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Abstract

We formulate and solve new least squares type problems for parameter estimation
in the presence of bounded data uncertainties. The new methods are suitable when
a priori bounds on the uncertain data are available, and their solutions lead to more
meaningful results especially when compared with other methods such as total least
squares and robust estimation. Their superior performance is due to the fact that the
new methods guarantee that the effect of the uncertainties will never be unnecessarily
over-estimated, beyond what is reasonably assumed by the a priori bounds. Geometric
interpretations of the solutions are provided, along with closed-form expressions for
them.

1 Introduction

The central problem in estimation is to recover, to good accuracy, a set of unobservable
parameters from corrupted data. Several optimization criteria have been used for estimation
purposes over the years, but the most important, at least in the sense of having had the
most applications, are criteria that are based on quadratic cost functions. The most striking
among these is the linear least squares criterion, which was perhaps first developed by
Gauss (ca. 1795) in his work on celestial mechanics. Since then, it has enjoyed widespread
popularity in many diverse areas as a result of its attractive computational and statistical
properties (see, e.g., [5], [9], [11], [14], [15]). Among these attractive properties, the most
notable are the facts that least squares solutions can be explicitly evaluated in closed forms,
they can be recursively updated as more input data is made available, and they are also
maximum likelihood estimators in the presence of normally distributed measurement noise.

But alternative optimization criteria have been proposed over the years including,
among others, regularized least squares [5], ridge regression [5], [11], total least squares
[3], [4], [5], [8], and robust estimation [7], [10], [13], [16]. These different formulations allow,
in one way or another, to incorporate further a priori information about the unknown
parameter into the problem statement. They are also more effective in the presence of data
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errors and incomplete statistical information about the exogenous signals (or measurement
errors).

Among the most notable variations is the total least squares method, also known as
orthogonal regression or errors-in-variables method in statistics and system identification
[12]. The method is usually more effective than standard least squares techniques in the
presence of data errors. But it still exhibits certain drawbacks that degrade its performance
in practical situations. In particular, it may unnecessarily over-emphasize the effect of noise
and uncertainties and can, therefore, lead to overly conservative results.

More specifically, assume A € R™*" is a given full rank matrix with m > n, b € R™ is
a given vector, and consider the problem of solving the inconsistent linear system A-Z = b
in the least squares sense. The TLS solution assumes data uncertainties in A and proceeds
to correct A and b by replacing them by their projections, A and 13, onto a specific subspace
and by solving the consistent linear system of equations Az = b. The spectral norm of
the correction (A — A) in the TLS solution is bounded by the smallest singular value of
[ A b ] While this norm might be small for vectors b that are close enough to the range
space of A, it need not always be so. In other words, the TLS solution may lead to situations
in which the correction term is unnecessarily large.

Consider, for example, a situation in which the uncertainties in A are very small, say
A is almost known exactly. Assume further that b is far from the range space of A. In
this case, it is not difficult to visualize that the TLS solution will need to rotate (A, b) into
(A,b) and may therefore end up with an overly corrected approximant for A, despite the
fact that A is almost exact.

These facts motivate us to introduce new parameter estimation formulations with prior
bounds on the size of the allowable corrections to the data. More specifically, we formulate
and solve new least squares type problems that are more suitable for parameter estimation
scenarios in which a priori bounds on the uncertain data are known. The solutions lead to
more meaningful results in the sense that they guarantee that the effect of the uncertainties
will never be unnecessarily over-estimated, beyond what is reasonably assumed by the a
priori bounds.

For brevity, we only report here the main ideas and results. The details can be found
in 1], [2].

2 A New Least Squares Formulation

The first statement involves a min-max optimization problem and it leads to a regularized
least squares solution with automatic selection of the regularization parameter.

2.1 Problem Statement

Let A € R™*™ be a given full rank matrix with m > n and let b € R™ be a given
vector. The quantities (A, b) are assumed to be linearly related via an unknown vector of
parameters x € R",

b=A-z+v

where v € R™ explains the mismatch between A - x and b. We assume that the “true”
coefficient matrix is A 4+ A, and that we only know an upper bound on the perturbation
JA, say ||6A|2 < 7. Likewise, we assume that the “true” observation vector is b+ b, and
that we know an upper bound 7, on the perturbation §b, say ||6b||2 < 7. We pose the
problem of finding an estimate that performs “well” for any allowed perturbation (§ A, §b).



That is, we would like to determine, if possible, an & that solves

Z

1 min max A+8A)-&— (b+6b ‘
W : <||5A||2Sn, bl | )&= )||2>

Any value that we pick for & would lead to many residual norms, || (A + 6A)-& — (b+6b)||2,
one for each possible (§A,db). We want to determine the particular value(s) for & whose
maximum residual is the least possible. It turns out that this problem always has a unique
solution except in a special degenerate case in which the solution is nonunique.

