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1. Introduction 

Aneurysmal subarachnoid hemorrhage (aSAH) is a significant health care problem because 
of its high morbidity and mortality rates. Survivors of initial hemorrhage are susceptible to 
many forms of delayed but treatable secondary injuries, among which delayed ischemic 
neurological deficit (DIND) caused by vasospasm is the leading cause of morbidity and 
mortality. It is known that between 5 and 10% of hospitalized SAH patients die from 
vasospasm. What makes vasospasm interesting is that to some extent it is predictable, 
preventable and treatable [1]. 
Cerebral vasospasm is defined as the narrowing of the contrast medium column in the 
major cerebral arteries as evidenced in angiograms. It usually starts 3 to 5 days following 
bleeding showing a maximal reduction of the affected vessel lumen during Days 5 to 14 and 
can slowly resolve after weeks in some cases [2]. Prediction of cerebral vasospasm after 
aSAH is still challenging although there exist several ways of approaching it. Some patient-
related factors, such as initial clinical grade of aSAH [3], size and location of aneurysm [4], 
age [5], and sex [6] were found predictive of cerebral vasospasm from epidemiological 
studies. However, these measures can be too general to be useful for individuals. 
A. Detecting vasospasm 
Various diagnostic neurological imaging modalities can potentially be used as indicators of 
vasospasm. Conventional angiography is the gold standard of confirming the narrowing of 
large arteries. However, it is an invasive technique, since it requires the insertion of a 
catheter into a peripheral artery and the addition of a dye for correct visualization. 
Angiography is not suitable for continuous monitoring, and can also miss small vasospastic 
vessels. Clinical scales, such as Fisher score [4] that quantifies total amount of subarachnoid 
blood on the initial CT scan, are predictive of vasospasm to some extent. However, they do 
not take into consideration the amount of blood removed by surgery, which has been shown 
to reduce the incidence of vasospasm. CT perfusion, single-photon emission computed O
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tomography (SPECT) and MRI perfusion/diffusion imaging methods have the advantage of 
being noninvasive. However, their limitations include possible irradiation of head, cost, 
inconvenience of transporting ICU patients, general availability and possible delay of 
prediction after significant tissue ischemia is already present. More regional methods such 
as bedside intracerebral microdialysis have also been proposed [7], which seem appropriate 
for detecting focal vasospasm. However, microdialysis needs insertion of a probe to observe 
metabolic parameters changes in the tissue that may become ischemic [7]. In addition, an 
appropriate selection of which region to probe is needed. Finally, a delay of prediction may 
be present because of its reliance on the changed tissue metabolic patterns. 
The only noninvasive and easy-to-access clinical way of predicting vasospasm, at present, is 

to use Transcranial Doppler (TCD) measurement of blood flow velocities in conductive 

cerebral arteries including middle cerebral artery (MCA), anterior cerebral artery (ACA) and 

intracranial carotid artery (ICA) [8], [9], [10]. Prediction of vasospasm using this 

conventional TCD assessment is based on absolute values of velocity (> 120 cm/s indicating 

medium vasospasm, > 200 cm/s indicative of severe vasospasm). These criteria are based on 

a very simplified view of the complex cerebral hemodynamics that cerebral flow velocity 

(CBFV) is inversely related to square of the vessel radius. It has been demonstrated that this 

relationship only partially holds when vasospasm is not severe [11]. The actual relation 

between CBFV and arterial radius r is as follows 

 

where CBF is the Cerebral Blood Flow. In severe cases, a diminishing CBF is concomitant 

with a decreasing CBFV, which would have been taken as a recovery sign from vasospasm 

without knowledge of CBF. Additionally, systemic vascular effect has also been shown to 

affect the absolute blood flow velocity where hypertensive patients have a lower CBFV such 

that assessment of these patients are more prone to false negative results [12]. Another 

limitation of relying on the inverse relationship between vessel radii and flow velocity is 

that vasospasm can be detected only after certain degree of vessel radii change hence 

compromising its predictive power. 

An alternative method that is used often in practice is the evaluation of the Lindegaard ratio 

[13] which is an empirical approach and does not give exact information about the actual 

radii of the vessels as Angiography does, and also the thresholds defined for predicting the 

outcome are rather ad-hoc and may change for different patients. 

