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Estimation problems arise in diverse fields, such as communications, control, econometrics, and signal
processing. Underlying these are many general results in probability and statistics. What distinguishes the
particular applications mentioned above is the fact that they have additional structure that can be used to
further refine these general results. The proper exploration and exploitation of this structure leads to many
problems and challenges.

In this article we focus on a certain rather narrowly defined class of problems. This is essentially the
study of linear least-squares estimation problems for signals with known finite-dimensional linear state-space
models. Despite its apparent narrowness, this is a rich subject with useful applications to some very different
problems, such as those of quadratic control, adaptive filtering, Hoo-filtering and control, matrix theory, and
linear algebra.

The most celebrated estimation tool in this context is the Kalman filter; it is an efficient procedure for
the estimation of the states of a linear state-space model from noisy observations of the output process. Since
its inception in the early sixties, the Kalman filter has attracted considerable attention and has encountered
numerous applications in diverse fields. We shall discuss it in some detail in this exposition, but first we
review the fundamental problem that underlies the Kalman filter theory, viz., that of estimating one random
variable from another.

Stochastic estimation

Consider two (scalar or column-vector) random variables x and y (possibly complex-valued) with joint
probability density function fyxy(-,-). If the random variables are independent, i.e., if they assume values
independently of each other, then there is little (if any) that can be said about the value assumed by one
random variable when the value assumed by the other is known or measured. So we shall assume that the
random variables are dependent, and ask the following question: given that the variable y assumed the value
y in a particular experiment, what can be said (or guessed) about the value assumed by the random variable
x?

Such questions often arise when the quantity of interest is not directly observable or directly measurable
while it is possible to monitor another related quantity. For example, we may only have available noisy
measurements y of x, say y = x + v, where the random variable v represents additive noise or disturbance.
With a proper formulation, reasonable information about x can be extracted from the noisy measurements
of y.

To tackle the general question, an estimate of the value assumed by x, say &, can be described as a
function of the value assumed by y, say Z = h(y). We shall refer to & as the estimate. Likewise, we shall
refer to the random variable X defined by X = h(y), as the estimator: evaluating the estimator % at a
particular value for y results in an estimate Z.

The challenge is to suitably choose the function h(-) to yield reasonable estimates. By reasonable we
mean estimates that satisfy a desired optimality criterion. There are several criteria that can be used for
estimation problems, but for signal processing, communications, and control one of the most important, at
least in the sense of having had the most applications, is the least-squares criterion.

Nonlinear least-mean-squares estimation

The least-mean-squares (L.m.s. for short) criterion determines the function A(-) by minimizing the vari-
ance of the error variable x = x — %, viz.,
min FE(xx* 1
min B() 1)



where the symbol * denotes complex conjugation and the letter £ denotes expected value. Note that xx*
is a matrix not a scalar, since X is a column random variable. In this regard, the minimization is to be
interpreted with respect to the partial ordering defined over the set of nonnegative definite matrices. That
is, the optimal solution A(-) will be such that the matrix difference

Elx —h'(y)]x = A (y)]" — E[x— h(y)][x - h(y)]"

is always nonnegative definite for all other choices h'(-). It turns out that the optimal h(-) is given by the
conditional expectation of x given y,

h(y) = E(x]y) - (2)

The case of jointly Gaussian random variables

For general random variables x and y, the conditional expectation (2) is generally a nonlinear function of
the observations. For the special case of jointly Gaussian random variables, however, the expression collapses
to a linear function of the observations. Linear estimators, as we shall see, have several advantages: they
are easier to compute and, more importantly, easier to update.

The p.d.f. of two jointly Gaussian zero-mean circular random variables x and y is proportional to

fes(@y) exp{w v ]R[y]} )

where R denotes their (nonsingular) covariance matrix,

_| Be Ry
il
with
R, = Exx", R, = Eyy", R,, = Exy" =R,,.

For such jointly Gaussian variables, it can be verified by direct calculation that the expression E(x|y) in (2)
for the optimal estimator becomes
X = Ra:yR;ly ) (4)

which is completely specified by the auto- and cross-covariance quantities (i.e., by the second-order statistics)
of the quantities involved.

Linear estimators and the orthogonality condition

But what if the random variables x and y are not jointly Gaussian? An estimator having the same
linear structure as expression (4) can still be obtained for general zero-mean random variables x and y by
restricting ourselves to linear functions A(-). In this case, we seek a linear estimator of the form x = K.y,
and determine the coefficient matrix K, by minimizing the error covariance matrix, viz.,

mlén Ex — Ky|[x — Ky]* . (5)

It turns out that all K, that solve (5) are solutions to the so-called normal equations

KRy =Ry . (6)



When R, > 0, the solution K, is unique and given by K, = R,y R, 1. in which case the expression for % is
identical to (4). Note furthermore that the normal equations (6) are equivalent to

E(x — K,y)y" = 0. (7)

This suggests that if we regard the random variables x and y as vectors (i.e., elements) in an inner product

space, with inner product defined by (x,y) 2 Exy*, then the above condition has the geometric meaning
that (x — K,y) is orthogonal to y, written as (x — K,y) L y. This is a fundamental property that fully
characterizes linear least-mean-squares estimators (1.1.m.s.e for short).

Usually, the variable y is vector-valued and composed of several observations, say y = col{yo,...,¥n},
where each y; is itself a possibly vector-valued random variable. [The notation col{-} denotes a column
vector with the specified entries.] We shall then say that x = K,y is the projection of x onto the linear
space spanned by the random variables {y;}, written £L{yo,...,yN}-

The innovations process

We therefore see that the solution of the 1.1.m.s. estimation problem (5) requires that we solve the normal
equations K,Ry, = R;,. Since the solution of linear equations is a much studied problem, it would seem that
there is not much more to be said, except to refer to some books on the subject. However, there are at least
two features of the problem that should give us some pause:

(a) Tt takes proportional to N3 operations (an operation may be taken as the multiplication or addition
of two real numbers) to solve an N x N set of linear equations. This can be a substantial amount
of work when N is large: N could be of the order 10-100 in several aerospace problems and 500-
2000-4000-10,000 in many environmental, geodetic, power-system, econometric, and image processing
problems.

(b) For large N, there may be a problem of data storage, especially since in many applications the data
comes in sequentially, so that we have to solve the estimation problem for sequentially increasing values
of N. The storage problem could be ameliorated if we could develop a sequential or recursive method
of solving the equations: it would be nice if the new datum could be used to update the previous
estimate, and then discarded, so that no data storage is necessary. Note that recursive solutions can
be useful whenever N is large, whether or not it is growing.

While general methods are known for the recursive solution of linear equations, the problem must have
some special structure if the number of computations (and the amount of storage) is to be significantly
reduced, to say O(N?) or even O(N) from O(N?3). Fortunately, such structure is present in the estimation
and control problems of interest to us; in particular, we shall be dealing with stochastic processes that have
a certain finite-dimensional (state-space) structure, which will be reflected into the structure of the linear
equations.

The exploration of structure can be carried out by algebraic or geometric methods, and in several dif-
ferent ways. We shall pursue one particular route here, motivated by our interest in state-space models.

A geometric approach

Recall that we are not interested in linear equations as such, but in those that arise from the problem
of computing the projection of a vector, say x, onto the linear space spanned by another set of vectors (or



random variables) {yo,¥1,-..,Y~n}. As we have seen, this problem reduces to the solution of a simultaneous
set of linear equations, say K,R, = R;,, where

R, = [<yiayi>]z',j:0:N and  Rey = [(%,¥i)li—o.n -

Now it is a pretty obvious remark that these equations would be easy to solve if R, were a diagonal matrix,
or equivalently if the {y;} were orthogonal to each other, in which case the projection would reduce to just
the sum of the projections of x onto each orthogonal vector. Of course, in most problems, R, would not
be diagonal; in fact, it is the nature of the dependence between the vectors {y;} that distinguishes various
physical problems from each other.

To begin with, we shall henceforth always assume that the variables {y;} are not an arbitrary collection,
but belong to an indexed or ordered set, in the sense that y;;1 follows y;. In other words, we assume that
the {y;} constitute a stochastic process, where the index ¢ will be assumed, for definiteness, to be a time
index, though it could also be a space index if desired.

