Hc(u) to refer to the real and
complex forms of the Hessian matrix of g(z) — recall (B.17) and (B.25).

Example C.4 (Quadratic cost functions). Consider the quadratic function

g(z) = κ+ a∗z + z∗a+ z∗Cz (C.46)

with a Hermitian positive-definite matrix C > 0. The complex Hessian matrix
is given by

Hc(u) =
[
C 0
0 CT

]
(C.47)

which is sufficiently bounded away from zero from below since

Hc(u) ≥ λmin(C) I2M > 0 (C.48)

Therefore, such quadratic functions are strongly convex.
�



D
Mean-Value Theorems

Let g(z) ∈ R denote a real-valued function of a possibly vector argu-
ment z. We assume that g(z) is differentiable whenever necessary. In
this appendix, we review useful integral equalities that involve incre-
ments of the function g(z) and increments of its gradient vector; the
equalities correspond to extensions of the classical mean-value theorem
from single-variable real calculus to the case of functions of several and
possibly complex variables. We shall use the results of this appendix to
establish useful bounds on the increments of strongly convex functions
later in Appendix E. We again treat both cases of real and complex
arguments.

D.1 Increment Formulae for Real Arguments

Consider first the case in which the argument z ∈ RM is real-valued.
We pick any M−dimensional vectors zo and ∆z and introduce the
following real-valued and differentiable function of the scalar variable
t ∈ [0, 1]:

f(t) ∆= g(zo + t∆z) (D.1)

744
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Then, it holds that

f(0) = g(zo), f(1) = g(zo + ∆z) (D.2)

Using the fundamental theorem of calculus (e.g., [36, 150]) we have:

f(1)− f(0) =
∫ 1

0

df(t)
dt

dt (D.3)

It further follows from definition (D.1) that

df(t)
dt

= d

dt
[g(zo + t∆z)] = [∇z g(zo + t∆z)] ∆z (D.4)

in terms of the inner product computation on the far right, where
∇z g(z) denotes the (row) gradient vector of g(z) with respect to z.
Substituting (D.4) into (D.3) we arrive at the first desired mean-value
theorem result (see, e.g., [190]):

g(zo + ∆z) − g(zo) =
(∫ 1

0
∇z g(zo + t∆z)dt

)
∆z (D.5)

This result is a useful equality and it holds for any differentiable (not
necessarily convex) real-valued function g(z). The expression on the
right-hand side is an inner product between the column vector ∆z and
the result of the integration, which is a row vector. Expression (D.5)
tells us how the increment of the function g(z) in moving from z = zo
to z = zo + ∆z is related to the integral of the gradient vector of g(z)
over the segment zo + t∆z as t varies over the interval t ∈ [0, 1].

We can derive a similar relation for increments of the gradient vec-
tor itself. To do so, we introduce the column vector function h(z) =
∇zT g(z) and apply (D.5) to its individual entries to conclude that

h(zo + ∆z) − h(zo) =
(∫ 1

0
∇z h(zo + r∆z)dr

)
∆z (D.6)

Replacing h(z) by its definition, and transposing both sides of the above
equality, we arrive at another useful mean-value theorem result:

∇z g(zo + ∆z) − ∇z g(zo) = ∆zT
(∫ 1

0
∇2
z g(zo + r∆z)dr

)
(D.7)

This expression tells us how increments in the gradient vector in moving
from z = zo to z = zo + ∆z are related to the integral of the Hessian
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matrix of g(z) over the segment zo+r∆z and r varies over the interval
r ∈ [0, 1]. In summary, we arrive at the following statement.

Lemma D.1 (Mean-value theorem: Real arguments). Consider a real-valued
and twice-differentiable function g(z) ∈ R, where z ∈ RM is real-valued.
Then, for any M−dimensional vectors zo and ∆z, the following increment
equalities hold:

g(zo + ∆z) − g(zo) =
(∫ 1

0
∇z g(zo + t∆z)dt

)
∆z (D.8)

∇z g(zo + ∆z) − ∇z g(zo) = (∆z)T
(∫ 1

0
∇2
z g(zo + r∆z)dr

)
(D.9)

D.2 Increment Formulae for Complex Arguments

We now extend results (D.8) and (D.9) to the case when z ∈ CM is
complex valued. The extension can be achieved by replacing z = x+jy

by its real and imaginary parts {x, y}, applying results (D.8) and (D.9)
to the resulting function g(v) of the 2M × 1 extended real variable

v = col{x, y} (D.10)

and then transforming back to the complex domain. Indeed, as re-
marked earlier in (C.25), it is straightforward to verify that the vector
v is related to the vector

u
∆= col{z, (z∗)T} (D.11)

as follows:

[
z

(z∗)T

]
︸ ︷︷ ︸

∆= u

=
[
IM jIM
IM −jIM

]
︸ ︷︷ ︸

∆= D

[
x

y

]
︸ ︷︷ ︸

∆= v[
x

y

]
︸ ︷︷ ︸

v

= 1
2

[
IM IM

−jIM jIM

]
︸ ︷︷ ︸

= 1
2D
∗

[
z

(z∗)T

]
︸ ︷︷ ︸

u

(D.12)
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or, more compactly,

u = Dv and v = 1
2D
∗u (D.13)

where we used the fact from (B.28) that DD∗ = 2I2M . We can now
apply (D.8) to g(v) to get

g(vo + ∆v) − g(vo) =
(∫ 1

0
∇v g(vo + t∆v)dt

)
∆v (D.14)

where ∇v g(v) denotes the gradient vector of g(v). We can rewrite
(D.14) in terms of the original complex variables {zo,∆z}. To do so,
we call upon relation (C.32) and the equality g(z) = g(v) to rewrite
(D.14) as

g(zo + ∆z)− g(zo) = (D.15)

(D.13)= 1
2

(∫ 1

0
∇v g(vo + t∆v)dt

)
D∗D∆v︸ ︷︷ ︸

∆= ∆u

(C.32)=
(∫ 1

0

[
∇z g(zo + t∆z) (∇z∗ g(zo + t∆z))T

]
dt

)[
∆z

(∆z∗)T

]

We then arrive at the desired mean-value theorem result in the complex
case:

g(zo + ∆z) − g(zo) = 2Re
{(∫ 1

0
∇z g(zo + t∆z)dt

)
∆z
}

(D.16)

where we used the fact that for real-valued functions g(z) it holds that

∇z∗ g(z) = [∇z g(z)]∗ (D.17)
Expression (D.16) is the extension of (D.8) to the complex case.

Similarly, applying (D.6) to h(v) = ∇vT g(v) we obtain that for any
vo and ∆v:

∇vT g(vo + ∆v) − ∇vT g(vo) =
(∫ 1

0
∇2
v g(vo + r∆v)dr

)
∆v (D.18)

Multiplying from the left by 1
2D and using (C.30)–(C.31), as well as

the fact that 1
4DHv(v)D∗ = Hc(u) (recall (B.26)), we find that rela-

tion (D.18) defined in terms of {vo,∆v} can be transformed into the



748 Mean-Value Theorems

mean-value theorem relation (D.20) in terms of the variables {zo,∆z}.
Expression (D.20) is the extension of (D.9) to the complex case. Ob-
serve how both gradient vectors relative to z∗ and zT now appear in
the relation. We show below in Example D.1 how the relation can be
simplified in the special case when the Hessian matrix turns out to be
block diagonal. In summary, we arrive at the following result.