In this work we resort to a different approach to estimate the radii of the arteries without 

directly measuring them. It constitutes a model-based approach where state-estimation is 

applied to estimate physiological variables of interest such as arterial radii. The objective is 

to obtain a better estimation than that offered by the Lindegaard ratio, avoid the 

invasiveness of Angiography, and at the same time allow for continuous monitoring and 

possibly prediction of future spastic states. 

2. Methodology 

It is apparent from the above discussion that in order to increase the predictive power of 

TCD based vasospasm assessment, additional measurements including arterial blood 
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pressure (ABP) and intracranial pressure (ICP) are needed. ICP is informative for two 

reasons: 1) ICP directly affects cerebral perfusion pressure, whose fluctuation is one of CBF 

autoregulation stimuli, and autoregulation will modulate the relationship between CBFV 

and cerebral vasculature radii; 2) CBF changes lead to cerebral blood volume changes and 

thus ICP changes. Hence, ICP carries information about both CBF and cerebrospinal fluid 

(CSF) circulatory systems. In addition to more measurements, the dynamic changes in 

signals instead of absolute CBFV values shall be explored. However, what is less apparent is 

how to integrate all these added measurements such that dynamics can be properly 

characterized to provide predictive information. 

Mathematical modeling of a complex system is useful in elucidating the internal factors that 

are causative of observed behaviors of the system. In a pure deterministic situation, such 

internal factors alone can determine the current state of system. The system in this study is 

the coupled CBF and CSF circulatory system, which is complex and distributed in nature. A 

mathematical model of such a system is inevitably imperfect and hence has uncertainties. 

Thus, when trying to assess internal states of a system from external observations, it is 

imperative to address the imperfectness of the model in statistical sense. This treatment then 

results in a model-based data fusion approach, or equivalently in an engineering term, a 

stochastic state estimation approach. Cerebral vasculature radii dynamics provide internal 

information that can potentially lead to a more straightforward and efficient way of 

predicting vasospasm offering considerable advantage than predicting vasospasm based on 

any single measurement of the system. 

Three components are needed to construct such a state estimator for vasospasm prediction 

as described in our previous work [14]: 

• A mathematical model of cerebral hemodynamics (Sec. III) 

• A model-training (or parameter estimation) approach (Sec. IV) 

• A nonlinear state-estimation approach (Sec. V) 
The first component is a mathematical model of the integrated cerebral blood and CSF 

circulatory systems. Among many published models, those proposed in a series work of 

Ursino [15], [16], [17], [18], [19], [20], [21], [22] are appropriate ones because all the key 

known physiological factors are included in these models that regulate CBF and their 

interactions with the CSF circulation. However, one issue still remains regarding the 

complexity of the model if one chooses to model the vasospasm directly. Trade-off is usually 

justified between the complexity and the accuracy of the model because a state estimator is 

easier to be built on a simpler model as there would be fewer parameters to be estimated 

and the numerical stability of the estimator would be better. We approached this problem 

by a simulation study where signals simulated using a complete model including a direct 

modeling of vasospasm are used to test a state estimator based on a simplified model 

without components of vasospasm. This will be illustrated in Section VI. 

The second component is the parametrization of the model using individual patient’s 
measurement. This is essentially a nonlinear optimization problem. We will briefly describe 
in Section IV our solution that utilizes a combined global random search of parameter space 
and a local gradient based search to fine tune the parameters found by the global search. 
Particularly, we chose the differential evolution (DE) algorithm in the present work [23]. 
This algorithm has been used successfully as a global search technique for parameterizing 
mathematical models encountered in various fields [24], [25], [26]. 
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Once an individualized model is obtained, the third step is to simulate the model and adjust 

its estimated state variables based on the error between the simulated and the measured 

output of the model. The adjustment of state variable is necessary because any inaccuracy of 

the model, any physiological changes of parameters with time, or the accumulated error of 

numerical integrator can drive the simulated results erroneous. The celebrated Kalman filter 