The fact that the generally nonorthogonal vectors {y;} arise from an indexed set may immediately
remind one of the obvious (in retrospect) recursive Gram-Schmidt procedure for replacing a set of indexed
vectors by an equivalent orthogonal set of vectors. Thus assume that we have transformed {yq,...,yn} to
an equivalent set of orthogonal vectors {ep, ..., ex}, equivalent in the sense that they span the same linear
(sub)space, written

C{eo,...,eN}:[:{yg,...,yN}éﬁN, say. (8)

If now we have an additional vector, yn41, a natural way of proceeding is by projecting yx+1 onto Ly to
get
eny1 = yn+1 — Proj{y~yi|Ln}. (9)

Moreover, finding the above projection is aided by property (8), which allows us to find the projection by
separately projecting onto each of the previously found orthogonal vectors {e;},

N
Proj{ynilLn} =Y (yni1,e;)lle;ll %e;
=0

where the notation ||e||? stands for Eee*. This then leads to the recursive formula

N

ent1 = YN+ — ) (Yn+1,€5)llejl| ey, (10)
§=0

which can be begun with eq = yo. This is known as the Gram-Schmidt orthogonalization procedure.

When the {y;} are random variables, a suggestive terminology can be associated with the orthogonal
variables {e;}. Thus recall that in the stochastic case,

Proj{yn+1|Ln} the Ll.m.s. estimator of yn41 given L{yo,...,yN}

>l

YNy1, say.

This is the part of the random variable yn41 that is determined by knowledge of the previous random

variables {yq,...,¥~n}. The remainder is the random variable ey 1,
A N
€eN4+1 = YN+1 — YN+1, (11)
which we can regard as the “new information” or the “innovation” in yn1 given {yo,...,yn}. Therefore

we shall call
{e;} = the innovations process associated with {y;}.



As befits the name, each vector e; brings new information, since e; is uncorrelated with all other vectors
{e;}j=i; in other words, the innovations process is a white noise process. However, the white noise property
by itself is not enough to characterize the innovations. It is important that there is a causal relationship
between the indexed collections {y;} and {e;}: for every ¢ > 0,

e; € L{yo,-..,yi} and y; € L{eg,...,€e;}.

In other words, the processes {y;} and {e;} are related by a causal and causally invertible linear transfor-
mation. This causality restriction makes the white-noise process {e;} unique (apart from scaling).

The modified Gram-Schmidt procedure

While the innovations process {e;} is unique, this does not mean that there is only one way of constructing
them. Here we describe another alternative — the so-called modified Gram-Schmidt (MGS) procedure:

(a) Set eg = yo-
(b) Form ¥;j0 =yi — (¥i,e0) || €0 |72 €o, and then set e; = §y)o.

(C) Form S”ll = SrZ‘O — <S’i‘0,61> || €1 ||72 €1, and then set €y = 5’2|1,

and so on. The partial residuals {y;,¥;jo,¥ij1,---} can be rearranged in a triangular array, the diagonal
entries of which are the innovations {e;}:

Yo
Y1 ¥
Y2 Y20 ¥Yoin

YN ¥no ¥YNp --- YN|N-1

This and other methods for determining the innovations all have special features of interest, but for
the moment the point we wish to make is that they all take essentially the same order of elementary com-
putations, viz., O(N3) for N innovations. In applications, however, we often have special structures, e.g.,
stationarity of the process or the availability of state-space or difference equation models for it, that enable
fast ways of obtaining the innovations. In this article, our focus shall be on state-space structure. If we have
an n-dimensional state-space model for the observation process {y;}, then it turns out that the innovations
can be found with O(Nn?) operations, which can be very much less than O(N?) if n < N. The details are
given further ahead.

Estimation given the innovations process

The reason for seeking to determine the innovations is that we can now replace the problem of estimation
given the process {y;}, with the simpler one of estimation given the orthogonal innovations process {e;, i <
k}. Thus

A

XN £ the LLm.s. estimator of x given {yo,...,¥n},

can also be expressed as

A

X|ny = the LlL.m.s. estimator of x given {eq,...,en},



which, due to the orthogonality of the {e;}, is given by

N

Rv =D (x,e5) [lej [ ej (12)

J=0

Moreover, if we now have an additional observation yn1, then the estimator Xy can be readily updated
by using the innovation ey 1,

Xny1 = Xy + (Llms.e. of x given en1),
= X+ (xent1) |l enyr |72 engr, %1 =0, (13)
where N
— S — -2 —
€N+1 = YN+1 —YN+1|N = YN+1 — Z<YN+1’ej> llej I e, eo=yo- (14)
Jj=0

The simple formulas (12), (18), and (14) are the key to many results in linear least-squares estimation
theory.

We may remark that we are often interested in estimating not just a single variable, x, but actually
another stochastic process, say {x;}, from observations of a process {y;}. The way to tackle this apparently
more difficult problem is to regard it as a collection of problems in each of which we estimate one of the
variables in the {x;} process from the observations of the process {y;}. We shall encounter this procedure
in the sequel. Here we note again that for the basic formulas (12), (13), and (14) to be really useful, we
must be able to determine the innovations {e;} in some way that requires less work than determining %)y
directly by solving N linear equations in N unknowns [strictly speaking, with our numbering convention,
determining Xy requires solving N + 1 linear equations in N + 1 unknowns. We shall often be guilty of this
minor inconsistency.] This is possible when the observation process arises from a finite-dimensional linear
state-space model.

The standard state-space model

The assumption of a finite-dimensional state-space model for the observations process allows the inno-
vations to be recursively and efficiently computed, with O(Nn?®) computations as opposed to O(N?), where
n is the state dimension and N is the number of observations. There are also many problems, especially in
aerospace applications, where the state variables have a direct physical significance and where estimates of
the state variables, or of some linear combinations of these variables, are needed. As noted earlier, once we
have the innovations, the estimation of related quantities (states, inputs, and linear combinations thereof)
is straightforward. We first set up a standard state-space model.

Since the early sixties, much effort has been devoted to modeling processes {y;} in state-space form, i.e.,
yi = Hix; +v;, >0, (15)

where the n x 1 state-vector x; obeys the recursion
Xit1 = Fix; + Giu;, 1> 0. (16)

The processes v; and u; are assumed to be (p X 1)- and (m X 1)-vector zero-mean white noise processes, with

v h=[§ 7 ls an



while the initial state xg is assumed to have zero mean, covariance matrix Ily, and to be uncorrelated with
the {u;} and {v;}, i.e,

<X0,X0> = H() and <ui,X0> =0 , <V,’,X0> =0 , ) Z 0. (18)

These assumptions can be compactly restated as

u; :’13 Qi Si 5o 0 0
({vi|-] 2= S R, |™ 00 (19)
X0 10 0 0 My, 0

It is also assumed that the matrices F; (of dimension (n x n)), Gi(n x m), H;(p X n), Q;(m x m), R;(p X p),
Si(m x p), and Ilp(n x n) are known a priori. The process v; is often called measurement noise and the
process u; plant noise. They are often uncorrelated (i.e., S; = 0), but the more general assumption is
necessary to handle problems where there may be feedback from the output to the states.

We shall not discuss here how the state equations have been obtained. In many situations, the definitions
of the state variables are naturally suggested by the physical problem; linearization may often have to be
used to actually obtain linear equations as in (15)-(16). As a result, the state-space model can be set up in
slightly different forms, e.g., with different assumptions on the correlation between {u;,v;}. These models
can be analyzed in ways quite similar to the ones we are going to describe here. The model specified above
will be henceforth called the standard model.

The Kalman filter

Now we go on to the problem of whether we can conveniently find the innovations, e; = Yi — Viji-1,
when the {y;} have the state-space structure described above.

It turns out that the recursive construction of the innovations combines nicely with the recursive evo-
lution of the state variables to give a recursion for the innovations in terms of the parameters of the model
and a pair of other matrices {K,;, Re;}. These can be computed in different ways, one of which we shall
present here.