Lemma D.2 (Mean-value theorem: Complex arguments). Consider a real-
valued and twice-differentiable function g(z) ∈ R, where z ∈ CM is complex-
valued. Then, for any M−dimensional vectors zo and ∆z, the following incre-
ment equalities hold:

g(zo + ∆z) − g(zo) = 2Re
{(∫ 1

0
∇z g(zo + t∆z)dt

)
∆z
}

(D.19)

[
∇z∗ g(zo + ∆z)
∇zT g(zo + ∆z)

]
−
[
∇z∗ g(zo)
∇zT g(zo)

]
=
(∫ 1

0
∇2
z g(zo + r∆z)dr

)[
∆z

(∆z∗)T

]
(D.20)

Example D.1 (Block diagonal Hessian matrix). Consider the real-valued
quadratic function

g(z) = κ+ a∗z + z∗a+ z∗Cz (D.21)

where κ is a real scalar, a is a column vector, and C is a Hermitian matrix.
Then, the Hessian matrix of g(z) is block diagonal and given by

∇2
z g(z) ≡ Hc(u) =

[
C 0
0 CT

]
(D.22)

In this case, expression (D.20) decouples into two separate and equivalent
relations. Keeping one of the relations we get

∇z g(zo + ∆z) = ∇z g(zo) + (∆z)∗ C (D.23)

Obviously, in this case, this relation could have been deduced directly from
expression (D.21) by using the fact that

∇z g(z) = a∗ + z∗C (D.24)

�



E
Lipschitz Conditions

Let g(z) ∈ R denote a real-valued ν−strongly convex function of a pos-
sibly vector argument z. We assume that g(z) is differentiable whenever
necessary. In this appendix, we use the mean-value theorems from Ap-
pendix D to derive some useful bounds on the increments of strongly
convex functions. These bounds will assist in analyzing the mean-
square-error stability and performance of distributed algorithms. We
treat both cases of real and complex arguments.

E.1 Perturbation Bounds in the Real Domain

Consider first the case in which the argument z ∈ RM is real-valued.
Let zo denote the location of the unique global minimizer of g(z) so
that ∇z g(zo) = 0. Combining the mean-value theorem results (D.8)
and (D.9) we get

g(zo + ∆z)− g(zo) = (∆z)T
[∫ 1

0

∫ 1

0
t∇2

z g(zo + tr∆z)drdt
]

∆z (E.1)

Now assume the Hessian matrix of g(z) is uniformly bounded from
above, i.e.,

∇2
z g(z) ≤ δ IM , for all z (E.2)
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and for some δ > 0. It follows from (E.1) that

g(zo + ∆z) − g(zo) ≤ δ

2 ‖∆z‖
2 (E.3)

which leads to the following useful statement for strongly-convex func-
tions.

Lemma E.1 (Perturbation bound: Real arguments). Consider a ν−strongly con-
vex and twice-differentiable function g(z) ∈ R and let zo ∈ RM denote its
global minimizer. Assume that its M ×M Hessian matrix (defined according
to the first row in Table B.1 or equation (B.29)) is uniformly bounded from
above by ∇2

z g(z) ≤ δIM , for all z and for some δ > 0. We already know from
item (c) in (C.18) that the same Hessian matrix is uniformly bounded from
below by νIM , i.e.,

νIM ≤ ∇2
z g(z) ≤ δIM , for all z (E.4)

Under condition (E.4), it follows from (C.16) and (E.3) that, for any ∆z, the
function increments are bounded by the squared Euclidean norm of ∆z as
follows:

ν

2 ‖∆z‖
2 ≤ g(zo + ∆z) − g(zo) ≤ δ

2 ‖∆z‖
2 (E.5)

One useful conclusion that follows from (E.5) is that under condition
(E.4), every strongly convex function g(z) can be sandwiched between
two quadratic functions, namely,

g(zo) + ν

2 ‖z − z
o‖2 ≤ g(z) ≤ g(zo) + δ

2 ‖z − z
o‖2 (E.6)

A second useful conclusion can be deduced from (E.1) when the size of
∆z is small and when the Hessian matrix of g(z) is smooth enough in
a small neighborhood around z = zo. Specifically, assume the Hessian
matrix function is locally Lipschitz continuous in a small neighborhood
around z = zo, namely,∥∥∥∇2

z g(zo + ∆z)−∇2
z g(zo)

∥∥∥ ≤ κ ‖∆z‖ (E.7)

for sufficiently small values ‖∆z‖ ≤ ε and for some κ > 0. This condi-
tion implies that we can write

∇2
z g(zo + ∆z) = ∇2

z g(zo) + O(‖∆z‖) (E.8)
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It then follows from equality (E.1) that, for sufficiently small ∆z:

g(zo + ∆z) − g(zo) = (∆z)T
[1

2∇
2
z g(zo)

]
∆z + O(‖∆z‖3)

≈ (∆z)T
[1

2∇
2
z g(zo)

]
∆z

= ‖∆z‖21
2∇2

z g(zo)
(E.9)

where the symbol ≈ in the second line is used to indicate that higher-
order powers in ‖∆z‖ are being ignored. Moreover, for any Hermitian
positive-definite weighting matrix W > 0, the notation ‖x‖2W refers to
the weighted square Euclidean norm x∗Wx.

We conclude from (E.9) that the increment in the value of the func-
tion in a small neighborhood around z = zo can be well approximated
by means of a weighted square Euclidean norm; the weighting matrix
in this case is equal to the Hessian matrix of g(z) evaluated at z = zo

and scaled by 1/2. The error in this approximate evaluation is in the
order of ‖∆z‖3.

Lemma E.2 (Perturbation approximation: Real arguments). Consider the same
setting of Lemma E.1 and assume additionally that the Hessian matrix func-
tion is locally Lipschitz continuous in a small neighborhood around z = zo as
defined by (E.7). It then follows that the increment in the value of the function
g(z) for sufficiently small variations around z = zo can be well approximated
by

g(zo + ∆z) − g(zo) ≈ ∆zT
[

1
2∇

2
z g(zo)

]
∆z (E.10)

where the approximation error is in the order of O(‖∆z‖3).

Example E.1 (Quadratic cost functions with real arguments). Consider a
quadratic function of the form

g(z) = κ− aTz − zTa+ zTCz (E.11)

where κ is a scalar, a is a column vector, and C is a symmetric positive-definite
matrix. It is straightforward to verify, by expanding the right-hand side in the
expression below, that g(z) can also be written as

g(z) = κ− aTC−1a + (z − C−1a)TC(z − C−1a) (E.12)
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The Hessian matrix is ∇2
z g(z) = 2C and it is clear that

2λmin(C) IM ≤ ∇2
z g(z) ≤ 2λmax(C) IM (E.13)

in terms of the smallest and largest eigenvalues of C, which are both positive.
Therefore, condition (E.4) is automatically satisfied with

ν = 2λmin(C), δ = 2λmax(C) (E.14)

Likewise, condition (E.7) is obviously satisfied since the Hessian matrix in this
case is constant and independent of z. The function g(z) has a unique global
minimizer and it occurs at the point z = zo where ∇z g(zo) = 0. We know
from the expression for g(z) that

∇z g(z) = −2aT + 2zTC (E.15)

so that zo = C−1a and
g(zo) = κ− aTC−1a (E.16)

Therefore, applying (E.6) we conclude that

g(zo) + λmin(C) ‖z − C−1a‖2 ≤ g(z) ≤ g(zo) + λmax(C) ‖z − C−1a‖2
(E.17)

Note that we could have arrived at this result directly from (E.12) as well.
Moreover, from result (E.10) we would estimate that, for sufficiently small

‖∆z‖,
g(zo + ∆z) − g(zo) ≈ ‖∆z‖2C (E.18)

Actually, in this case, exact equality holds in (E.18) for any ∆z due to the
quadratic nature of the function g(z). Indeed, note from (E.12) that

g(z) = g(zo) + ‖z − zo‖2C (E.19)

so that if we set z = zo + ∆z, for any ∆z, the above relation gives

g(zo + ∆z) − g(zo) = ‖∆z‖2C , for any ∆z (E.20)

which is a stronger result than (E.18); note in particular that ∆z does not
need to be infinitesimally small any more, as was the case with (E.10); this
latter relation is useful for more general choices of g(z) that are not necessarily
quadratic in z.

�
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E.2 Lipschitz Conditions in the Real Domain

The statement of Lemma E.1 requires the Hessian matrix to be upper
bounded as in (E.2), i.e., ∇2

z g(z) ≤ δIM for all z. For differentiable
convex functions, this condition is equivalent to requiring the gradient
vector to be Lipschitz continuous, i.e., to satisfy

‖∇z g(z2)−∇z g(z1)‖ ≤ δ ‖z2 − z1‖ (E.21)

for all z1 and z2. Since it is customary in the literature to rely more
frequently on Lipschitz conditions, the following statement establishes
the equivalence of conditions (E.2) and (E.21) for general convex func-
tions (that are not necessarily strongly-convex). One advantage of using
condition (E.21) instead of (E.2) is that the function g(z) would not
need to be twice-differentiable since condition (E.21) only involves the
gradient vector of the function.