(KF) [27] is a better solution because errors sensed in the simulated output are then used to 

correct the state estimation at every measurement moment. The KF is an optimal state 

estimator for linear Gaussian systems. Even though it is well known that such optimality is 

lost for a nonlinear dynamic system, almost all of the recently proposed nonlinear state 

estimators still follow [28], [29], [30], [31] the KF’s general schema to achieve a suboptimal 

solution for such systems although they differ in the particular form of propagating the 

statistics of state variables. In essence, one could chose any of the above nonlinear estimators 

for the vasospasm detection problem. However, all these filters have usually derived the 

Kalman gain in an unconstrained fashion, meaning that no domain knowledge has been 

used to define a feasible range of solutions for states and model parameters. In an 

intracranial pressure dynamic model, such physiological constraints usually exist for state 

variables as well as for model parameters. Therefore, a regularization of the state estimation 

process can be achieved by incorporating constraints in the derivation of the Kalman gain. A 

quadratic programming technique can be used to solve the resultant constraint optimization 

problem, which is applicable to any nonlinear state estimators. 

In summary, we propose a model-based approach to integrate ABP, ICP, and CBFV signals 

so that a hidden variable useful for characterizing the narrowing process of cerebral arteries 

can be obtained for detecting this process before any clinical symptoms appear. This 

approach is comprised of a physiology-driven mathematical model of CBF and CSF 

circulatory systems, a parameter estimation module that provides appropriate values for 

unknown model parameters, and a state updating algorithm based on KF-like nonlinear 

estimators (see Fig. 1). In the following, brief technical descriptions of modeling, 

parametrization, and state estimation are provided. A simulation study will be introduced 

to illustrate the feasibility of using a simplified model to drive the state estimation process. 

The effectiveness of the whole system will be illustrated using data from patients who 

developed vasospasm. 

All the variables mentioned in this work correspond to time domain signals, sampled at 
1Hz. The mathematical models used in this work have inputs, outputs, state variables and 
parameters. The input in this case is Arterial Blood Pressure (ABP), and the outputs are 
Intracranial Pressure (ICP) and Cerebral Blood Flow Velocity (CBFV). We assume 
measurements of all inputs and outputs are available. The models have several parameters 
which are in general unknown. An example of a parameter is the nominal value of a vessel 
resistance. The states typically represent some physiological variables which may not be 
measured directly, such as arterial radii of the vessels, compartment compliances, etc, and 
therefore need to be estimated. 
Note that the parameter estimation and state estimation could be combined into one step, by 
posing the problem as a joint parameter-state estimation. Note however that this requires 
knowing the dynamics of the model parameters a-priori. Another technique that makes the 
same assumption is dual estimation. None of these topics are discussed in this work, and the 
reader is referred to [32] for more information. 
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Fig. 1. Methodology involving a mathematical model, model training (or parameter 
estimation) and nonlinear state estimation. 

3. Mathematical models of cerebral hemodynamics 

We will introduce a complete dynamic model of CSF circulation, CBF circulation, and 
cerebral vasospasm. This model will be simulated with realistic parameters to provide 
ground truth data for validating the proposed state estimation approach. We will then 
present a systematic way of simplifying this model at different levels of complexity. 
The proposed methodology for the estimation of arterial radii is based on continuous time 
measurements of CBFV, ABP and ICP. This methodology relies heavily on mathematical 
models that relate these quantities, together with the desired arterial radii. For our purpose, 
a good mathematical model should provide good correlation with observed quantities, and 
at the same time have low complexity to allow fast training and state estimation, and avoid 
possible instability. In general, these two characteristics will contradict each other, i.e., a less 
complex model will be less able to capture the interrelations between all the variables. 
Another limitation of the approach is that even if we have a good model that closely 
matches the observed variables, it is virtually impossible to obtain continuous 
measurements of the actual arterial radii to compare them with the estimates. Hence, in this 
work we propose a simulationbased approach as follows: we develop a mathematical model 
of cerebral hemodynamics that is more general than previous models, and takes into 
account mechanisms such as Autoregulation and vasospasm. We will denote this model as 
Model 1. Then, we will use Model 1 to generate artificial data for different values of spasm 
severity. Next, we will develop a second model, denoted as Model 2, to estimate the arterial 
radii from Model 1 based on its outputs. As mentioned before, we want Model 2 to be 
simple, in order to reduce the complexity of the parameter and state estimation. This 
simulation-based approach will give us good insight into how capable simple models are of 
predicting states from more complex ones, and is the first step towards the application of 
the state estimation on actual patient data. 
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The mathematical models derived in this work are based on the models proposed by Ursino 
et al. These models were first introduced in [16], [17], [18]. Our work is based on the model 
of [16]. One inconvenience of the model in [16] is that it does not model vasospasm, which 
makes it inappropriate for the generation of data at different levels of spasm. Vasospasm 
was modeled in the work by Lodi and Ursino [19], but unfortunately several simplifications 
were introduced to the original Ursino model, such as a much simpler Autoregulation 
mechanism, and collapsing of the small and large arterial sections into one single section. 
Hence, we combined the two aforementioned models into one more general model that takes 
into account vasospasm, has a detailed Autoregulation mechanism, and has four sections: 
namely those corresponding to the large arteries (MCA, ACA, PCA), followed by the large pial 
arteries, small pial arteries and capillaries, and finally the venous compartment. We refer to 
this model as Model 1, and present it in the form of an electrical circuit in Fig. 2. 
 