Recursion for the innovations

Starting with y; = H;x; + v;, and projecting onto the linear subspace spanned by {yo, ..., yi—1} yields
Vili-1 = HiXj)i—1 + V-1 (20)
Our standard notational convention is that
%;; = the projection of x; on the linear subspace spanned by {yo,...,¥;}, £{yo,---,¥;}-
Now the assumptions on our state-space model imply that v; L y; for j <¢—1, so that v;;_; =0 and
€ =Yi—Viji-1 =¥i — HiXia1- (21)

Therefore, we see that the problem of finding the innovations reduces to one of finding a convenient way
of determining the one-step predictions of the state-vector. For this purpose, we can try to use the basic
formula for estimation given the (uncorrelated) innovations process,

i
Rip1i = D _(Xit1,€) R, je; (22)
=0



where we defined R, ; = (e;,e;). This seems puzzling (in fact, circular), because so far we have only defined
the innovations {e;} in terms of the one-step predictions, which are the things we are trying to estimate.
The reason (22) can make sense is that on the right-hand-side we have the quantities {e;,j < i}, so that in
trying to find %X;,); from (21), we are only using earlier one-step predictions {X;;_1,j < i}. This suggests
that what we should try to find is a recursive solution, with the present value x;,); being computed from
the most recent past value X;;_; and the new information e; = y; — H;X;;_1. To see if this is possible, let
us first rewrite (22) in a form more indicative of a recursion

i1
Xip1i = Z(xi-i-l’ej)R;]l'ej + <xi+1;ei>R;ilez' )
Jj=0
= Xyt (Xi+1,ez’>R;%(Yi — HiXji 1) (23)

This is almost in the desired form, and would be exactly so if the term %;;;_1 could be expressed in terms
of just X;;_; and e;. At this point, no more general statements can be made; to go further we must have
more information about the way the states change with time.

In our problem we know that x;,; obeys the state equation x;;; = F;x; + G;u;. But then projecting
onto the linear subspace spanned by {y;,j < i — 1} shows that

Xip1)io1 = FiXgi1 + Gityi 1 = FiXy 1 + 0, (24)

since by the assumptions on our model, u; L y;,j < ¢— 1. But a relation as in (24) is exactly what we were
seeking. In other words, by combining Eqgs. (21)—(24) we have the following recursive set of equations for
determining the innovations:

€ = YVi— Hz'im—l, (25)
Xip1i = Fixyio + Kpiei, 120, (26)
with initial conditions
X9 —1 =0, or equivalently, eg = yo, (27)
and where we have defined
Kpi= (xit1,e) R, ;. (28)

The subscript “p” indicates that K, ; is used to update a predicted estimator.

The {K,, i, Re;} are non-random quantities that should be completely determinable from our knowledge
of the means and covariances of the model, and in fact we shall show how this can be done; once the
{Kp,i, Re,i} have been specified, we see that the innovations {e;} can be computed in a nice recursive way
via the equations (25)—(27).

We can combine (25) and (26) as
. . A . .
Xiv1s = FpiXii1 + Kpiyi, Fpi = Fi— KpiH;, Xo-1=0,72>0. (29)

which emphasizes that in finding the innovations, we actually also have a complete recursion for the state-
estimators {X;);_1 }.

The error-variance matrices

To complete the computation of the innovations, let us describe one way of computing the coefficients
{Kp,i, Re,i} needed for the basic recursions (25)—(26). The formulas we shall present here were first explicitly



given by Kalman (1960). Some important alternative methods (the so-called square-root and fast equation
methods) for computing {K, ;, Re;} will be presented later.

Kalman began by introducing the quantity
A - - A N
P; = (Xj)i—1,Xiji1),  Xiji—1 = Xi — Xj)i—1, (30)

which is of course of independent interest as the covariance matrix of the error in the predicted state-
estimator, and noting that the quantities {Kp ;, Re,;} in the basic recursions (25)—(28) could be expressed
in terms of the {P;}. It remains only to specify the {P;} in terms of the model parameters, and he showed
that they could be described via a discrete-time Riccati recursion,

Pi+1 = F,PlFl* + G,Q,G: — Kp,iRe,iK;,ia 12> 0, (31)

with initial condition Py = IIy. The recursion was so named by Kalman (1960) as an analog of a famous
quadratically nonlinear differential equation attributed to Jacopo Francesco, Count Riccati (ca. 1700), and
first ingenuously exploited in the calculus of variations by Legendre (1786). It was reintroduced into control
theory by Bellman (1957), and then in general matrix form by Kalman (1960).

Important Remark. Since one-step predicted quantities will be encountered often, we shall use the following

. . i AL - A
briefer notations (except when necessary for emphasis) X; = %X;);_1, and X; = X;j;_1-
The gain matrix and the innovations variance

Returning to (30), and to see how P; enters into the computation of {K), ;, R, ;}, note first that since
e; =y; — Hi%; = Hix; — HiX; + v; = Hi%; + Vi, (32)
and v; L X;, we can express the covariance matrix of e; in terms of P;,
Rei 2 (e;,e;) = H;P,H} + R;. (33)
It turns out that this is also true of K, ;. For we have
(Xit1, i) = Fi(xi, €;) + Gi(u;, e;) , (34)
and it can be checked that (x;,e;) = P,H} and (u;, e;) = S;. Therefore

Kpi 2 (xip1,e)R; ! = (FPH] +GiS;)R;} (35)

e,i?

so we see that {K;, R ;} can be determined once we have the error covariance matrices {P;}. These, we
shall show soon, can be successively computed via the previously mentioned discrete Riccati recursion (31).

Remark. Tt is important to note that the quantities {P;, Kp ;, R ;} depend only upon the prior assumptions
on the model and not on the actual observations {y;}; therefore, these quantities can be precomputed (or
computed off-line) and stored for use in the actual prediction calculations. However, the above formulas do
allow these quantities to be updated as needed (in real time), thus eliminating the need for extensive storage.

Recursion for the state error variance

10



The covariance matrix of the state-vector of a white-noise driven process, x;+1 = F;x; + G;u;, obeys the
easily derived recursion

* * A
M1 = BILE + GiQ:G;,  II; = (x4, %;). (36)

Now we note that the estimator equation is also one driven by a white-noise process, namely the innovations:

. . A
Xir1 = Fiki + Kpei,  (ei,€j) = Re i0;5.

Therefore, if we define the covariance matrix of the state estimators as ¥; £ (%,%;), then (as for II;) we can
write
Siy1 = BXF + Ky iR i K,

P’

(37)

with initial condition ¥y = 0. But the orthogonal decomposition x; = %X; + X;, with %; L X;, shows that
II; = ¥; + P;. It is now immediate that

Pip1 =iy1 — Zip1 = F(IL - 5)F + GiQiG} — KpiRe i K,

P

which is indeed the Riccati recursion (31). This is perhaps the most direct route to the Riccati recursion.
Statement of the Kalman filter

In summary, given the state-space model (15), (16), and (19), the innovations of the process {y;} can
be recursively computed via the equations

e, = yi—Hix;, X1 =Fx;+K,;e;, X0=0, ey =Yyo, (38)
where K, ; = (F;P,H; + G,-.S’i)R;%, R.;=R; + H;P;H}, and P; is computed via (31).

Note that the number of computations required for going from e; to e;; is O(n®) since the most expen-
sive step is the computation of the triple product F; P;F}, of n x n matrices.

Measurement and time-updates

In addition to the predicted estimators {X;;_1}, we may be interested in the so-called filtered estimators
X;)i, or in going from X;;;_, to X;; (a so-called measurement-update step), or from X;; to X;y1 (a so-called
time-update step). These are readily obtained using the innovations.

For the measurement update step we can verify that

" . A .
i = %i + K€, Ky = PHR,}, (39)
with A
lIxi — %yl|> = Py = Pi — KpiReiK};; = P; — P;H; R, H;P; . (40)
Likewise, for the time-update step we have
Xiy1 = Fi%ii + GiSiR, je; (41)
with
Piy1 = FiPiF} + Gi(Qi — SiR;}S;)G; — FiK;:S; G — GiS;K} ,Fy. (42)

These results suggest another useful way of carrying out the Kalman filter recursions. Thus note that
the estimators {X;} and {X;;} can be sequentially computed, starting with %Xo_; = 0, and using first the

11



measurement-update equation followed by the time-update equation. That is, starting with the given initial
estimator X _;, we can successively compute the estimators as indicated below

~ M.Y. A tou, A m.U. A tu, A mM.U. A tu,
0==%o_1 = Koo =Ry =Ry —F Ko — Rgp —3 Kg--+,

where the abbreviations m.u. and t.u. stand for measurement and time updates, respectively.