Lemma E.3 (Lipschitz and bounded Hessian matrix). Consider a real-valued
and twice-differentiable convex function g(z) ∈ R. Then, the following two
conditions are equivalent:

∇2
zg(z) ≤ δ IM , for all z ⇐⇒ ‖∇zg(z2)−∇zg(z1)‖ ≤ δ ‖z2−z1‖, for all z1, z2

(E.22)

Proof. Assume first that the Hessian matrix, ∇2
z g(z), is uniformly upper

bounded by δ IM for all z; we know that it is nonnegative definite since g(z)
is convex and, therefore, ∇2

z g(z) is lower bounded by zero. We pick any z1
and z2 and introduce the column vector function h(z) = ∇zT g(z). Applying
(D.8) to h(z) gives

h(z2) − h(z1) =
(∫ 1

0
∇z h(z1 + t(z2 − z1))dt

)
(z2 − z1) (E.23)

so that using 0 ≤ ∇2
z g(z) ≤ δ IM , we get

‖∇zT g(z2) − ∇zT g(z1)‖ ≤
(∫ 1

0
δdt

)
‖z2 − z1‖ (E.24)

and we arrive at the Lipschitz condition on the right-hand side of (E.22) since
∇zT g(z) = [∇z g(z)]T.
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Conversely, assume the Lipschitz condition on the right-hand side of
(E.22) holds, and introduce the column vector function f(t) = ∇zT g(z+t∆z)
defined in terms of a scalar real parameter t. Then,

df(t)
dt

=
[
∇2
z g(z + t∆z)

]
∆z (E.25)

Now, for any ∆t and in view of the Lipschitz condition, it holds that

‖f(t+ ∆t) − f(t)‖ = ‖∇zT g(z + (t+ ∆t)∆z) − ∇zT g(z + t∆z)‖
≤ δ |∆t| ‖∆z‖ (E.26)

so that
lim

∆t→0

‖f(t+ ∆t) − f(t)‖
|∆t|︸ ︷︷ ︸

=‖df(t)/dt‖

≤ δ ‖∆z‖ (E.27)

Using (E.25) we conclude that∥∥[∇2
z g(z + t∆z)

]
∆z
∥∥ ≤ δ ‖∆z‖, for any t, z and ∆z (E.28)

Setting t = 0, squaring both sides, and recalling that the Hessian matrix is
symmetric, we obtain

(∆z)T [∇2
z g(z)

]2 ∆z ≤ δ2‖∆z‖2, for any z,∆z (E.29)

from which we conclude that ∇2
z g(z) ≤ δ IM for all z, as desired.

We can additionally verify that the local Lipschitz condition (E.7)
used in Lemma E.2 is actually equivalent to a global Lipschitz property
on the Hessian matrix under condition (E.4).

Lemma E.4 (Global Lipschitz condition). Consider a real-valued and twice-
differentiable ν−strongly convex function g(z) ∈ R and assume it satisfies
conditions (E.4) and (E.7). It then follows that the Hessian matrix of g(z) is
globally Lipschitz relative to zo, namely, it satisfies

‖∇2
z g(z)−∇2

z g(zo)‖ ≤ κ′‖z − zo‖, for all z (E.30)

where the positive scalar κ′ is defined in terms of the parameters {κ, δ, ν, ε}
as

κ′ = max
{
κ,
δ − ν
ε

}
(E.31)
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Proof. Following [277], for any vector x, it holds that

xT [∇2
z g(z)−∇2

z g(zo)
]
x = xT∇2

z g(z)x − xT∇2
z g(zo)x

(E.4)

≤ δ‖x‖2 − ν‖x‖2

= (δ − ν) ‖x‖2 (E.32)

And since the Hessian matrix difference is symmetric, we conclude that
∇2
z g(z) − ∇2

z g(zo) ≤ (δ − ν)IM so that, in terms of the 2−induced norm:

‖∇2
z g(z)−∇2

z g(zo)‖ ≤ δ − ν (E.33)
Now, consider any vector z such that ‖z − zo‖ ≤ ε. Then,

‖∇2
z g(z)−∇2

z g(zo)‖
(E.7)

≤ κ ‖z − zo‖
(E.31)

≤ κ′‖z − zo‖ (E.34)

On the other hand, for any vector z such that ‖z − zo‖ > ε, we have

‖∇2
z g(z)−∇2

z g(zo)‖
(E.33)

≤
(
δ − ν
ε

)
ε

(E.31)

≤ κ′‖z − zo‖ (E.35)

E.3 Perturbation Bounds in the Complex Domain

The statement below extends the result of Lemma E.1 to the case of
complex arguments, z ∈ CM . Comparing the bounds in (E.37) with
the earlier result (E.5), we observe that the relations are identical. The
only difference in the complex case relative to the real case is that the
upper and lower bounds on the complex Hessian matrix in (E.36) are
scaled by 1/2 relative to the bounds in (E.4).

Lemma E.5 (Perturbation bound: Complex arguments). Consider a ν−strongly
convex and twice-differentiable function g(z) ∈ R and let zo ∈ CM denote
its global minimizer. The function g(z) is real-valued but z is now complex-
valued. Assume that the 2M × 2M complex Hessian matrix of g(z) (defined
according to the last row of Table B.1 and (B.29)) is uniformly bounded from
above by ∇2

z g(z) ≤ δ
2I2M , for all z and for some δ > 0. We already know

from item (c) in (C.44) that the same Hessian matrix is uniformly bounded
from below by ν

2 I2M , i.e.,

ν

2 I2M ≤ ∇2
z g(z) ≤ δ

2 I2M , for all z (E.36)
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Under condition (E.36) it holds that, for any ∆z, the function increments are
bounded by the squared Euclidean norm of ∆z as follows:

ν

2 ‖∆z‖
2 ≤ g(zo + ∆z) − g(zo) ≤ δ

2 ‖∆z‖
2 (E.37)

Proof. The argument is based on expressing z in terms of its real and imag-
inary parts, z = x + jy, transforming g(z) into a function of the 2M × 1 ex-
tended real variable v = col{x, y}, and then applying the result of Lemma E.1
to g(v).

To begin with, recall that the 2M ×2M Hessian matrix of g(v) is denoted
by H(v) and is constructed according to the second row of Table B.1. This
real Hessian matrix is related by (B.26) to the complex Hessian matrix, Hc(u),
of g(z) and which we are denoting by ∇2

z g(z) in the statement of the lemma.
Therefore, the upper bound on ∇2

z g(z) in (E.36) can be transformed into an
upper bound on H(v) by noting that

H(v) (B.26)= D∗
[
∇2
z g(z)

]
D ≤ δ

2 D
∗D = δ I2M (E.38)

since D∗D = 2I2M and, hence, H(v) ≤ δI2M . Combining this result with
(C.45) we conclude that the Hessian matrix H(v) is bounded as follows:

ν I2M ≤ H(v) ≤ δ I2M (E.39)

Consequently, if we apply the result of Lemma E.1 to the function g(v), whose
argument v is real, we find that

ν

2 ‖∆v‖
2 ≤ g(vo + ∆v) − g(vo) ≤ δ

2 ‖∆v‖
2 (E.40)

which is equivalent to the desired relation (E.37) in terms of the original
variables {zo,∆z} since, for any z, g(z) = g(v) and ‖z‖ = ‖v‖.

One useful conclusion that follows from (E.37) is that under condition
(E.36), the strongly convex function g(z) can be sandwiched between
two quadratic functions, namely,

g(zo) + ν

2 ‖z − z
o‖2 ≤ g(z) ≤ g(zo) + δ

2 ‖z − z
o‖2 (E.41)

A second useful conclusion is an extension of (E.10) to the case of
complex arguments z. Introduce the extended vector:

∆ze ∆=
[

∆z
(∆z∗)T

]
(E.42)
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Lemma E.6 (Perturbation approximation: Complex arguments). Consider the
same setting of Lemma E.5 and assume additionally that the Hessian matrix
function is locally Lipschitz continuous in a small neighborhood around z =
zo, namely, ∥∥∇2

z g(zo + ∆z)−∇2
z g(zo)

∥∥ ≤ κ ‖∆z‖ (E.43)

for sufficiently small values ‖∆z‖ ≤ ε and for some κ > 0. It then follows that
the increment in the value of the function g(z) for small variations around
z = zo can be well approximated by:

g(zo + ∆z) − g(zo) ≈ (∆ze)∗
[

1
2∇

2
z g(zo)

]
∆ze (E.44)

where the approximation error is in the order of O(‖∆z‖3).