2.2 A Geometric Formulation

The problem also admits an interesting geometric formulation. For this purpose, and for the
sake of illustration, assume we have a unit-norm vector b, ||b|2 = 1, with no uncertainties
in it (np = 0; it turns out that the solution does not depend on 7). Assume further that A
is simply a column vector, say a, with n # 0, and consider (1) in this setting:

(2) min < max || (a+da)- T — b||2> .

z \lldall2<n
The situation is depicted in Fig. 1. The vectors a and b are indicated in thick black lines.
The vector a is shown in the horizontal direction and a circle of radius 7 around its vertex
indicates the set of all possible vertices for a 4+ da. It can be verified that the solution can
be obtained by drawing a perpendicular from b to the lower tangential line 6;. The segment
r1 denotes the optimum residual. More details can be found in [1].

61

Fi1c. 1. Geometric construction of the solution for a simple example.

2.3 Reducing the Min-Max Problem to a Minimization Problem

The constrained min-max problem (1) can be reduced to a standard minimization problem
as follows. First note that

|(A+6A4) -2 —(b+db)[a < [JA-2—blla+n-]|Z]l2 + m,
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which provides an upper bound for || (A + dA) - & — (b + 6b)||2. The upper bound can in
fact be achieved by choosing (0 A, db) as

(A-z—b) T (A-&—b)

0A° = o = — . .
JA-&—b], ™

= — . — -,
[A-2—blly ]l

For these choices of perturbations in A and b, it follows that the vectors
{(A-2—0), 6A° - &, §b°}
are collinear. Hence,
[(A+6A°%) -2 —(b+00%))2 = [[A-2—blla+n-[Zl2+m,

which is the desired upper bound. We therefore conclude that the constrained min-max
problem (1) is equivalent to the following minimization problem. Given A € R™*" with
m > n, b € R™, and nonnegative real numbers (1, 7). Determine, if possible, an Z that
solves

(3) min ([[A-& = bll2 +7-[[E]2 +m) -

Note that the cost function in (3) is not of the same form as a regularized cost function.
In particular, only the Euclidean norms of (A - & — b) and & appear in (3) rather than the
squared Euclidean norms of these quantities.

2.4 Solving the Minimization Problem
To solve (3), we define the cost function

L) =|A-2—=bl2+n-[&l2+ne -

It is easy to check that £(&) is a convex continuous function in # and hence any local
minimum of £(&) is also a global minimum. But at any local minimum of £(&), it either
holds that £(&) is not differentiable or its gradient s7£(&) is 0. In particular, note that
L(z) is not differentiable only at Z = 0 and at any & that satisfies A-Z —b = 0.
We first consider the case in which £(&) is differentiable and, hence, the gradient of
L(z) exists and is given by
1

VL(E) = m-((AT-AJraI)-a?—AT-b) ,

where we have introduced the positive real number

(4) o= 1A 27 bl2
1|2

By setting \7£(Z) = 0 we obtain that any stationary solution & of £(Z) is given by
-1
(5) i=(AT-A+al) -AT-b.

We still need to determine the parameter « that corresponds to %, and which is defined in
(4). To solve for a, we introduce the singular value decomposition (SVD) of A:

>
(6) szwolwﬂ,
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where U € R™*™ and V € R™™"™ are orthogonal, and ¥ = diag(oy,---,0,) is diagonal,
with o9 > 09 > --- > o, > 0 being the singular values of A. We further partition the
vector UTb into

(7) [Z;]:UT-b

where by € R™ and by € R™ ™. In this case, it can be verified that equation (4) for «
reduces to the following nonlinear equation that is only a function of a and the given data

(A’ b’ ’r’)?

(8)

e yIbalE+ a2 [[(Z2 4 al) 7t b3
|- (22 +al) by

Note that only the norm of bs, and not by itself, is needed in the above expression.

Remark. We have assumed in the derivation so far that A is full rank. If this were not
the case, i.e., if A (and hence X) were singular, then equation (8) can be reduced to an
equation of the same form but with a non-singular ¥ of smaller dimension. Indeed, if we

partition
20
¥ =

where 3 € RF*F ig non-singular, and let by € R* be the first k components of by; by € RVF
be the last n — k components of by; and let

1b2]|3 = [|B2]13 + |1B1]]3 -

Then equation (8) reduces to

N ~ -1 .
n-\flbl3 42| (32 +a1) i3

(9) a - -1 .
IS (224 al) byl

I

the same form as (8). From now on, we assume that A is full rank and, hence, ¥ is invertible.