Similarly, starting with the given value Py _; = Ilp, we can successively compute

m.u. t.u, m.uy.
o = Po)-1 — Pojo — Prjo — Pij1---

A nice feature of this two-step (measurement- and time-update) form of the equations is that it makes clear
how to proceed if we have a variable time between measurements or if, for some reason, certain measurements
are lost. Therefore, digital computer implementations of the Kalman filter tend to be of this form. Analog
(or hybrid) computer realizations usually use the prediction estimator equation.

Sequential processing

The measurement update formulation can be used to motivate another scheme that is widely used in
practical applications, and which is based on the reduction of a vector measurements problem to a sequence
of scalar measurement problems.

Indeed, when R; > 0, we can rewrite the measurement update equations in the equivalent form:

Pil‘il =P ' +HR;'H; and Pil_ilfciu = [P7'%; + H;R; 'yi] - (43)
Moreover, while K ; does not appear explicitly in these formulas, it will be useful to note that it can be

rewritten as
Ks;=P;HR;' = (P, '+ HfR; "H;) "H}R; . (44)

Remark. Since the inverse of the variance of a parameter is a (rough) measure of the information in the
parameter, i.e., large variance means high uncertainty or less information, these formulas are often described
as Information-Form measurement update formulas.

A very useful application of these formulas is to reduce the problem of vector measurements (i.e., y; a
p x 1 vector, p > 1) to that of a sequence of scalar measurements. Doing this would reduce computations
because inversion of the p x p matrices R, ; would be trivialized.

If the measurements are in fact nonscalar, but the additive noise covariance matrices R; are strictly
positive definite, then by preliminary operations we can arrange that the entries of the output noise vector
be uncorrelated. More specifically, let R; = L;D;L} denote a triangular factorization of R;, say, and scale
the output equation y; = H;x; + v; by Li_l, i.e., L;lyi = Li_lHixi + Li_lvi. Then the new noise sequence
V; = L;lvi is such that

E\_/i\_f;f = Dl(s” ) Di = dlag{di, dz2’ ceey df )

for some positive numbers {d?}.

We further partition the entries of the scaled output vector L, 1y, and of the scaled matrix L;lHi, as
follows:
L'y = col{y* (4),y(4),...,¥7 (i)}, Ly'H;=col{hl,hi,... ,h'},

where {y* (i)} are scalars and {h*} are row vectors.
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Now the p measurement processes {y'(4),...,y?(i)} will be mutually uncorrelated and we should be
able to incorporate them one at a time, essentially by making a series of measurement updates, first with
y!(i), then with y2(i), ..., and finally with y”(i).

To do this, we successively compute a sequence of matrices

P! =(I- K} h)P, K}, = PRI [AIPAY +dl] 7,

PP = (I~ K h)P! K7s= PIR AR + &)

: : (45)
PP =(I-K? R?)PP! K%, = PP RP* AP PP RE + df]

Then P? will be the updated covariance matrix P;|; based on all the measurements. Note that all the
inversions required here are trivial, that is, scalar. As far as the estimators go, sequential incorporation of
the new information in the components {y!(i),...,y? (i)} will lead to the equations %;; = X, where by the

basic measurement update formula

xF =&+ KEyPG) —RERETY], k=1,...,p, &0 =%, (46)
and
Kf; = (xie"(0) l€*(@)|7%, €*(d) = y" (i) — hfxi™" . (47)
Now if we define P} = ||x¥||2, x¥ = x; — ¥, then we can readily see that

Kjf; = PSR PFR] +df]7" (48)

It should be noted that this is the same as the expression for K ]’SZ in formula (45), where we did not make
explicit the stochastic meaning of PF and K.

Steady-state behavior

The Kalman filter equations (31), (33), and (34) have the interesting feature that even when the un-
derlying state-space model is time-invariant, say described by the constant matrices {F, G, H,Q, R, S}, the
equations for recursively predicting x; using {y; ;;B are time-variant, since both K, ; and R, ; depend on
the time-variant Riccati variable P;.

A natural question of interest would be to clarify whether in the time-invariant case the gain matrices
{Kp,;} might tend to a constant matrix, say K, as ¢ — oo. Furthermore, we might wonder if the steady-state
value depends upon the particular initial condition Py = Iy, i.e., K, 0 = (FI[oH* + GS)(R + HIloH*)'.
These are important questions, with several different and important consequences. The most obvious is that
if K, is constant, the optimum filter will be time-invariant and generally easier to implement. Less obvious
is the fact that if K, ; tends to the same value K, no matter what Iy > 0 is, then the effects of unavoidable
round-off errors introduced at each stage of the computation will tend to die off as time progresses; if this
wasn’t true, then errors would accumulate and the results would soon become meaningless.

In fact, it turns out that convergence of the Riccati recursion (31) can be guaranteed for some indefinite,
and even negative semi-definite, initial matrices IIy (provided they are bounded below by a certain negative
semi-definite matrix). This has certain implications for the numerical stability of the Riccati recursion, since
it shows that even if the Riccati variable P; loses its positive semi-definiteness (due to say, numerical errors)
it may still converge.

The general convergence result states the following. Given the Riccati recursion (31), and assuming
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1. {F, H} is detectable. [There are various characterizations of detectability. For example, a pair {F, H}
is detectable if, and only, if there exists a constant matrix K such that F'— K H is stable. Likewise, a
pair {F, G} is said to be stabilizable if {F*, G*} is detectable.]

2. {F-GSR™'H,G(Q — SR~15*)/2} is stabilizable. [The notation Q/? denotes any matrix satisfying
Q = Q'/2Q*/?, where Q is nonnegative definite and Q*/2 further denotes [Q'/2]*.]
3. The initial condition Py is such that I + (P?)*/2Py(P%)}/? > 0, where P® is the unique positive
semi-definite solution to the so-called dual Riccati equation,
Pe — Fs*pofps + H*R—IH _ Fs*PaG(Q—s + G*PaG)_lG*PaFS,
with F* = F - GSR™'H, Q* = Q — SR™1S5*.

Then P; converges to the unique positive semi-definite matrix, P, that satisfies the discrete-time algebraic
Riccati equation (DARE)

P =FPF*+GQG* — (FPH* + GS)(R+ HPH*) Y (FPH* + GS)*. (49)

Furthermore, the limiting matrix P is such that the matrix determining the observer dynamics is a stable
matrix, i.e., all the eigenvalues of F — K,H, K, = (FPH* + GS)(R + HPH*) 1, are less than unity in
magnitude. Moreover, in z—transform notation we have,

%(z) = (2I = F + K,H) ' K,y(2). (50)

In other words, the steady-state (or asymptotic) estimators of the state vector can be found by passing the
observations through a linear-time-invariant (LTI) filter with transfer matrix (2 — F + K,H) ' K,. This is
the so-called Wiener filter for the problem of estimating the state-vector from a stationary output process.

It can also be verified that the rate of convergence of P; to P is exponential. That is, p(P; — P) < cA%,
where p(-) denotes the spectral radius of its argument, A = p(F' — K, H) is less than unity (A < 1), and ¢ is
a bounded constant.

Fast algorithms for time-invariant systems

Another feature of the Kalman filter equations is that its computational requirements are indifferent to
whether the coefficient matrices {F;, G;, H;, Q;, R;, S;} are constant (time-invariant) or not. In particular, it
takes O(n®) operations (additions and multiplications of real numbers) to update P; to P;;1 via the Riccati
equation (31), whether the matrices {F;,G;, H;, Q;, R;, S;} are constant or not. This is a strength — the
algorithms are general; but also a weakness, because we would expect that in some way constant-parameter
problems should be easier to handle than similar time-variant problems.

It turns out that estimation for a constant parameter state-space model {F, G, H, @), R, S} can be achieved
by replacing the Riccati recursions used in the Kalman filter by a different set of fast recursions. These
equations can be solved with less effort than those of the Riccati-equation based Kalman filter: O(n?) rather
than O(n®). The difference can be very significant for large n.