Proof. Result (E.44) can be derived from (E.10) as follows. We again trans-
form g(z) into the function g(v) of the real variable v = col{x, y} and then
apply (E.10) to g(v) for sufficiently small ∆v, which gives

g(vo + ∆v) − g(vo) ≈ (∆v)T
[

1
2H(vo)

]
∆v, as ∆v → 0 (E.45)

in terms of the 2M × 2M Hessian matrix of g(v) evaluated at v = vo. This
Hessian matrix is related to the complex Hessian matrix Hc(uo) according to
(B.26). Thus, observe that

(∆v)T
[

1
2H(vo)

]
∆v = 1

4 (∆v)T
D∗D

[
1
2H(vo)

]
D∗D∆v

(D.13)= 1
2 (∆v)T

D∗︸ ︷︷ ︸
(∆u)∗

1
4DH(vo)D∗︸ ︷︷ ︸

Hc(uo)

D∆v︸ ︷︷ ︸
∆u

(B.26)= 1
2 (∆u)∗Hc(uo)∆u

(B.24)= 1
2
[

(∆z)∗ ∆zT ]
∇2
z g(zo)

[
∆z

(∆z∗)T

]
= (∆ze)∗

[
1
2∇

2
z g(zo)

]
∆ze (E.46)

as claimed.
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Example E.2 (Quadratic cost functions with complex arguments). Let us illus-
trate the above result by considering a quadratic function of the form

g(z) = κ− a∗z − z∗a+ z∗Cz (E.47)

where κ is a scalar, a is a column vector, and C is a Hermitian positive-definite
matrix. It is straightforward to verify, by expanding the right-hand side in the
expression below, that g(z) can be also written as

g(z) = κ− a∗C−1a + (z − C−1a)∗C(z − C−1a) (E.48)

The Hessian matrix in this case is 2M × 2M and given by

∇2
z g(z) =

[
C 0
0 CT

]
(E.49)

It is clear that

λmin(C) I2M ≤ ∇2
z g(z) ≤ λmax(C) I2M (E.50)

in terms of the smallest and largest eigenvalues of C, which are both positive.
Therefore, condition (E.36) is automatically satisfied with

ν = 2λmin(C), δ = 2λmax(C) (E.51)

Likewise, condition (E.43) is satisfied since the Hessian matrix is constant
and independent of z. The function g(z) has a unique global minimizer and
it occurs at the point z = zo where ∇z g(zo) = 0. We know from expression
(E.48) for g(z) that zo = C−1a and g(zo) = κ− a∗C−1a. Therefore, applying
(E.41) we conclude that

g(zo) + λmin(C) ‖z−C−1a‖2 ≤ g(z) ≤ g(zo)+λmax(C)‖z−C−1a‖2 (E.52)

Note that we could have arrived at this result directly from (E.48) as well.
Moreover, we would estimate from (E.44) that

g(zo + ∆z) − g(zo) ≈ 1
2

[
(∆z)∗ (∆z)T

] [ C 0
0 CT

] [
∆z

(∆z∗)T

]
= ‖∆z‖2C (E.53)

where the notation ‖x‖2C now denotes the squared Euclidean quantity x∗Cx.
Actually, in this case, exact equality holds in (E.53) for any ∆z due to the
quadratic nature of the function g(z). Indeed, note that (E.48) can be rewrit-
ten as

g(z) = g(zo) + ‖z − zo‖2C (E.54)
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so that if we set z = zo + ∆z, for any ∆z, the above relation gives

g(zo + ∆z) − g(zo) = ‖∆z‖2C , for any ∆z (E.55)

which is a stronger result than the approximation in (E.53); note in particular
that ∆z does not need to be infinitesimally small any more, as was the case
with (E.44); this latter result is applicable to more general choices of g(z) that
are not necessarily quadratic in z.

�

E.4 Lipschitz Conditions in the Complex Domain

The statement of Lemma E.5 requires the Hessian matrix to be up-
per bounded as in (E.36), i.e., ∇2

z g(z) ≤ δ
2I2M for all z. As was the

case with real arguments in Lemma E.3, we can argue that for gen-
eral convex functions (that are not necessarily strongly convex), this
condition is equivalent to requiring the gradient vector to be Lipschitz
continuous.

Lemma E.7 (Lipschitz and bounded Hessian matrix). Consider a real-valued
and twice-differentiable convex function g(z) ∈ R, where z ∈ CM is now
complex valued. Then, the following two conditions are equivalent:

∇2
zg(z) ≤ δ

2I2M , for all z ⇐⇒ ‖∇zg(z2)−∇zg(z1)‖ ≤ δ

2 ‖z2−z1‖, for all z1, z2

(E.56)
Proof. The above result can be derived from (E.22) as follows. We transform
g(z) into the function g(v) of the real variable v = col{x, y}, where z = x+jy,
and then apply (E.22) to g(v).

First, recall from the argument that led to (E.39) that the complex Hessian
matrix of g(z) is bounded by δ

2I2M if, and only if, the real Hessian matrix of
g(v) is bounded by δ I2M . Using this observation and applying (E.22) to g(v)
we get

∇2
z g(z) ≤ δ

2 I2M
(E.39)⇐⇒ ∇2

v g(v) ≤ δ I2M , for all v
(E.22)⇐⇒ ‖∇v g(v2)−∇v g(v1)‖ ≤ δ ‖v2 − v1‖

(E.57)

for any v1, v2. Now we know from (C.32) that
1
2 [∇v g(v)]D∗ =

[
∇z g(z) (∇z∗ g(z))T

]
(E.58)
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Recalling from (B.28) that the matrix D∗/
√

2 is unitary, we get

‖∇v g(v2)−∇v g(v1)‖ = (E.59)

=
∥∥∥∥[∇v g(v2)−∇v g(v1)] · D

∗
√

2

∥∥∥∥
(E.58)=

√
2 ·
∥∥∥[ ∇z g(z2)−∇z g(z1) (∇z∗ g(z2)−∇z∗ g(z1))T

]∥∥∥
= 2 · ‖∇z g(z2)−∇z g(z1)‖

where we used (D.17). Noting that ‖v2 − v1‖ = ‖z2 − z1‖ and substituting
into (E.57) we conclude that

∇2
z g(z) ≤ δ

2I2M ⇐⇒ ‖∇z g(z2)−∇z g(z1)‖ ≤ δ

2‖z2 − z1‖, for all z1, z2

(E.60)
as claimed.

We can again verify that the local Lipschitz condition (E.43) used in
Lemma E.6 is equivalent to a global Lipschitz property on the Hessian
matrix under the bounds (E.36). The proof of the following result is
similar to that of Lemma E.4.

Lemma E.8 (Global Lipschitz condition). Consider a real-valued and twice-
differentiable ν−strongly convex function g(z) ∈ R and assume it satisfies
conditions (E.36) and (E.43). It then follows that the 2M × 2M Hessian
matrix of g(z) is globally Lipschitz relative to zo ∈ CM , namely,

‖∇2
z g(z)−∇2

z g(zo)‖ ≤ κ′‖z − zo‖, for all z (E.61)

where the positive scalar κ′ is defined in terms of the parameters {κ, δ, ν, ε}
as

κ′ = max
{
κ,
δ − ν

2ε

}
(E.62)



F
Useful Matrix and Convergence Results

We collect in this appendix several useful matrix properties and con-
vergence results that are called upon in the text.

F.1 Kronecker Products

Traditional Kronecker Form
Let A = [aij ]ni,j=1 and B = [bij ]mi,j=1 be n × n and m × m possibly
complex-valued matrices, respectively, whose individual (i, j)−th en-
tries are denoted by aij and bij . Their Kronecker product is denoted
by K = A⊗B and is defined as the nm×nm matrix whose entries are
given by [104, 113]:

K
∆= A⊗B =


a11B a12B . . . a1nB

a21B a22B . . . a2nB
...