 

Fig. 2. Model 1, which is a combination of models published in [16] and [19]. 

Next we introduced several simplifications to Model 1, namely collapsing small and large 
pial arterial sections into one, a simpler Autoregulation mechanism, and assuming Pv=Pic. 
We also added one capacitance at the large arteries to obtain a state variable that allowed us 
to obtain the desired MCA radius. We refer to this model as Model 2, and present it in the 
form of an electrical circuit in Fig. 3. 
 

 

Fig. 3. Model 2, which is a simplified version of Model 1. 
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The details of models 1 and 2 can be found in [33] and are omitted from this work due to 
space considerations. Slight modifications were introduced to the models in [33] and will 
appear in future publications. 

4. Parameter estimation 

Fig. 1a shows the Model Training scenario. A model such as the ones described in Section III 
is used to generate artificial outputs (ICP and CBFV), and the measurements of these 
outputs are subtracted to generate an error signal. An optimization block is used to select 
the set of parameters that minimizes some cost function that depends on the error. For 
instance, in our case we use the cost function 

 

(1) 

where N is the total number of measurements, L is the total number of outputs, θ is the 

unknown parameter vector, yl(n) is the nth measurement of output l, ŷ l(n, θ) is the nth output 

l generated by the model using parameter θ, and wl(n) is some weighting function. In our 
case, we use the weighting function that weights every variable inversely proportional to 
the square of signal sample yl(n). 
The models considered in this work are nonlinear, and hence (1) will in general be a 
nonconvex function of θ. As such, algorithms based on gradient descent are not guaranteed 
to converge to a global optimum. Hence, the optimization is done in two steps as proposed 
in [14]. First, a global search is performed using a genetic algorithm known as Differential 
Evolution (DE) [23], which has low complexity and good convergence. After the global 
search, a local search is performed using a standard gradient descent algorithm through the 
MATLAB Optimization Toolbox. Further details of this approach can be found in [14]. 

5. Non-linear state estimation 

A. Kalman Filter-like state estimation for nonlinear models 
Extensive treatments of the Kalman filter can be found in many standard text books [34], 
[35], [36], [37]. The extension of the Kalman Filter to nonlinear systems is required for 
detecting cerebrovascular radii changes. Consider a mathematical model of the system as 
follows 

 (2) 

and its measurement function as 

 (3) 