The fast equations can be described as follows. Introduce the difference
A(Tlp) £ FII,F* + GQG* — (FIloH* + GS)(R + HI,H*) " (FIl,H* + GS)* — I, (51)

and factor it (non-uniquely) as A(Ily) = LoMoLg, where Lo and My are n X a and & X o matrices, & =
rank A(Ilp), and My = diag{1,...,1,—1,...,—1} is a signature matrix with as many +1’s as A(Ily) has

14



strictly positive and strictly negative eigenvalues. In other words, My describes what is called the inertia of
the matrix A(Ilp). Then the gain matrix Kp; can be computed as follows. We write K, ; = KiR;%, and
generate {K;, R, ;} via recursions involving certain auxiliary sequences {L;, R, ;}:

Kiys = Ki—FLiR_jLiH*, (52)
Liyy = (F-KR_;H)L;, (53)
Reiy1n = Re;j— HL;R [LiH*, (54)
Reiy1n = R.i—L;H*R_;HL;, (55)

with initial conditions Ko = FIIcH* + GS, R.o = R+ HIlpH*, and R,y = —Mo_l. Moreover, the error
covariance matrix P; can be computed as P;; 1 = — E;:o LR, ;L;‘ This algorithm is of interest when the
parameter « is significantly smaller than n, which happens in several important cases.

Remark. The above recursions are sometimes said to be of Chandrasekhar-type because they are general-
izations of equations introduced by Chandrasekhar (1947,1950) in certain radiative transfer problems.

Array algorithms

As mentioned earlier, the largest amount of computation in the Kalman filter recursions arises in prop-
agating the error covariance matrix P;. However, more is at stake than the amount of computation. One
consequence of round-off error is that the computed P; may be non Hermitian. This is sometimes compen-
sated for by averaging the computed P; and its Hermitian transpose. A better solution is only to propagate
half the elements in P; - say the ones on and below the main diagonal.

A more serious consequence arises from the fact that the P; being covariance matrices have to be
nonnegative definite. But round-off errors in the computation might destroy this property. Moreover, this
is not an easy property to check - a matrix may be indefinite even if all its diagonal entries are nonnegative.
The diagonal entries are the mean-square errors in the estimates of each of the components of the state vector
and, of course, the computation would be seriously off if these diagonal entries turned out to be negative.

Nevertheless, it has been observed that such situations need not always be catastrophic - it can happen
that the computation recovers, and that some iterations later the P; are nonnegative definite. One expla-
nation arises from the previously mentioned result that convergence of P; to a constant matrix can happen
even for certain indefinite Iy (provided their smallest eigenvalue is not too negative). Since the system is
time-invariant, the P; at each ¢ can be regarded as the initial value for the Riccati recursion, and the result
just mentioned therefore allows for P; to be indefinite for some values of ¢ without affecting the ultimate
convergence.

Despite these possibilities, it is desirable to try to ensure that P; is always nonnegative-definite. It turns
out that an important step in this direction is to propagate not P; but a square-root factor, i.e., a matrix A;
such that P; = A;A}. There will be of course round-off errors in propagating A4;, just as for P;, but the point
is that the product of the computed factors, say P, = /iiflf, is almost certainly nonnegative-definite. In
theory, Aifi;‘ always is nonnegative-definite, but of course again round-off effects may arise - however, they
are much easier to control, and in fact, it is easy to see that the diagonal elements will never be negative.
Such algorithms are called array algorithms and are briefly discussed next. They have the following general
form:

1. We form a certain pre-array of numbers based on the given data at time .

2. This array is reduced to a specified form (often triangular) by a sequence of elementary unitary
operations (rotations or reflections).
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3. The desired quantities at time i+ 1 can be immediately read-off from the resulting so-called post-array.

No explicit equations are necessary. Such array algorithms are often much simpler to describe and implement
(in software or hardware) than explicit sets of equations: they are becoming the algorithms of choice in many
applications, including state-space estimation.

Remark. In the sequel, we shall make for simplicity of presentation, the standing assumption that S; = 0.
We may remark that when R; > 0, a circumstance to be favored in setting up the state-space model, nonzero
S; can always be accommodated by replacing {F;, Q;} by

Ff=F,—G;S;R;'H; and Q=Q;— S;R;'S} . (56)
Square-root factors

As noted above, a matrix A such that P = AA* is called a square-root factor of P. Such factors are
not unique, since AO, for any unitary matrix © (i.e., one that satisfies ©©* = 0*© = I), is clearly also
a square-root factor. We can choose © to make the factor unique, e.g., by making A® Hermitian, or as
we shall choose, making it lower triangular with positive diagonal elements. For notational convenience, we
shall denote a square-root factor of a matrix P by P'/2, and almost always understand it as the unique
triangular square-root factor. We shall also write

p— (Pl/z) (p1/2)* — pl2p*/2

and
p1_ (P*/2)_1 (P1/2)_1 — p—*/2pl/2

Array algorithm for the time-update problem

An array algorithm is fairly evident for the time-update problem. Indeed, Eq. (42) for the error covariance
matrix, assuming S; = 0, is
Pip1 = FPiFf + GiQiG;, > 0. (57)
Hence,
Py = [ F%Pil‘f Gz‘Q:/z ] [ Fz1):|z/2 GiQ»}/2 ] . (58)
This gives a factorization of P;11, but unfortunately the dimensions of the factor [ FzP;“/ 2 G,-Q;/ 2 ] are

too large, n x (n + m) rather than n x n. However, here we could take advantage of the nonuniqueness of
square root factors and introduce a unitary matrix O,

Py = EP)? G |ee [ RE? GiQi” |, (59)

it i

and try to choose © so that

[ BRI Gl o=[X Oum ], (60)

where 0,,x,, denotes an n X m matrix of all zero elements and X denotes a presently undetermined n x n
matrix. If we can find such a ©, then it must hold by squaring that

[ FP” 6@l |09 [ P Gi@l” | =1 X 0w I[ X Onxm 17, (61)

i|i i|i
I
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and, hence,
FPyFf + GiQ:G; = X X™. (62)

But since the left-hand side is equal to P;+1, X can be identified as P#f , a square-root factor of P; ;. So
we have the following algorithm. Form a so-called pre-array

A= RP GQY?

1K
and unitarily (block) triangularize it to yield a post-array of the form
AO=[X Opxm |, 00" =I,1m = 0%O.

We can identify X as a square-root of P; ;. Uniqueness could be ensured by assuming that X is, say, lower
triangular.

In summary, the array algorithm for the time-update problem takes the following form (assuming S; = 0):

[ P G,QM? ](é)z [ P2 o ] , (63)

i|i i+1

where O is any unitary matrix that triangularizes the pre-array. The matrix © can be found in several
ways via well-known methods in numerical linear algebra, including those based on Givens rotations and
Householder reflections.

Array algorithm for the measurement-update problem

We now wish to go from Pil/ % to Pil‘i/ % in accordance with the measurement update equation P;; =

P; — P,-H;‘R;Z-IH,-H-. For this purpose, we form the pre-array

R;/* HP
Az = ’ iy (64)
o pY
and then triangularize it via a unitary transformation ©:
0 pL? LY zZ |
K3

The entries {X,Y, Z} in the post-array can be identified by squaring both sides as above. So we shall be
brief and simply state the final form of the array algorithm:

RY? o

e,t

Kf,z’ P1/2

il

Rz;/z HiPil/z

0 pl/?

k2

0= : (66)

where K;; = P,H{R; ;.
Array algorithm for the predicted estimates

By combining the measurement-and-time update steps we can obtain the following algorithm. Form the
pre-array:
R\ H,PM* 0
Az = ’ ’ t /2 1/2
0 FP G;Q;
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and triangularize it via a unitary transformation © to get

X 0 0]

Y 7 0]’ say. (67)

As6 = |

By squaring, we can identify the entries {X,Y, Z} and obtain the array equations:

0 Fz'Pil/2 Gin}/Q = I—{E’z p2 o | (68)

Dyt i4+1

RY? mpPY? o ]6__R1/2 0 0

where K, ; = KiRi,/iz.
Operation counts and condensed forms

The number of operations needed in going from step 7 to step (i + 1) in the array algorithm for the
predicted estimators is O(n®), the same order as the Riccati-based algorithm. In general, though, the ac-
tual number of computations in the array method would tend to be somewhat larger than in the direct
Riccati equation method. However, there are of course important compensatory numerical advantages and
with proper programming it appears that the computational efforts can be made essentially the same. It
is also useful to first transform the given model parameters {F;, G;, H;} by unitary operations to so-called
condensed forms, which help reduce the operations count further.