...
an1B an2B . . . annB

 (F.1)

In other words, each scalar entry aij of A is replaced by a block quantity
that is equal to a scaled multiple of B, namely, aijB.

Let {λi(A), i = 1, . . . , n} and {λj(B), j = 1, . . . ,m} denote the
eigenvalues of A and B, respectively. Then, the eigenvalues of A ⊗ B

761
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will consist of all nm product combinations {λi(A)λj(B)}. A similar
conclusion holds for the singular values of A ⊗ B in relation to the
singular values of the individual matrices A and B, which we denote
by {σi(A), σj(B)}. Table F.1 lists some well-known properties of Kro-
necker products for matrices {A,B,C,D} of compatible dimensions
and column vectors {x, y}. The last three properties involve the trace
and vec operations: the trace of a matrix is the sum of its diagonal
elements and the vec operation transforms a matrix into a vector by
stacking the columns of the matrix on top of each other.

Table F.1: Properties of the traditional Kronecker product definition (F.1).

1. (A+B)⊗ C = (A⊗ C) + (B ⊗ C)
2. (A⊗B)(C ⊗D) = (AC ⊗BD)
3. (A⊗B)T = AT ⊗BT

4. (A⊗B)∗ = A∗ ⊗B∗
5. (A⊗B)−1 = A−1 ⊗B−1

6. (A⊗B)` = A` ⊗B`
7. {λ(A⊗B)} = {λi(A)λj(B)}n,mi=1,j=1
8. {σ(A⊗B)} = {σi(A)σj(B)}n,mi=1,j=1
9. det(A⊗B) = (detA)m(detB)n
10. Tr(A⊗B) = Tr(A)Tr(B)
11. Tr(AB) =

[
vec(BT)

]T vec(A) = [vec(B∗)]∗ vec(A)
12. vec(ACB) = (BT ⊗A)vec(C)
13. vec(xyT) = y ⊗ x

Block Kronecker Form
Let A now denote a block matrix of size np×np with each block having
size p × p. We denote the (i, j)−th sub-matrix of A by the notation
Aij ; it is a block of size p× p. Likewise, we let B denote a second block
matrix of size mp × mp with each of its blocks having the same size
p×p. We denote the (i, j)−th sub-matrix of B by the notation Bij ; it is
a block of size p×p. The block Kronecker product of these two matrices
is denoted by K = A⊗b B and is defined as the following block matrix
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of dimensions nmp2 ×mnp2 [145]:

K ∆= A⊗b B =


K11 K12 . . . K1n
K21 K22 . . . K2n
...

... . . . ...
Kn1 Kn2 . . . Knn

 (F.2)

where each block Kij is mp2 ×mp2 and is constructed as follows:

Kij =


Aij ⊗B11 Aij ⊗B12 . . . Aij ⊗B1m
Aij ⊗B21 Aij ⊗B22 . . . Aij ⊗B2m

...
... . . . ...

Aij ⊗Bm1 Aij ⊗Bm2 . . . Aij ⊗Bmm

 (F.3)

Table F.2 lists some useful properties of block Kronecker products for
matrices {A,B, C,D} with blocks of size p×p. The last three properties
involve the block vectorization operation denoted by bvec: it vectorizes
each block entry of the matrix and then stacks the resulting columns
on top of each other, i.e.,

bvec(A) ∆= col {vec(A11), vec(A21), . . . , vec(An1),
vec(A21), vec(A22), . . . , vec(An2),

... (F.4)
vec(A1n), vec(A2n), . . . , vec(Ann)}

Table F.2: Properties of the block Kronecker product definition (F.2).

1. (A+ B)⊗b C = (A⊗b C) + (B ⊗b C)
2. (A⊗b B)(C ⊗b D) = (AC ⊗b BD)
3. (A⊗B)⊗b (C ⊗D) = (A⊗ C)⊗ (B ⊗D)
4. (A⊗b B)T = AT ⊗b BT

5. (A⊗b B)∗ = A∗ ⊗b B∗
6. {λ(A⊗b B)} = {λi(A)λj(B)}np,mpi=1,j=1

7. Tr(AB) =
[
bvec(BT)

]T bvec(A) = [bvec(B∗)]∗ bvec(A)
8. bvec(ACB) = (BT ⊗b A)bvec(C)
9. bvec(xyT) = y ⊗b x
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Figure F.1 illustrates one of the advantages of working with the
bvec operation for block matrices [278]. The figure compares the
effect of the block vectorization operation to that of the regular vec
operation. It is seen that bvec preserves the locality of the blocks from
the original matrix: entries arising from the same block appear to-
gether followed by entries of the other successive blocks. In contrast, in
the vec construction, entries from different blocks are blended together.

Figure F.1: Schematic comparison of the regular and block vectorization op-
erations. It is seen that the bvec operation preserves the locality of the blocks
from the original matrix, while the entries of the blocks get mixed up in the
regular vec operation.

F.2 Vector and Matrix Norms

Vector Norms
For any vector x of size N × 1 and entries {xk}, any of the definitions
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listed in Table F.3 constitutes a valid vector norm.

Table F.3: Useful vector norms, where the {xk} denote the entries of x ∈ CN .

‖x‖1
∆=

N∑
k=1
|xk| (1−norm)

‖x‖∞
∆= max

1≤k≤N
|xk| (∞−norm)

‖x‖2
∆=
(

N∑
k=1
|xk|2

)1/2

(Euclidean norm)

‖x‖p
∆=
(

N∑
k=1
|xk|p

)1/p

(p−norm, for any real p ≥ 1)

Matrix Norms
There are similarly many useful matrix norms. For any matrix A of
dimensions N × N and entries {a`k}, any of the definitions listed in
Table F.4 constitutes a valid matrix norm. In particular, the 2−induced
norm of A is equal to its largest singular value:

‖A‖2 = σmax(A) (F.5)

Table F.4: Useful matrix norms, where the {a`k} denote the entries of A ∈
CN×N .

‖A‖1
∆= max

1≤k≤N

(
N∑
`=1
|a`k|

)
(1−norm, or maximum absolute column sum)

‖A‖∞
∆= max

1≤`≤N

(
N∑
k=1
|a`k|

)
(∞−norm, or maximum absolute row sum)

‖A‖F
∆=
√
Tr(A∗A) (Frobenius norm)

‖A‖p
∆= max

x 6=0

(
‖Ax‖p
‖x‖p

)
(p−induced norm for any real p ≥ 1)

A fundamental result in matrix theory is that all matrix norms in finite
dimensional spaces are equivalent. Specifically, if ‖A‖a and ‖A‖b denote
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two generic matrix norms, then there exist positive constants c` and cu
that bound one norm by the other from above and from below such as
[104, 113]:

c` ‖A‖b ≤ ‖A‖a ≤ cu ‖A‖b (F.6)
The values of {c`, cu} are independent of the matrix entries though
they may be dependent on the matrix dimensions. Vector norms are
also equivalent to each other.