2.5 The Secular Equation

Define the nonlinear function in «,
T (v2_ 2 2 -2 Ui 2
(10) Gla) =bT - (S2=7I) - (B2 +al) b1 - 3 l2fl3 -

It follows that « is a positive solution to (8) if, and only if, it is a positive root of G(a).
Following [5], we refer to the equation

(11) Gla) =0

as a secular equation.
The function G(a) has several useful properties that will allow us to provide conditions
for the existence of a unique positive root a. The following results are proved in [1].

LEMMA 2.1. The function G(a) in (10) can have at most one positive root. In addition,
if & > 0 is a root of G(a), then & is a simple root and G'(&) > 0.



LEMMA 2.2. Assume n > 0 (a standing assumption) and by # 0, i.e., b does not belong
to the column span of A. Then the function G(a) in (10) has a unique positive root if, and

only if,

AT .

[181]2

LEMMA 2.3. Assume n > 0 (a standing assumption) and be = 0, i.e., b lies in the
column span of A. Then the function G(a) in (10) has a positive root if, and only, if

(13) 1<n<T2,
where .
o 2 bl 2Bl
1272 - by |2 161 ]|z

It can be further shown [1] that whenever G(a) has a positive root &, the corresponding
vector # in (5) must be the global minimizer of £(&).

LEMMA 2.4. Let & be a positive root of G(a) and let & be defined by (5) for a = a.
Then & is the global minimum of L(Z).

We still need to consider the points at which £(#) is not differentiable. These include
& = 0 and any solution of A - & = b. We omit the details here and refer to [1].

2.6 Solution of the Constrained Min-Max Problem
We collect in the following statement the full algebraic solution to (1).

THEOREM 2.1. Given A € R™*", with m > n and A full rank, b € R™, and nonnegative
real numbers (n,1). The optimization problem (1) always has a solution &. The solution(s)
can be constructed as follows:

o Introduce the SVD of A as in (6).
e Partition the vector UTb as in (7).

o Introduce the secular function (10).

e Define
1= bl

_ _ IATB]|;
127261 ]2 '

and Ty = bl

1

First case: b does not belong to the column span of A.

1. If n > 1 then the unique solution is & = 0.

2. If n < T2 then the unique solution is & = (AT -A+a&-I)"LAT -b, where & is the unique
positive oot of the secular equation G(a) = 0.

Second case: b belongs to the column span of A.

1. If n > o then the unique solution is & = 0.
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2. If 1 < n < 7o then the unique solution is & = (AT - A+ &-I)"LAT - b, where & is the
unique positive root of the secular equation G(a) = 0.

3. If n < 11 then the unique solution is & = VE-lp, = At -b.

4. If n = 11 = 7o then there are infinitely many solutions that are given by & =
V-2 1.by=6-A"-b, forany0< 3 < 1.

2.7 The Case of Sparse Data Matrices

The above algorithm is suitable when the computation of the SVD of A is feasible. For
large sparse matrices A, it is better to reformulate the secular equation as follows. Squaring
both sides of (4), and after some manipulation, we are led to

2

dT(C+a-)2d="T [tT-B-d'(C+a - ld—a d'(C+a-1)2d],
a

where we have defined C = AT - A and d = AT - b. Therefore, finding o reduces to finding

the positive root of

2

d"(C+a-I)7?d — % [bT'B—dT(C+a-I)_ld—a-dT(C'+a-I)_2d] )

1>

H(a)
In this form, one can develop techniques similar to those suggested in [6] to find « efficiently.

3 Another New Formulation: TLS with Bounded Uncertainties

We now introduce another optimization problem that turns out to involve the minimization
of a cost function in an “indefinite” metric, in a way that is similar to more recent works on
robust estimation and filtering (e.g., [7], [10], [13]). However, the cost function considered
in this paper is more complex and, contrary to robust estimation where no prior bounds are
imposed on the size of the disturbances, the derivation here shows how to solve the resulting
optimization problem in the presence of such constraints. A closed form and explicit solution
are again obtained in terms of the unique positive root of a secular equation.

3.1 Problem Statement

The formulation now involves a min-min optimization problem. Given A € R™*" with
m >n, b€ R™, and a nonnegative real number 7. Determine, if possible, an & that solves

14 min [ min A+8A)-2-0 .
(14 & (||5A||2§77 I ) ”2)

This problem also admits a geometric interpretation that is similar to the min-max
case. The details can be found in [2].