Fast array algorithms

The fast recursions (52)—(55) also admit an array form. For this purpose, we assume that we are given a
constant-parameter state-space model and, at any time instant 7, we consider the difference § P; = (P;41—F;)
and introduce a (nonunique) factorization P;11 — P; = L;J;L}, where L; is an n x a; matrix, J; is an
a; X a; signature matrix with as many +1's as (Pj;1 — P;) has positive and negative eigenvalues, and
a; = rank(P;y1 — P;). The time subscript ¢ is used in both J; and «; to indicate, for now, that the inertia
of 6 P, may vary with time. It will follow, however, that the inertia of  P; does not vary with time.

The array algorithm follows by forming the pre-array

RY? HIL,
A= Tei ELi| 69
[ Kp,z' FLz' ( )
and triangularizing it via an (I & J;)—unitary matrix ©, i.e.,
R? HI, X 0
AO = | e o= , 70
[ K., FL, Y 2 (70)

for some © such that ! I
0 . 0
o4 8]e-[1 8],
We can identify the {X,Y, Z} terms by comparing the (I @ J;)—“norms” on both sides of the equality (70).
We omit the details and only state that this calculation allows us to make the identifications X = Ri’/ﬁrl,
Kp.it1, Z = Liy1, and to also conclude that J; 1 = J; = J.

In summary, the quantities {K,;, Ri,/iz} can be recursively updated via the array algorithm:

1/2 7 1/2
[@w‘ HL’]@:[RE,M 0 ] , (71)

Kp,z' F.Zz Kp,i+1 Lz’+1
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where © is any (I @ J)—unitary matrix that produces the block zero entry in the post-array. Moreover, the
initial conditions are
Reo = R+ HILH*, K,o=FIL,H*R_ ;"

with (Lo, J) obtained via the factorization

Py — Iy = [FIIoF* + GQG* — KoR_§K§ —Ilo| = LoJ L.
Smoothing algorithms

The Kalman filter and its variants give us recursive algorithms for computing the predicted and filtered
state estimators, X;;_1 and X;);. It is not hard to compute higher order predicted estimates X; |, ;, m > 0.
In fact

Xitmli = Figm—1.. . FiX;;, m>0.

However the determination of smoothed estimators, say x; y for ¢ < N, requires more effort. We state here
some smoothing algorithms.

The Bryson-Frazier formulas

Consider again the standard state-space model and continue to assume that S; = 0, for simplicity. The
so-called Bryson-Frazier (BF) algorithm finds the smoothed estimators X; x via
Xin =X+ Py, 0<i<N, (72)
where Ay is found via the backwards recursion
Xiv = FpXivyn + Hf R e, Anyyn =0. (73)
The corresponding error-covariance matrix can be found as P; x5 = P; — P;A; 5 P;, where
A _
Ayn = MNP = FyAiya Fpi + HY R, H;. (74)

The quantities {x;, e;, Re i, Fpi, P;} are as in the Kalman filter formulas.

The BF formulas give us a “two-pass” algorithm. On a forwards pass, we compute the innovations
and the predicted and filtered state estimators; then a backwards pass uses the innovations to compute the
so-called adjoint variables {A;x}. Finally, an appropriate combination gives the smoothed estimators.

The Rauch-Tung-Striebel formulas

Assuming F; invertible and P; > 0, the so-called Rauch-Tung-Striebel (RTS) formulas compute the
smoothed estimators as follows:

XN = Fo Xy v + FiilGiQiG:Pi;ﬁii+la (75)
where A
Fy; S F7'(I-GiQiGiPLY) = PF, Pl = PiFy P . (76)

The error covariance matrix obeys

131|N = Fs,il)i+1|NF:,i + Fi_lGinrG:ij_*, (77)
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where

. A .
Q = Qi— QiG;P1GiQi. (78)

There is also an alternative set of discrete-time formulas that also goes by the name RTS formulas. They

are slightly more general than the above formulas in in that they do not require the invertibility of the F;.
Defining F, ; = PiF;’iPijrll, it can be shown that

%N = FsiXip1n + (Xijs — FoiXiq1), (79)

and
Pyn = FsiPiynFy; + Py — Fs ;P Fy (80)

where the boundary conditions Xy|x and Py|y can be obtained by applying the appropriate Kalman filter
recursions to the data {yo,y1,...,Y~n}-

The RTS algorithm is also a two-pass algorithm, with all smoothed estimators being directly obtained at
the end of the backwards pass; note that we need only the estimators {%;} and {%;|;} for the second pass, the
original data {y;} and even the innovations {e;} need not be retained. The fact that the P,} are required
at every step perhaps increases the computational burden somewhat over that required for the original BF
formulas. However, the differences are small and much will depend on the actual codes and machines on
which the algorithms are run.

Note that for fixed-interval smoothing problems, the direction of time is not important, and we should
be able to process the data both forwards and backwards in time, say starting with ynx and ending with
Yo. Smoothing algorithms that are based on combinations of forward estimators and backwards estimators
involve so-called two-filter formulas. We shall omit the details for space limitations.

The Hamiltonian equations

Using (73), the backwards recursion for A;y, and (72) which gives %; y as a linear combination of %;
and Ay, as well as the Riccati equation (31) for P;, we can derive a slightly different backwards recursion
for Ay, viz.,

Xiiny = Ff\ip1n — HfR;"Hi%;n + HY R y;. (81)
Likewise, we can show that
Xip1 N = Fixyn + GiQiGi Aij1 N - (82)
Combining this equation with (81) in matrix form we get
Xipin | _ F; GiQ.G} ] [ XN ] [ 0 ]
- * — * + * D— 1] 83
[ AilN ] [ —H;R7'H; F, Ait1|N Rt | (83)

where from (73) and (72), the boundary conditions are found to be
Xon = HoAon,  Ang1n =0. (84)

These are the so-called Hamiltonian equations. They have several interesting features. First of all, they are
called Hamiltonian equations because equations of this type are encountered in certain classical (determin-
istic) variational problems associated with famous names such as Euler, Lagrange, Hamilton, etc.

Another interesting fact is that the Hamiltonian equations are only a “representation” for the smoothed
estimators — they do not (directly) provide an algorithm for finding {%X; 5 }. The reason is that the boundary
conditions (84) are “mixed”: one variable is specified at i = N + 1 (Ay41)nx = 0), but the other one only at
i = 0 (and that too only implicitly, %o xy = IoAg|n)-
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Yet another fascinating and fruitful feature of the equations is a “physical” picture in terms of a (gen-
eralized) transmission-line. This physical picture (called the scattering picture) turns out to be very useful
in understanding many aspects of the state-space estimation problem.

Xi|N F; /T Xipun

—H}R;'H; GiQ:iG;
A%//Hﬁﬁﬁi

)\i\N N F* >‘z'+1|N

k3

Figure 1: A scattering layer for the fized-interval smoothing problem.

The equation (83) can be graphically depicted as shown in Fig. 1, which suggests that we can regard
X.|n as a forward wave and .| as a backward wave traveling through a section of a scattering medium that
is specified by the quantities:

F; = the forward transmission coefficient ,
F} = the backward transmission coefficient ,
—H!R; YH;, = the left reflection coefficient ,
GiQ;G; = the right reflection coefficient ,
H!R;'y; = the internal backward source excitation .

We can put together many such sections to get a macroscopic section. By studying the propagation of signals
through such scattering sections, we can derive all the filtering and smoothing formulas described so far in
the article, in addition to several change-in-initial conditions formulas that are not as immediate to derive
through other methods.

Continuous-time state-space filtering

All our discussion so far has been on discrete-time signals and systems. Now many physical systems
evolve continuously in time, as do many physical signals. In this section we provide a brief overview of
results on state-space filtering for continuous-time state-space models. Much of the discussion is patterned
along our derivation for the discrete-time case in the earlier sections.