One Useful Matrix Norm
Let B denote an N × N matrix with eigenvalues {λk}. The spectral
radius of B, denoted by ρ(B), is defined as

ρ(B) ∆= max
1≤k≤N

|λk| (F.7)

We introduce the Jordan canonical decomposition of B and write
B = TJT−1, where T is an invertible transformation and J is a block
diagonal matrix, say, with q blocks:

J = diag{J1, J2, . . . , Jq} (F.8)

Each block Jq has a Jordan structure with an eigenvalue λq on its diag-
onal entries, unit entries on the first sub-diagonal, and zeros everywhere
else. For example, for a block of size 4× 4:

Jq =


λq
1 λq

1 λq
1 λq

 (F.9)

Let ε denote an arbitrary positive scalar that we are free to choose and
define the N ×N diagonal scaling matrix:

D
∆= diag

{
ε, ε2, . . . , εN

}
(F.10)

Following Lemma 5.6.10 from [113] and Problem 14.19 from [133], we
can use the quantity T originating from B to define the following matrix
norm, denoted by ‖ · ‖ρ, for any matrix A of size N ×N :

‖A‖ρ
∆=

∥∥∥DT−1ATD−1
∥∥∥

1
(F.11)
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in terms of the 1−norm (i.e., maximum absolute column sum) of the
matrix product on the right-hand side. It is not difficult to verify that
the transformation (F.11) is a valid matrix norm, namely, that it sat-
isfies the following properties, for any matrices A and C of compatible
dimensions and for any complex scalar α:

(a) ‖A‖ρ ≥ 0 with ‖A‖ρ = 0 if, and only if, A = 0

(b) ‖αA‖ρ = |α| ‖A‖ρ
(c) ‖A+ C‖ρ ≤ ‖A‖ρ + ‖C‖ρ (triangular inequality)

(d) ‖AC‖ρ ≤ ‖A‖ρ ‖C‖ρ (sub-multiplicative property)

(F.12)

One important property of the ρ−norm defined by (F.11) is that when
it is applied to the matrix B itself, it will hold that:

ρ(B) ≤ ‖B‖ρ ≤ ρ(B) + ε (F.13)

That is, the ρ−norm of B will be sandwiched between two bounds
defined by its spectral radius. It follows that if the matrix B is stable
to begin with, so that ρ(B) < 1, then we can always select ε small
enough to ensure ‖B‖ρ < 1.

The matrix norm defined by (F.11) is also an induced norm relative
to the following vector norm:

‖x‖ρ
∆= ‖DT−1x‖1 (F.14)

That is, for any matrix A, it holds that

‖A‖ρ = max
x 6=0

(
‖Ax‖ρ
‖x‖ρ

)
(F.15)

Proof. Indeed, using (F.14), we first note that for any vector x 6= 0:

‖Ax‖ρ = ‖DT−1Ax‖1
= ‖DT−1A · TD−1DT−1 · x‖1
≤ ‖DT−1ATD−1‖1 · ‖DT−1x‖1
= ‖A‖ρ · ‖x‖ρ (F.16)

so that
max
x 6=0

(
‖Ax‖ρ
‖x‖ρ

)
≤ ‖A‖ρ (F.17)
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To show that equality holds in (F.17), it is sufficient to exhibit one nonzero
vector xo that attains equality. Let ko denote the index of the column that at-
tains the maximum absolute column sum in the matrix productDT−1ATD−1.
Let eko denote the column basis vector of size N × 1 with one at location ko
and zeros elsewhere. Select

xo
∆= TD−1eko (F.18)

Then, it is straightforward to verify that

‖xo‖ρ
∆= ‖DT−1xo‖1

(F.18)= ‖eko‖1 = 1 (F.19)

and

‖Axo‖ρ
∆= ‖DT−1Axo‖1
= ‖DT−1A · TD−1DT−1 · xo‖1

(F.18)= ‖DT−1ATD−1eko‖1
= ‖A‖ρ (F.20)

so that, for this particular vector, we have

‖Axo‖ρ
‖xo‖ρ

= ‖A‖ρ (F.21)

as desired.

A Second Useful Matrix Norm
Let x = col{x1, x2, . . . , xN} now denote an N × 1 block column vector
whose individual entries are themselves vectors of size M × 1 each.
Following [32, 208, 230, 232], the block maximum norm of x is denoted
by ‖x‖b,∞ and is defined as

‖x‖b,∞
∆= max

1≤k≤N
‖xk‖ (F.22)

That is, ‖x‖b,∞ is equal to the largest Euclidean norm of its block
components. This vector norm induces a block maximum matrix norm.
Let A denote an arbitrary N ×N block matrix with individual block
entries of size M ×M each. Then, the block maximum norm of A is
defined as

‖A‖b,∞
∆= max

x 6=0

(
‖Ax‖b,∞
‖x‖b,∞

)
(F.23)



F.2. Vector and Matrix Norms 769

The block maximum norm has several useful properties — see [208].

Lemma F.1 (Some useful properties of the block maximum norm). The block
maximum norm satisfies the following properties:

(a) Let U = diag{U1, U2, . . . , UN} denote an N × N block diagonal matrix
with M × M unitary blocks {Uk}. Then, the block maximum norm is
unitary-invariant, i.e., ‖Ux‖b,∞ = ‖x‖b,∞ and ‖UAU∗‖b,∞ = ‖A‖b,∞.

(b) Let D = diag{D1, D2, . . . , DN} denote an N ×N block diagonal matrix
with M ×M Hermitian blocks {Dk}. Then, ρ(D) = ‖D‖b,∞.

(c) Let A be an N × N matrix and define A = A ⊗ IM whose blocks are
therefore of size M ×M each. If A is left-stochastic (as defined further ahead
by (F.46)), then ‖AT‖b,∞ = 1.

(d) Consider a block diagonal matrix D as in part (b) and any left-stochastic
matrices A1 and A2 constructed as in part (c). Then, it holds that

ρ
(
AT

2 DAT
1
)
≤ ρ(D) (F.24)

Jensen’s Inequality
There are several variations and generalizations of Jensen’s inequal-
ity. One useful form for our purposes is the following. Let {wk} de-
note a collection of N possibly complex-valued column vectors for
k = 1, 2, . . . , N . Let {αk} denote a collection of nonnegative real coef-
ficients that add up to one:

N∑
k=1

αk = 1, 0 ≤ αk ≤ 1 (F.25)

Jensen’s inequality states that for any real-valued convex function
f(x) ∈ R, it holds [45, 126, 171]:

f

(
N∑
k=1

αkwk

)
≤

N∑
k=1

αkf(wk) (F.26)

In particular, let

z
∆=

N∑
k=1

αkwk (F.27)
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If we select the function f(z) = ‖z‖2 in terms of the squared Euclidean
norm of the vector z, then it follows from (F.26) that∥∥∥∥∥

N∑
k=1

αkwk

∥∥∥∥∥
2

≤
N∑
k=1

αk ‖wk‖2 (F.28)

There is also a useful stochastic version of Jensen’s inequality. If a ∈
RM is a real-valued random variable, then it holds that

f (Ea) ≤ E (f(a)) (when f(x) ∈ R is convex) (F.29)
f (Ea) ≥ E (f(a)) (when f(x) ∈ R is concave) (F.30)

where it is assumed that a and f(a) have bounded expectations. We
remark that a function f(x) is said to be concave if, and only if, −f(x)
is convex.

F.3 Perturbation Bounds on Eigenvalues

We state below two useful results that bound matrix eigenvalues.

Weyl’s Theorem
The first result, known as Weyl’s Theorem [113, 259], shows how the
eigenvalues of a Hermitian matrix are disturbed through additive per-
turbations to the entries of the matrix. Thus, let {A′, A,∆A} de-
note arbitrary N × N Hermitian matrices with ordered eigenvalues
{λm(A′), λm(A), λm(∆A)}, i.e.,

λ1(A) ≥ λ2(A) ≥ . . . ≥ λN (A) (F.31)

and similarly for the eigenvalues of {A′,∆A}, with the subscripts 1
and N representing the largest and smallest eigenvalues, respectively.
Weyl’s Theorem states that if A is perturbed to

A′ = A + ∆A (F.32)

then the eigenvalues of the new matrix are bounded as follows:

λn(A) + λN (∆A) ≤ λn(A′) ≤ λn(A) + λ1(∆A) (F.33)
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for 1 ≤ n ≤ N . In particular, it follows that the maximum eigenvalue
is perturbed as follows:

λmax(A) + λmin(∆A) ≤ λmax(A′) ≤ λmax(A) + λmax(∆A) (F.34)

In the special case when ∆A ≥ 0, we conclude from (F.33) that
λn(A′) ≥ λn(A) for all n = 1, 2, . . . , N .