where xn, un, and wn are the state variables, input, and state noise, respectively at time 
instant n. yn and υn are the model output and observation noise, respectively. For the 
continuous-time systems studied here (see Section 3), xn+1 is obtained by the numerical 
integration procedure with xn, un and wn as inputs. 
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The optimal estimate of the state variables xn in the least mean squares sense, given the 
observation of yi, i = 1, ..., n, is the conditional expectation E(xn|yi, i = 1, ... , n). The most 
significant contribution of the KF is that it realizes a recursive procedure to obtain this 
conditional expectation exactly for a linear system with jointly Gaussian initial states and 
noise variables. However, this optimality is not retained in general for nonlinear systems. 
Instead, several extensions of the linear Kalman Filter can be used to obtain a suboptimal 
solution for nonlinear systems. A typical approach to solve the problem is to use the 
Extended Kalman Filter (EKF), which has the disadvantage of requiring the Jacobian matrix 
of the system, its calculation being error prone. Derivative-free state estimation approaches 
in non-linear systems have also been proposed, for example, the Unscented Kalman Filter 
[38] and the DD1 and DD2 filters [31], which have been shown to provide better 
performance than the EKF. We give a brief introduction of the general paradigm of the 
Kalman filter in this section so that the links between the nonlinear and linear Kalman filters 
can be clearly observed. 

In the subsequent mathematical developments, the notation x̂ i|j is used to denote an 

estimate of xi based on the measurements up to discrete time j, and the operator * denotes 
conjugate transposition. 

Let x̂ n|n−1 denote the prior estimation of xn, namely 

 
where E[·] is the expectation operator, and define the error quantity  

with its associated covariance matrix as 

 

Similarly, let ŷ n|n−1 denote the prior estimation of yn and define the innovation sequence 

 
with covariance 

 

At time n, a new measurement yn is collected to derive a better estimation of xn. For 
nonlinear filters, the assumption is that the random variables xn and yn are jointly Gaussian. 
When two random variables x and y are jointly Gaussian, it is well known that the optimal 
estimator of x given y is affine [36], [39]. Thus, in the case of a Gaussian system, it can be 

shown that the estimate of x̂ n|n can be obtained from x̂ n|n−1 and the difference between the 

measured yn and ŷ n|n−1 such that 

 (4) 

where Kn is termed Kalman gain, which, for both linear and nonlinear systems, can be 
optimally calculated as 

 (5) 

where  is the cross covariance between #x n|n−1 and en. Moreover, the state error 

covariance can be updated from 
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Equation (4), used to obtain x̂ n|n from x̂ n|n−1, is usually called measurement update since 

the upgrade of the prior estimate to a better posterior estimate is achieved with the arrival of 
a new measurement. The optimal choices for the remaining quantities are: 

 (6) 

which requires the calculation of the conditional probability of xn given the measurements 
up to time n. This step is usually called time-update. The prediction of the measurement can 
be calculated in a similar fashion as 

 (7) 

Having obtained x̂ n+1|n, ŷ n+1|n and their covariances, the next run of measurement-updates 

can be carried out. The whole iteration procedure then continues. The above equations allow 

us to recursively compute the state estimates x̂ n|n. Note that we have not assumed linearity 

of the model, and our only assumption was that the states and measurements are jointly 
Gaussian. 
The time update step in the general Kalman filter paradigm is essentially the propagation of 
the expectation and the covariances of random variables through functions. A difficulty 
arises in general when calculating (6) and (7) since the value of xn is unknown. Different 
nonlinear Kalman filters address this propagation problem in different ways while the 
measurement update is conducted in the same fashion. Nonlinear Kalman-like estimators 
such as the Extended Kalman Filter (EKF) use the following approximations 

 

The Unscented Kalman filter [38], [32] uses the so-called sigma points,  

 
where  α and κ are two constant parameters. Then the sigma points 

are propagated through the nonlinear function f, and the resulting points are aggregated to 
obtain an approximation for the mean of the output of the function, as follows: 

 

In the next two sections, we will briefly describe a different approach based on the DD1 
filter [31]. 
B. DD1 filter 
DD1 and DD2 filters were introduced by Norgaard [31], and approximate the nonlinear 
transformations using a multidimensional extension of Stirling’s interpolation formula. As 
in Unscented filters, the DD1 and DD2 filters do not require calculation or evaluation of the 
derivatives of the nonlinear functions. Also, they have been shown to outperform the EKF in 
several situations. 
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The basic principle behind DD1 and DD2 filters is that a nonlinear function f(x) can be 
approximated as 

 

where 

 
(8) 