The standard continuous-time state-space model is of the form

x(t) = F(t)x(t) +Gt)u(), (85)
y(t) = H(@)x()+v(t), t>0, (86)

where {u(-),v(-)} are white noise processes such that

u(t) %3 QW)s(t—s) S®E—s) 0 0
(| v@® |, %(0) ) = | S*(t)é(t—s) R(t)s(t—s) 0 0|, (87)
x(0) | 0 0 M, 0



where (a(t),b(s)) = Fa(t)b*(s), for zero-mean random processes {a(-),b(-)}. These equations are clearly
quite analogous to those for the standard discrete-time model. The major difference is the presence of
continuous-time white noise processes {u(-), v(-)}. Engineers use these obviously nonphysical processes as
approximations to white band noise processes. Here we note only that there are also certain mathematical
issues in the treatment of white noise processes in the standard theory of stochastic processes, which mean
also that the process x(t) in (85) cannot be directly handled in the conventional theory. Special definitions
of stochastic integrals have to be introduced and equations such as (85) have to be regarded as a shorthand
for a more formal (integral) version. For linear least-mean-squares estimation problems, there is no need
to introduce this more formal theory and one can proceed quite satisfactorily with the now-usual methods
of working with white noise processes. The problem is analogous to avoiding the need for delta functions
in deterministic system theory by first working with step functions and then taking (formal) derivatives —
engineers (and others) have long since learned to work comfortably with delta functions. The same holds
for studies of stochastic linear systems.

Filtered estimators

To proceed here, we note that there are a couple of ways of approaching the study of continuous-
time problems - directly or via reduction to an equivalent, or more often an approximate, discrete-time
problem. Here we shall proceed directly. Direct continuous-time solutions are quite feasible and in fact quite
straightforward when we use the innovations,

e(t) =y(t) - H)x(t) = H(&)x(t) +v(t),
where
x(t) = %X(t|t—) = the linear least-mean-squares estimator of x(t) given {y(7), 0 < 7 < t},
and x(t) = x(t) — %(¢).

The innovations can be shown to be computed via

e(t) = y(t)—-H®)%(), e(0)=y(0), (88)
x(t) = F@O)x@)+K(t)e(t), t>0, (89)
where
K(t) = [P(t)H*(t) + G(t)S(t)IR*(¢), (90)
and
P(t) =F({)P(t)+ PR)F*(t) + G@®)Q()G*(t) — K(t)R(t)K*(t) , P(0) =1l . (91)

We should note that the above formulas require that R(-), the intensity of the measurement noise process
v(-), is invertible, i.e., strictly positive-definite. This is in contrast to the discrete-time case, where it was only
needed that R; > 0, where R;0;; = Ev,'v;f; the quantity that needed to be invertible was R, ; = R;+H; P;H;.
In the continuous-time case, it is an interesting and important fact that

Ee(t)e*(s) = R(t)6(t — s) = Ev(t)v*(s) .

While one can of course study continuous-time problems where R(t) is not strictly positive-definite, the
solution will generally involve derivatives of the observed process y(t) and will therefore tend to be more
sensitive to errors of various kinds.

Moreover, the nonlinear matrix Riccati differential equation (91) can rarely be solved analytically when
n # 1 (the state dimension). In general, it will have to be solved numerically, which is facilitated to some
extent by the fact that it is an initial value equation.
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Also, the continuous-time formulas are somewhat simpler than those in discrete-time. For one thing, in
continuous-time, there is no distinction between predicted and filtered estimators.

Smoothed estimators

The continuous-time version of the BF smoothing formulas take the following form. The smoothed
estimator X(¢|T) can be found via

%(t|T) = %(t) + POAT), 0<t<T (92)
where A(t{T) satisfies the backwards time recursion
AWT) = —[F(t) - KEHGPAT) — H* ()R~ ()e(t), AT|T)=0. (93)
An alternative equation is
A(HT) = —F(t)*A(t|T) — H* ()R~ (t) H(t)x(t) — H* ()R (t)y(t) , A(T|T)=0. (94)

Moreover, the smoothed error variance can be computed as
T
P((T) = P(t) — P(t) / ®* (s, t) H* (s)R~(s) H (s)B(s, t)ds , (95)
t

where ®(s,t) is the state-transition matrix of the closed-loop filter F(s) — K(s)H(s). The quantities
{x(¢), e(t), K(t), P(t)} are found in a forward pass by running the Kalman filter equations over the interval
[0,T].

Likewise, the RTS version of the smoothing filter is the following. We find the smoothed estimator %(¢|T")
by solving, backwards in time, the equation
x(t|T) = Fy()%(tT) + G(OQ)G™ ()P~ (O)%(T) , *(T|T) =%(T), (96)
where Fy(t) = F(t) + G(t)Q(t)G*(t)P~1(t). The smoothing errors variance obeys the equation

ch(iilT) = F,(t)P({{T) + P(t|T)F(t) — G()Q)G*(t) , P(T|T) = P(T). (97)

Fast algorithms

As in the discrete-time case, the effort required to solve the Riccati differential equation (91) is the
same whether the model is time-variant or not. By one measure, we have to solve n(n + 1)/2 (since P(-) is
Hermitian) coupled nonlinear differential equations for the entries of P(-).

To exploit the constancy of the state-space model we have to find a way of computing the gain function
K (-) in (90) that does not require the computation of P(-). This is possible using a fast algorithm.

We factor P(0) as P(0) = LoJL, where J = (I, ® —1I,) is the signature of P(0), i.e., p is the number
of positive eigenvalues of P(0), while g is the number of negative eigenvalues. Then

the rank of P(0),
= rank of (FIlp + I F* + GQG* — Tl H*R~1HTly) ,

A
a =p+gq
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and the gain matrix K(-) of the Kalman filter in can be computed by solving the following set of n(p + a)
coupled nonlinear equations
K(t) = L@t)JL*()H*R™", (98)
L(t) = [F-KM®HIL(Q), (99)

with initial conditions K (0) = IlH*R ! and L(0) = Lo.
Approximate nonlinear filtering

Most practical systems are nonlinear to some extent, and sometimes an idealized linear model suffices to
describe the system. But very often the nonlinearities cannot be disregarded. Examples are nonlinear plant
dynamics in control problems, perhaps due to actuator saturation or to a nonlinear measurement process.
Another example is in communication task of the demodulation of frequency- or phase-modulated signals in
additive Gaussian white noise, with the modulating signal assumed Gaussian.

Let us consider the case of frequency modulation (FM) where the message A(t) has a first-order But-
terworth spectrum, being modeled as the output of a first-order, time-invariant linear system with one
real pole driven by continuous-time “white” noise. This message is passed through an integrator to yield
0(t) = f(f A(7)d7, which then is employed to phase modulate a carrier signal with carrier frequency w,
rad/sec. The model state equations can be written as

[39] = [ 51008 ]+ 6w, o
y(t) = v2sinfw.t+0(t)]+ (), (101)

for some noise disturbances v(t) and u(¢) and some 8 > 0. The equation for the state is linear, but the
measurement equation is nonlinear.

A more general nonlinear state-space model in continuous time can be one of the form

filx(@®)] + ge[x()]u(?) (102)
he[x()] + v(2), (103)

x(t)
y(?)
where u(t), v(t) are white noise signals, and {f:(-), g:(-), h+(-)} are time-variant nonlinear functions. Regard-

less of the model, the least-mean-squares estimator of the state vector x(¢), at any particular time instant ¢,
is given by the conditional mean

Ex®)[Y(®)], Y@ ={y(o), 0<o<t. (104)

In general, the result is too complicated to be of practical interest, with rare cases where implementations are
possible. For this reason, we often resort to approximations on two levels. First, we discretize the continuous
system, thus leading to a nonlinear discrete-time model of the general form

Xit1 = fi(xi) + gi(xi)u; (105)
yi = hi(xi)+ vy, (106)

with {fi(-), hi(-), gi(-)} nonlinear (in general), u;,v; are zero mean, white processes, and xy is a random
variable with mean Zo. We shall assume {u;}, {v;}, and x¢ are mutually uncorrelated, and that

u; Uj Q,(SU 0 0
< V; 5 Vj > = 0 Rz(s” 0 . (107)
X0 — Zo X0 — Zo 0 0 IIo
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Second, we employ linear estimation techniques in order to develop estimators for the discretized state vector
x;. The Kalman solution offers an attractive alternative if the model could be further linearized. This creates
several possibilities but we only discuss here two of the most widely used.