3.2 Reducing the Min-Min Problem to a Minimization Problem

It can be shown, under an additional fundamental assumption, that the min-min problem
is equivalent to a standard minimization problem. Assume that for all vectors & it holds
that

(15) n-l|zllz < ||A-&— b2 (fundamental assumption).
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The equivalent problem is to determine, if possible, an Z that solves

(16) min (|4 -2 = bll2 =7 - [|2[|2) -

We may remark that cost functions similar to (16) but with squared distances, say
min (||4-&—b]3 —y-lI2[3) ,

for some ~y, often arise in the study of indefinite quadratic cost functions in robust estimation
[7], [13]. The major distinction between both formulations, is that the cost function (16)
involves distance terms and it will be shown to provide an automatic procedure for selecting
the “regularization” factor 7 (viz., the factor & that is introduced later).

3.3 The Fundamental Condition for Non-Degeneracy

The fundamental condition (15) needs to be satisfied for all vectors & in order to avoid
degenerate cases. This can be restated in terms of conditions on the data (A4, b,7n) alone.

LEMMA 3.1. Necessary and sufficient conditions in terms of (A, b,n) for the fundamental
relation (15) to hold are:

(17) P I-AT . A) <0 <= 1 < omin(4),
and
(18) ' [ — A (AT A—n? D)7H-AT] b > 0.

The notation op,in(A) stands for the minimum singular value of A. Now note that for
a well-defined problem of the form (14) we need to assume n > 0 which, in view of (17),
means that A should be full rank so that o,,;,(A) > 0. We therefore assume, from now on,
that A is full rank.

3.4 Solving the Minimization Problem
To solve (16), we define the (non-convex) cost function

L) =|A-&—=bllz—n- %[z,

which is continuous in & and bounded from below by zero in view of (15). A minimum point
for £(&) can only occur at oo, at points where £(Z) is not differentiable, or at points where
its gradient, \7£(&), is 0. In particular, note that £(Z) is not differentiable only at & = 0
and at any & that satisfies A-& — b = 0. But points & satisfying A-& — b = 0 are excluded
by the fundamental condition (15). Following arguments similar to what we have done in
the min-max case, we are led to the following complete characterization of the solution.

THEOREM 3.1. Given A € R™*", with m > n and A full rank, b € R™, and a
nonnegative real number n < opmin(A). Assume further that

b7 [1— A (AT A—n*- )" AT| b >0,

The optimization problem (14) has a unique solution that can be constructed as follows.

e Introduce the SVD of A as in (6).



Partition the vector UTb as in (7).

Introduce the new secular function

(19) Gla) = b7 - (22— 1) - (2 —al) " by - T bl

(67

Determine the unique positive root & of G(a) that lies in the interval (n?,02).

e Then
g=AT-A—a-1)71AT b,

4 Variations
There are several variations to the above min-max and min-min optimization problems that
submit to algebraic solutions. We only mention two examples here:

Uncertain Weights. Consider the min-max problem

min max W+W)-(A-&—0)|2.
g, I ) L

It reduces to
min [W-(A-2—Db)ll2 + nw-||A-Z—-b|2],

and the optimal solution can be shown to satisfy
AT WT - w+ra-I)-A-2=AT- WT - W+a-1)-b,

where & satisfies a secular equation similar in form to G in (10). The details will be provided
elsewhere.

Multiplicative Uncertainties. Consider the min-max problem

min max (I +d4)-A-&—bs.
z  |I6All2<na

It reduces to
m‘gn [ ||A T — b||2 + Na ||A . §7||2] ’

and the optimal solution can be shown to be a scaled version of the least squares solution,
viz.,

(1+a)-AT-A.2=A4T-p,

where & is given by

o || PLb||+]| P-b]|-A/1—n2 .
&:{nanzﬂ-bn (B ) i ol < 1P

[[P-B]|% —n2-[[6]]?
00 otherwise

where P = A(ATA)"'AT and P+ =T P.
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5 Concluding Remarks

Several extensions are possible. For example, if only selected columns of the A matrix
are uncertain, while the remaining ones are known precisely, the problem can be reduced
to the formulations (1) and (14) (as discussed in [1], [2]). Also, weighted versions with
uncertainties in the weight matrices are useful in several applications, as well as cases with
more general multiplicative uncertainties, and these are currently under investigation.

Several other interesting issues remain to be addressed, and will be pursued elsewhere.

Among these, we state the following:

1.

A study of the statistical properties of the constrained min-max and min-min problems
is valuable for a better understanding of their performances in stochastic settings.

. The numerical properties of the algorithms proposed in this paper need also be

addressed.

. Extensions of the algorithms to deal with perturbations in submatrices of A are of

interest and will be studied elsewhere.
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