Given a random variable x, with mean E(x) = x  and covariance Cov(x) = E(x− x )(x− x )*= Px, 

and an arbitrary function f(.), we would like to determine E(y) = y and Cov(y) = Py, where  

y = f(x). In other words, we are interested in propagating the mean and covariance of a 
random variable through a possibly nonlinear function f. When f is linear, the answer is 
given by the Kalman filter. 
Define a random variable , where Sx is a Cholesky factor of Px, i.e.,  

Then we have that Pz = I. Moreover, define a function  To first 

order, we can approximate: 

 
(9) 

where  is a zero-mean random variable. Thus, taking expectation of (9), to 
first order we obtain: 

 (10)

In order to propagate the covariance matrix, the same first order approximation leads us to 

 

Noting that EΔz = I, and using (8) we obtain 

 

In the general case where x has size n, [31] shows that Py and the cross covariance Pxy can be 
obtained from 

 

(11) 

 

(12) 

where sx,p is the pth column of Sx. 
The DD1 filter uses the same approximation as the EKF for the a-priori update, namely 
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and the output estimate is given by 

 

The Kalman gain is computed from 

 

where Re,n and the cross covariance Pxe,n are obtained from (11) and (12), respectively, by 

propagating ( x̂ n|n−1, un, vn) through the function H. For these calculations, an estimate of 

 is required, which is obtained from (11) by propagating ( x̂ n−1|n−1, un−1,wn−1) through 

the function F. The measurement update is the same as in the linear case, namely, 

 

(13)

C. Constrained Kalman Filter 
Physical and physiological boundaries on some state variables and model parameters exist 
in the present model. However, it can be noted that the equation to update state variables 
can result in posterior estimates well beyond those boundaries. Hence, adding constraints to 
the original problem of optimizing Kn is necessary. It is shown that this can be formulated as 
a quadratic programming problem for which efficient algorithms exist. Quadratic 
programming solves the following problem 

 
(14)

 (15)

 (16)

where H, w, A, and b are known quantities. Ai is the ith row of constraint matrix A and bi is 
the ith element of b. In the above formulation, there are ne equality and np − ne inequality 

constraints. To formulate the calculation of Kn as a QP problem, it should be realized that Kn 

is an optimal solution of linear least mean square problem, i.e., 

 
(17)

where Tr[·] is the trace of a matrix. The above equation can be further simplified since all the 

variables involved are real. With definitions of #x  = xn − x̂ n|n−1 and #y  = yn − ŷ n|n−1, it 

follows 

 
(18)

Denoting the ith row of Kn as Kn,i and the dimension of state variable as d , the above 
problem can be decomposed into d independent subproblems as 
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(19)

which is equivalently 

 
(20)

hence θ in Eq 14 is
 

 Now suppose that the xn is constrained by [l(i), u(i)], which leads to 

 
(21)

simple manipulations lead to the standard form of inequity constraints as 

 
(22)

 (23)

This clearly indicates that Kn,i can be calculated by solving a QP problem instead of the 
original unconstrained least mean square solution. 

6. Numerical simulation 

Our goal is to use a mathematical model of cerebral hemodynamics, combined with a 
stateestimation approach which, using signals produced by a human patient, will allow us 
to estimate the hidden states of the patient. 
In Section 3 we discussed two models of cerebral hemodynamics. Model 1 is a more general 
version of the model presented in [16], where it was shown that the results obtained through 
this model are in accordance with expected human responses. This model has ten state 
variables and several unknown parameters. Thus, if we were to use Model 1 for our state-
estimation approach, the technique would become computationally complex and error 
prone, making Model 1 a poor candidate for our state estimation approach. 
Model 2 is a simpler model, with only four state variables, namely Pla, Ppa, Pic and Cpa. Thus 
this model is more amenable to our estimation approach and will be more robust to model 
mismatch. 
It is, however, interesting to analyze how accurate is Model 2 in modeling the human 
cerebral hemodynamics. In other words, will Model 2 be able to detect changes in arterial 
radius as well as Model 1 would? To answer this question, we propose the following 
approach. We assume that Model 1 is the “true” model, and use it to generate artificial ICP 
and CBFV signals at different spastic levels. Subsequently, we apply our state-estimation 
approach using Model 2, on the signals generated by Model 1, and use the resulting state 
estimates to obtain estimates of arterial radius. 
Figure 4 shows the estimation results (from [33]). The solid blue curve shows the actual 
value of the radius introduced artificially in Model 1, and the red dashed curve shows the 
radius estimated by Model 2 through measurement of the ICP and CBFV signals produced 
by Model 1. We observe that Model 2 is able to accurately track the changes in radius. Thus 
Model 2 is a good candidate for our state estimation approach. 
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Fig. 4. Arterial radii artificially introduced in Model 1 (“true” model) and estimated through 
Model 2. 