Gershgorin’s Theorem
The second result, known as Gershgorin’s Theorem [48, 94, 101, 104,
113, 253, 263], specifies circular regions within which the eigenvalues
of a matrix are located. Thus, consider an N ×N matrix A with scalar
entries {a`k}. With each diagonal entry a`` we associate a disc in the
complex plane centered at a`` and with

r`
∆=

N∑
k 6=`,k=1

|a`k| (F.35)

That is, r` is equal to the sum of the magnitudes of the non-diagonal
entries on the same row as a``. We denote the disc by D`; it consists of
all points that satisfy

D` =
{
z ∈ CN such that |z − a``| ≤ r`

}
(F.36)

The theorem states that the spectrum of A (i.e., the set of all its eigen-
values, denoted by λ(A)) is contained in the union of all N Gershgorin
discs:

λ(A) ⊂
N⋃
`=1

D` (F.37)

A stronger statement of the Gershgorin theorem covers the situation in
which some of the Gershgorin discs happen to be disjoint. Specifically,
if the union of L of the discs is disjoint from the union of the remaining
N − L discs, then the theorem further asserts that L eigenvalues of A
will lie in the first union of L discs and the remaining N−L eigenvalues
of A will lie in the second union of N − L discs.
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F.4 Lyapunov Equations

In this section, we introduce two particular Lyapunov equations and
list some of their properties. We only list results that are used in the
text. There are many other insightful results on Lyapunov equations.
Interested readers may consult the works [132, 133, 148, 149] and the
many references therein for additional information.

Discrete-Time Lyapunov Equations
Given N × N matrices X,A, and Q, where Q is Hermitian and non-
negative definite, we consider first discrete-time Lyapunov equations,
also called Stein equations, of the following form:

X −A∗XA = Q (F.38)

Let λk(A) denote any of the eigenvalues of A. In the discrete-time case,
a stable matrix A is one whose eigenvalues lie inside the unit disc (i.e.,
their magnitudes are strictly less than one).

Lemma F.2 (Discrete-time Lyapunov equation). Consider the Lyapunov
equation (F.38). The following facts hold:

(a) The solution X is unique if, and only if, λk(A)λ∗` (A) 6= 1 for all
k, ` = 1, 2, . . . , N . In this case, the unique solution X is Hermitian.

(b) When A is stable (i.e., all its eigenvalues are inside the unit disc), the
solutionX is unique, Hermitian, and nonnegative-definite. Moreover, it admits
the series representation:

X =
∞∑
n=0

(A∗)nQAn (F.39)

Proof. We call upon property 12 from Table F.1 for Kronecker products and
apply the vec operation to both sides of (F.38) to get

(I −AT ⊗A∗)vec(X) = vec(Q) (F.40)

This linear system of equations has a unique solution, vec(X), if, and only
if, the coefficient matrix, I − AT ⊗ A∗, is nonsingular. This latter condition
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requires λk(A)λ∗` (A) 6= 1 for all k, ` = 1, 2, . . . , N . When A is stable, all
of its eigenvalues lie inside the unit disc and this uniqueness condition is
automatically satisfied. If we conjugate both sides of (F.38) we find that X∗
satisfies the same Lyapunov equation as X and, hence, by uniqueness, we
must have X = X∗. Finally, let F = AT ⊗ A∗. When A is stable, the matrix
F is also stable since ρ(F ) = [ρ(A)]2 < 1. In this case, the matrix inverse
(I − F )−1 admits the series expansion

(I − F )−1 = I + F + F 2 + F 3 + . . . (F.41)

so that using (F.40) we have

vec(X) = (I − F )−1vec(Q)

=
∞∑
n=0

Fn vec(Q)

=
∞∑
n=0

(
(AT)n ⊗ (A∗)n

)
vec(Q)

=
∞∑
n=0

vec ((A∗)nQAn) (F.42)

from which we deduce the series representation (F.39).

Continuous-Time Lyapunov Equations
A similar analysis applies to the following continuous-time Lyapunov
equation (also called a Sylvester equation):

XA∗ +AX +Q = 0 (F.43)

In the continuous-time case, a stable matrix A is one whose eigenvalues
lie in the open left-half plane (i.e., they have strictly negative real
parts).

Lemma F.3 (Continuous-time Lyapunov equation). Consider the Lyapunov
equation (F.43). The following facts hold:

(a) The solution X is unique if, and only if, λk(A) + λ∗` (A) 6= 0 for all
k, ` = 1, 2, . . . , N . In this case, the unique solution X is Hermitian.
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(b) When A is stable (i.e., all its eigenvalues lie in the open left-half plane),
the solution X is unique, Hermitian, and nonnegative-definite.

Proof. We call again upon property 12 from Table F.1 for Kronecker products
and apply the vec operation to both sides of (F.43) to get

[(A∗ ⊗ I) + (I ⊗A)] vec(X) = −vec(Q) (F.44)

This linear system of equations has a unique solution, vec(X), if, and only if,
the coefficient matrix, (A∗⊗I)+(I⊗A), is nonsingular. This latter condition
requires λk(A) + λ∗` (A) 6= 0 for all k, ` = 1, 2, . . . , N . To see this, let F =
(A∗ ⊗ I) + (I ⊗A) and let us verify that the eigenvalues of F are given by all
linear combinations λk(A) +λ∗` (A). Consider the eigenvalue-eigenvector pairs
Axk = λk(A)xk and A∗y` = λ∗` (A)y`. Then, using property 2 from Table F.1
for Kronecker products we get

F (y` ⊗ xk) = [(A∗ ⊗ I) + (I ⊗A)] (y` ⊗ xk)
= (A∗y` ⊗ xk) + (y` ⊗Axk)
= λ∗` (A)(y` ⊗ xk) + λk(A)(y` ⊗ xk)
= (λk(A) + λ∗` (A))(y` ⊗ xk) (F.45)

so that the vector (y` ⊗ xk) is an eigenvector for F with eigenvalue λk(A) +
λ∗` (A), as claimed. If we now conjugate both sides of (F.43) we find that X∗
satisfies the same Lyapunov equation as X and, hence, by uniqueness, we
must have X = X∗.

F.5 Stochastic Matrices

Consider N ×N matrices A with nonnegative entries, {a`k ≥ 0}. The
matrix A = [a`k] is said to be left-stochastic if it satisfies

AT1 = 1 (left-stochastic) (F.46)

where 1 denotes the column vector whose entries are all equal to one.
It follows that the entries on each column of A add up to one. The
matrix A is said to be doubly-stochastic if the entries on each of its
columns and on each of its rows add up to one, i.e., if

A1 = 1, AT1 = 1 (doubly-stochastic) (F.47)
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Stochastic matrices arise frequently in the study of networks. The fol-
lowing statement lists two properties of stochastic matrices; additional
properties can be found in [113, 208].

Lemma F.4 (Properties of stochastic matrices). Let A be an N × N left or
doubly-stochastic matrix:

(a) The spectral radius of A is equal to one, ρ(A) = 1. It follows that all
eigenvalues of A lie inside the unit disc, i.e., |λ(A)| ≤ 1. The matrix A may
have multiple eigenvalues with magnitude equal to one.

(b) If A is additionally a primitive matrix (cf. definition (6.1)), then A will
have a single eigenvalue at one (i.e., the eigenvalue at one will have multiplicity
one). All other eigenvalues of A will lie strictly inside the unit circle. Moreover,
with proper sign scaling, all entries of the right-eigenvector of A corresponding
to the single eigenvalue at one will be strictly positive, namely, if we let p
denote this right-eigenvector with entries {pk} and normalize the entries to
add up to one, then

Ap = p, 1Tp = 1, pk > 0, k = 1, 2, . . . , N (F.48)

We refer to p as the Perron eigenvector of A. All other eigenvectors of A
associated with the other eigenvalues will have at least one negative or
complex entry.

F.6 Convergence of Inequality Recursions

The following are two convergence results involving inequality recur-
sions; proofs appear in [190, pp. 45–50].

Lemma F.5 (Deterministic recursion). Let u(i) ≥ 0 denote a scalar determin-
istic (i.e., non-random) sequence that satisfies the inequality recursion:

u(i+ 1) ≤ [1− a(i)]u(i) + b(i), i ≥ 0 (F.49)

(a) When the scalar sequences {a(i), b(i)} satisfy the four conditions:

0 ≤ a(i) < 1, b(i) ≥ 0,
∞∑
i=0

a(i) =∞, lim
i→∞

b(i)
a(i) = 0 (F.50)
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it holds that lim
i→∞

u(i) = 0.