A linearized Kalman filter
The first possibility is to linearize the state-space equations (105)—(106) around a known nominal tra-
jectory zi°™. A common choice is the unforced solution,
Tl = ful@i), 2™ =To - (108)
This defines a deterministic sequence and we can write
x; = ;%" 4+ Ax; , (109)

where Ax; measures the perturbation away from the nominal trajectory and is a random variable.

Assuming the functions {f, g+, ht} are smooth enough, and making a first-order Taylor expansion, we
obtain

fz(xz) IS fi(a:?om) + FiAXi, hz(xz) ~ hi(a;;“’m) =+ HiAXi, (].].0)
where the matrices F; and H; are defined by

_ Ofi(x)
Fi= =50 ’

p—gnom

(111)

p—gnom

This means that the (k, j)-th component of F; is the partial derivative of the k-th component of f;(-) with
respect to the j—the component of z, and similarly for H;, each derivative being evaluated at z;°™. Likewise,
taking a zero-th order expansion leads to

nom A

gi(xi) = gi(z7°™) Gi. (112)

Then, it can be shown that an approximate estimator for the state x; can be recursively computed as follows.
Start with %Xg_1 = Zo, Py—1 = Ilo and repeat:

Kiprp = Fi(Ris —27°7) + fi(zi™), (113)
Xijg = Xijio1 + Kpalyi — ha(27°™) — HiXyi—1 + Hizi"), (114)
Kfi = Py_1H;(H;Py_1H} +R;)™", (115)
Py = (I—-Kj;H;)Py;_y, (116)
Py = FiPyF +GiQiGY . (117)

The performance of the linearized filter is clearly dependent on the quality of the approximation in (110)-
(112). If (110)-(112) are exact, the linearized filter produces the true conditional mean estimator. Moreover,
for small ¢, or small ||g(x;)u;||, the nominal solution may be close to the true trajectory. However, with time
the two will depart, often resulting in a breakdown of (110)-(112), and filter divergence.

The extended Kalman filter
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A second possibility for the estimation of the state vector of the nonlinear model (105)—(106) is to
linearize the model around the most recent available estimate, i.e., around #;; or #;;_; [here, £;; denotes
the estimate while the boldface notation %;|; denotes the estimator]. Hence, we define

fi(xi) = fi(@q5) + Fi(xi — 244, (118)
hi(xi) = hi(Zgi-1) + Hi(xi — £4i-1), (119)
gi(xi) ~ gi(&p) =G, (120)
 0fi(a)  Ohi(a)
R = B " H; = = o (121)

Then, it can be shown that an approximate estimator for the state x; can be recursively computed by using
the so-called Extended Kalman Filter (EKF). We start with X|_; = Zo, Py|—1 = Iy and repeat:

iy = fi(%a), (122)
X = Xjio1 + Kpalyi — hi(%iji-1)] (123)
K;; = Py—1H;(HP)—1H; + R)7Y, (124)
Py = (I—-Kjf;H;)Py;_4, (125)
P = FiPyF +GiQiG} . (126)

Contrary to the linearized Kalman filter, observe now that the matrices (F;, H;,G;) depend on the
measurements and, therefore, the quantities (P;, K¢ ;) can not be pre-computed. This represents an increased
computational load. Moreover, while the linearized Kalman filter depended linearly on the {y;}, this is
not the case any more for the extended Kalman filter since since Ky ; also depends nonlinearly on prior
measurements.

The convergence of both filter variants cannot be guaranteed in general and it needs to be verified by
simulation. Table 1 provides some indication as to which implementation to choose under conditions on the
duration of the estimation interval, the size of the process noise, the signal to noise (SNR) ratio, and the
uncertainty in the initial state vector.

Table 1: Rules of thumb for choosing between EKF and Linearized KF.

H Condition ‘ large ‘ small H
Estimation interval EKF | Linearized
Process noise g;u; EKF | Linearized
SNR EKF | Linearized
Initial uncertainty Iy | EKF | Linearized

Of course, higher order filters can be obtained by retaining more terms in the Taylor series. However,
they are not necessarily better than an EKF. Also, more sophisticated filters can be developed that are based
on Gaussian sum approximations, statistical linearization, spline approximations, etc.

Concluding remarks
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The intent of this article was to provide an overview of some of the fundamentals of state-space estima-
tion, with emphasis on array formulations of the varied algorithms (slow or fast) that are available for this
purpose. More details and related discussion can be found in several of the references indicated at the end of
the article. The references are not intended to be complete but rather indicative of the work in the different
areas. More complete lists can be found in several of the textbooks mentioned therein.

Practical issues

In concluding, we briefly comment on several issues that are relevant in practical implementations of
the Kalman filtering algorithm, and which often lead to erroneous behaviour. By erroneous we mean that
the performance of the filter diverges from the optimal performance that is predicted by the underlying
theory. In particular, the observed state-error covariance matrix may tend to assume values that are either
considerably larger than the values predicted by the solution of the Riccati equation or even negative-definite.
Either case can lead to practical results that are far from ideal and therefore deserve closer examination.

There are many causes for the difficulties that arise when Kalman filtering algorithms are implemented in
practice and numerous studies have appeared in the literature. Here, we mention some of the more significant
issues in our opinion.

Recall that the Kalman solution allows us to estimate the state vector of a given state-space model
under certain assumptions on the measurement and process noise sequences. The solution is optimal in the
least-mean squares sense as long as the matrices that describe the dynamics of the model and the statistics
of the noise processes are known exactly. Any modeling errors in these matrices can lead to a filter design
whose actual performance does not agree with the theoretical performance. This is because the Kalman
filter does not include any mechanism that allows it to compensate for such inaccuracies in the model.

Modeling errors can occur in many different forms. Apart from actual errors in the model dynamics and
in the noise statistics, as mentioned above, we may also face errors that are due to unmodelled bias terms.
This situation arises when either the state equation or the output equation is driven by unknown terms. By
employing a Kalman filter that simply ignores the presence of these terms, we may obtain estimation errors
that are unacceptably large.

A third example of modeling errors arises when some modes of the actual system are ignored, either delib-
erately or not. While reduced-order models lead to filter structures that are less demanding computationally
than a full scale model, they nevertheless can still lead to erroneous performance.

In addition to modeling errors, a second cause of sub-optimal performance that may occur in practical
implementations of Kalman filtering algorithms is the use of suboptimal gain matrices. While the Kalman
filter is an optimal estimator, it is nevertheless inherently time-variant even when the underlying state-
space model itself is time-invariant. This means that the associated time-variant gain matrices need to be
repeatedly computed, and also stored in the case of off-line implementations. A significant reduction in
computations and complexity can be achieved if the optimal gain matrices are replaced by a constant gain
matrix, at the expense of suboptimal performance.

A related issue of practical relevance is how to estimate the value of the optimal steady-state Kalman
gain, especially when the noise covariance matrices are unknown, and how to tune the filter so that its
performance approaches the theoretical limit in the presence of these uncertainties.

Another cause of erroneous performance, and which is not immediately related to modeling errors, is the
occurrence of round-off errors when Kalman filtering algorithms are implemented in finite-precision arith-
metic. Since binary representations of real numbers can not cover the entire range of real values, numerical
errors are bound to occur due to overflow and underflow. Moreover, the larger the matrix dimensions the
larger the number of floating point operations that are needed and, consequently, the larger the possibility
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of round-off errors. These errors can cause Kalman filtering implementations to diverge away from their
ideal behaviour. In particular, numerical errors may cause the computed state-error covariance matrix to
become negative definite, a situation that motivated us to discuss the class of square-root algorithms. These
array-based algorithms help ameliorate numerical problems by working with square-root factors of covariance
matrices, but may not resolve them completely for ill-conditioned problems. Studies on numerically reliable
implementations exist in the literature but we omit the details here for brevity.
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