In the following section we will show the estimation results obtained using real patient data 
instead of artificial data generated by a model. We will use Model 2 as our state-estimation 
model. 

7. Results with real patient data 

We now present our state estimation results using real patient data. We show results on two 
patients who suffered Subarachnoid Hemorrhage (SAH), and were admitted to the 
Neurocritical care unit at the UCLA Medical Center in 2007. Both patients have continuous 
recordings of ICP, ABP and CBFV measured at the right MCA, on different days after the 
initial SAH. Typically, two recording sessions were obtained each day, one in the morning 
and one in the afternoon. The TCD monitoring and data collection were approved by the 
UCLA IRB with signed consent form from patients’ next-of-kin. 
The length of each recording varies, but typically includes between 10 minutes to 1 hour of 
usable data. The first patient, which we will refer to as “Patient A”, had recordings on days 
1, 3, 4, 5, 7, and 8 after the initial SAH. Days 1, 3, 4 and 8 have two sessions each. We will 
denote each recording session by the letter of the patient followed by the day after SAH, and 
then the session number on that day. Thus, the recordings of Patient A are labelled as A1-1, 
A1-2, A3-1, A3-2, A4-1, A4-2, A5-1, A7-1, A8-1 and A8-2. We will refer to the second patient 
as “Patient B”, which has recordings B4-2, B5-1, B5-2, B6-1, B8-1, B10-1. This patient had an 
additional recording on day 4 after SAH, which was excluded since it did not include 
enough clean data for processing, due to either movement artifacts or noisy use of the TCD 
probe. 
For each recording, we processed the data as follows. For each session, we extracted 300 
seconds of clean data, including continuous ICP, CBFV at the right MCA and ABP. The 300 
seconds were extracted by observing that the signals were clean enough, that there were no 
transient artifacts due to placement of the TCD probe, and that no significant movement 
artifacts were present. After we extracted the signals, we downsampled the signals to 1Hz 
sampling rate, previously using a lowpass filter to avoid aliasing. Note that this 
downsampling process keeps only average information of the signals, and the pulsatility 
information is destroyed. 
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After we obtained the downsampled signals, we applied our parameter estimation approach 
on the 300 seconds obtained from the first session available for that patient. That is, we used 
session A1-1 to estimate the parameters for patient A, and session B4-2 to estimate the 
parameters of patient B. Then we kept those same initial parameters constant for all the 
remaining sessions. The rationale behind this choice is that in the earliest recording, the 
patient is more likely not to have developed vasospasm. Typically vasospasm takes 3 to 4 
days to develop. Thus, for patient A, it is very likely that the recording on day 1 will not 
include the effects of vasospasm. Then we will obtain a set of parameters that is 
representative of the “normal” state, without spasm. Then, a subsequent recording with a 
spastic state should be detected since it would deviate from the “normal” conditions. 
Unfortunately, for patient B, the earliest recording available is on day 4, indicating that the 
spasm may be present already (though we will argue later that this is not the case). Thus, if 
we train in a state that already includes the spasm, we may not be able to detect the 
subsequent changes. In summary, it is important to train the model as soon as possible after 
the initial SAH, to allow the system to learn the model parameters in normal conditions. 
After learning the model parameters on the first available recording, we proceeded to 
estimate the states of the model using two different approaches: a DD1 filter, and a DD1 
filter with constraints on the states, denoted by QCKF. The details of the constraints will be 
presented in future publications. 
Figure 5 shows the estimated radius for every session of patient A, both for the DD1 and 
QCKF filters. We can observe that according to our predictions, this patient had an evolving 
vasospasm starting on day 1, session 2, after the initial SAH. This spasm get accentuated on 
day 4, where it reaches less than half of its initial value. Then there is a slight recovery up to 
day 7, though the spasm is still considered severe. On day 8, session 2, the radius of the 
artery recovers to normal values, indicating the possibility of an angioplasty (surgery used 
to return arterial radius to normal). 
 