(b) When the scalar sequences {a(i), b(i)} are of the form

a(i) = c

i+ 1 , b(i) = d

(i+ 1)p+1 , c > 0, d > 0, p > 0 (F.51)

it holds that, for large enough i, the sequence u(i) converges to zero at one of
the following rates depending on the value of c:

u(i) ≤
(

d
c−p

)
1
ip + o (1/ip) , c > p

u(i) = O (log i/ip) , c = p
u(i) = O (1/ic) , c < p

(F.52)

The fastest convergence rate occurs when c > p and is in the order of 1/ip.

Note that part (b) of the above statement uses the big-O and little-
o notation. The big-O notation is useful to compare the asymptotic
growth rate of two sequences. Thus, writing a(i) = O(b(i)) means that
|a(i)| ≤ c|b(i)| for some constant c and for all large enough i > Io.
For example, a(i) = O(1/i) means that the samples of the sequence
a(i) decay asymptotically at a rate that is comparable to 1/i. On the
other hand, the little-o notation, a(i) = o(b(i)), means that, asymptot-
ically, the sequence a(i) decays faster than the sequence b(i) so that
|a(i)|/|b(i)| → 0 as i → ∞. In this case, the notation a(i) = o(1/i)
implies that the samples of a(i) decay at a faster rate than 1/i.

Lemma F.6 (Stochastic recursion). Let u(i) ≥ 0 denote a scalar sequence
of nonnegative random variables satisfying Eu(0) < ∞ and the stochastic
recursion:

E [u(i+ 1)| u(0),u(1), . . . ,u(i) ] ≤ [1− a(i)]u(i) + b(i), i ≥ 0 (F.53)

in terms of the conditional expectation on the left-hand side, and where the
scalar and nonnegative deterministic sequences {a(i), b(i)} satisfy the five con-
ditions:

0 ≤ a(i) < 1, b(i) ≥ 0,
∞∑
i=0

a(i) =∞,
∞∑
i=0

b(i) <∞, lim
i→∞

b(i)
a(i) = 0

(F.54)
Then, it holds that lim

i→∞
u(i) = 0 almost surely, and lim

i→∞
Eu(i) = 0.



G
Logistic Regression

Let γk denote a binary random variable whose value represents one of
two possible classes, +1 or −1, depending on whether a feature vector
hk ∈ RM belongs to one class or the other. For example, the entries
of hk could represent measures of a person’s weight and height, while
the classes ±1 could correspond to whether the feature hk represents a
male or a female individual. Logistic regression is a useful methodology
for dealing with classification problems where one of the variables (the
dependent variable) is binary and the second variable (the independent
variable) is real-valued; this is in contrast to the more popular linear
regression analysis where both variables are real-valued.

G.1 Logistic Function

When γk is a binary random variable, the relation between its real-
izations and the corresponding feature vectors {hk} cannot be well
represented by a linear regression model. A more suitable model is to
represent the conditional probability of γk = 1 given the feature vector
hk as a logistic function of the form [115, 233]:

P (γk = +1 | hk) = 1
1 + e−h

T
kw

o
(G.1)

777
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for some parameter vector wo ∈ RM . Observe that regardless of the
numerical values assumed by the entries of the feature vector hk, the
logistic function always returns values between 0 and 1 (as befitting of
a true probability measure) — see Figure G.1. Obviously, under the
assumed binary model for γk and since the sum of the probabilities
need to add up to one, it holds that

P (γk = −1 | hk) = 1
1 + eh

T
kw

o
(G.2)
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Figure G.1: Typical behavior of logistic functions for two classes. The figure
shows plots of the functions 1/(1 + e−x) (left) and 1/(1 + ex) (right) assumed
to correspond to classes +1 and −1, respectively.

G.2 Odds Function

We can group (G.1) and (G.2) into a single expression for the condi-
tional probability density function (pdf) of γk and write:

p(γk;wo | hk) = 1
1 + e−γkh

T
kw

o
(G.3)

with γk appearing in the exponent term on the right-hand side. This
pdf is parameterized by wo. In machine learning or pattern classification
applications, one is usually served with a collection of training data
{γk,hk, k ≥ 1} and the objective is to use the data to estimate the
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parameter wo. Once wo is recovered, its value can then be used to
classify new feature vectors {h`} into classes +1 or −1. This can be
achieved, for example, by computing the odds of the new feature vector
belonging to one class or the other. The odds function is defined as:

odds ∆= P (γ` = +1 | h`)
1− P (γ` = +1 | h`)

(G.4)

For example, in a scenario where the likelihood that type +1 occurs
is 0.8 while the likelihood for type −1 is 0.2, we find that the odds of
type +1 occurring are 4−to−1, while the odds of type −1 occurring
are 1−to−4. If we compute the log of the odds ratio, we end up with
the so-called logit function (or logistic transformation function):

logit ∆= ln
(

P (γ` = +1 | h`)
1− P (γ` = +1 | h`)

)
(G.5)

There are at least two advantages for the logit representation of the
odds function. First, in this representation of the odds, types +1 and
−1 will always have opposite odds (i.e., one value is the negative of
the other). And, more importantly, if we use the assumed model (G.1),
then the logit function ends up depending linearly on wo. Specifically,

logit = hT
` w

o (G.6)

In this way, we can assign feature vectors {h`} with nonnegative logit
values to one class and feature vectors with negative logit values to
another class — see Figure G.2.

G.3 Kullback-Leibler Divergence

To enable the above classification procedure, we still need to determine
wo. One way to estimate wo is to fit into the training data {γk,hk, k ≥
1}, a probability density function of the form:

p(γk;w | hk) = 1
1 + e−γkh

T
kw

(G.7)

for some unknown vector w ∈ RM to be determined. This vector can
be selected by minimizing the discrepancy between the above pdf and
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class +1

class -1

separating

hyperplane

Figure G.2: Classification of feature vectors into two classes: data with non-
negative logit values are assigned to one class and data with negative logit
values are assigned to another class. The vector wo defines the direction that
is normal to the separating hyperplane.

the actual pdf corresponding to wo in (G.3). A useful measure of dis-
crepancy between two pdfs is the Kullback-Leibler (KL) divergence
measure defined as [81]:

DKL
∆= E

{
ln
(
p(γk;wo | hk)
p(γk;w | hk)

)}
(G.8)

where the expectation is over the distribution of the true pdf. The ex-
pression on the right-hand side involves the ratio of two pdfs: one using
the true vector wo and the other using the parameter w. Minimizing
over w leads to the optimization problem

min
w
−E ln p(γk;w | hk) (G.9)

or, equivalently,
min
w

E
{

ln
[
1 + e−γkh

T
kw
]}

(G.10)

which has the same form as the logistic regression cost function con-
sidered in the text — see, e.g., (2.9).
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Errata

Version: June 2, 2015.

A. H. Sayed, Adaptation, Learning, and Optimization over Networks,
Foundations and Trends in Machine Learning, volume 7, issue 4-5, NOW
Publishers, Boston-Delft, 518pp, 2014.

Remark. The typos are already marked in red in the manuscript’s pdf file.

1. Expressions (2.55) and (2.56): the running index for the summations
and the arguments of µ(i) and µ2(i) should be i′ instead of i.

2. Expression (4.148): ρwo is missing on the right-hand side.

3. Expression (4.149): −ρ2wo(wo)T is missing on the right-hand side.

4. Expression (5.102): replace rightmost ∞ by 0 (similar to (3.91)).

5. Figure 7.4: replace {w4,i−1,w7,i−1,w`,i−1} by {ψ4,i,ψ7,i,ψ`,i}.

6. Expressions (9.307) and (10.116): replace second “≤” by “=”.

7. Expression (11.20): symbol E missing before first sek,i on first line.

8. Rephrase sentence right after (11.111) as: “Selecting the origin of time
at some large time and iterating from there”

9. Expression (11.130), second line, second symbol ⊗ should be ⊗b.

10. Expression (11.131), first two lines, second symbol ⊗ should be ⊗b.

11. Fourth line below expression (14.3): replace “add up to one” by “add
up to zero”.

12. Expression (13.47): (2 +NI) should be
(
2 +N−1

I

)
.

13. Expression (14.38): replace w by w̃ on the right-hand side.

14. Expression (14.39): first equality, replace se,i by se`,i.

15. Expression (14.47): replace ζk by ζ`.

16. Sentence after (E.32), replace the word “Hermitian” by “symmetric.”
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