 

Fig. 5. Estimated radii for all sessions of patient A, for DD1 and QCKF filters. 

Figure 6 shows the measured ICP and CBFV against the signals estimated through our state 
estimation approach, both for DD1 and QCKF. We can observe that for both methods, the 
observed and estimated ICP have good agreement. This is not the case for CBFV, where 
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some discrepancies are observed. For instance, for session A7-1, DD1 has a significant 
disagreement with the actual signals. Note, however, how the QCKF approach is able to 
reduce this difference, by constraining the states to be within allowed values. On session A8-
2, both filters have a significant difference with the true values, which is due to the fact that 
the CBFV is significantly increased from the normal values, thus questioning whether the 
estimates obtained in Fig. 5 for session A8-2 are accurate or not. Note that the two filters also 
disagree on the radius estimates of session A8-1. The output estimates provided by the 
QCKF are closer to the actual measurements on this session, thus we could conclude that the 
QCKF is providing better estimates of the radius, and that the angioplasty was performed 
before session A8-1. 
Note also that the changes in ICP and CBFV do not seem to follow the trend of the 
vasospasm, which shows how powerful the proposed technique is. The mathematical 
models employed capture several complex inter-relationships between ICP, ABP and CBFV 
that are not evident at simple sight. 
 

 
Fig. 6. Actual and estimated outputs (ICP, CBFV) for patient A, using DD1 filter (top two 
plots) and QCKF filter (bottom two plots). 
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The estimation results obtained for patient B are shown in Fig. 7, for the QCKF filter. The 

results obtained through DD1 filtering are similar. It can be observed that the patient did not 

suffer from significant changes in arterial radius. This indicates that either the patient did 

not suffer from vasospasm after SAH, or that the patient already had vasospasm on day 4 

where the training was made, and the spasm did not improve in subsequent days. 

Angiographic evidence shows that the patient did have a mild vasospasm, supporting the 

second hypothesis. 
 

 

Fig. 7. Estimated radius for patient B, using QCKF filters. 

Fig. 8 shows the measured and estimated outputs for Patient B, where a good match is 

observed for all recordings. Note again how big changes in CBFV and ICP do not influence 

the arterial radius estimates considerably, as is expected from this patient. 

 

 

Fig. 8. Actual and estimated outputs (ICP, CBFV) for patient B, using the QCKF filter. 
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8. Discussion and conclusions 

Estimation of lumped cerebral arterial radius is important for healthcare monitoring in ICU 

patients, specially for detecting the presence of vasospasm following Subarachnoid 

Hemorrhage. A technique for continuous monitoring based on available measurements 

without introducing any additional invasive technique is very attractive, and would allow 

detection of vasospasm earlier and more accurately than other methods such as 

angiography. 

Our proposed estimation approach uses a combination of parameter estimation and state 

estimation techniques, and relies heavily on mathematical models of cerebral 

hemodynamics.We presented two models based on previous work by Ursino et. al, and 

showed through simulation how a simpler Model 2, with only four state-variables could 

predict changes in arterial radius from the signals generated through Model 1. We 

showed how to estimate the parameters of Model 1 through a non-linear least-squares 

technique, and how we trained the model on the first available recording of every patient. 

Then we applied our state-estimation approach using DD1 filtering, and a DD1 filter with 

constraints (QCKF). We showed that our approach detected the presence of vasospasm for 

Patient A, and observed a radius evolution that matches the expected results. The QCKF 

produced smaller errors in the output estimation, indicating that constraining the states to 

be within reasonable limits may improve the accuracy of the estimation. We also 

estimated the arterial radius for Patient B, which had a constant mild vasospasm 

throughout the recordings. 

In essence, we have shown the potential of Kalman-like state-estimators for nonlinear 

models. This application could potentially save lives by predicting post-SAH vasospasm 

before other techniques would. 
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