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Distributed Adaptive Learning Mechanisms
Ali H. Sayed and Federico S. Cattivelli

Abstract— The chapter describes recent developments in dis-
tributed processing over adaptive networks. The resulting adap-
tive learning rules rely on local data at the individual nodes
and on collaborations among neighboring nodes in order to
exploit the space-time dimension of the data more fully. The
ideas are illustrated by considering algorithms of the least-
mean-squares type, although more general adaptation rules are
also possible including least-squares rules and Kalman-type
rules. Both incremental and diffusion collaboration strategies are
considered.

I. INTRODUCTION

Distributed networks linking sensors and actuators will

form the backbone of future data communication and control

networks. Applications will range from sensor networks to

precision agriculture, environment monitoring, disaster relief

management, smart spaces, target localization, as well as

medical applications [1]–[5]. In all these cases, the distribution

of the nodes in the field yields spatial diversity, which should

be exploited alongside the temporal dimension in order to

enhance the robustness of the processing tasks and improve

the probability of signal and event detection.

Distributed processing techniques allow for the efficient

extraction of temporal and spatial information from data

collected at such distributed nodes by relying on local co-

operation and data processing. For example, each node in the

network could collect noisy observations related to a certain

parameter of interest. The nodes would then interact with their

neighboring nodes, as dictated by the network topology, in

order to estimate the parameter. The objective is to arrive at

an estimate that is as reliable as the one that would be obtained

if each node had access to the information across the entire

network.

In contrast, in the centralized approach to parameter es-

timation, the data from all nodes would be conveyed to a

central processor where they would be fused and the vector

of parameters estimated. Such an approach requires sufficient

communications resources to transmit the data back and forth

between the nodes and the central processor, which would

limit the autonomy of the network besides adding a critical

point of failure in the network due to the presence of a central

node [1], [6].

This chapter describes recent development in distributed

processing over adaptive networks. The presentation covers
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adaptive algorithms that allow neighboring nodes to communi-

cate with each other at every iteration. At each node, estimates

exchanged with neighboring nodes are fused and promptly fed

into the local adaptation rules. In this way, an adaptive network

is obtained where the structure as a whole is able to respond in

real-time to the temporal and spatial variations in the statistical

profile of the data. Different adaptation or learning rules at the

nodes, allied with different cooperation protocols, give rise to

adaptive networks of various complexities and potential.

Obviously, the effectiveness of any distributed implemen-

tation depends on the modes of cooperation that are allowed

among the nodes. Figure 1 illustrates three such modes of

cooperation.

In an incremental mode of cooperation (see Fig. 1a), in-

formation flows in a sequential manner from one node to the

adjacent node. This mode of operation requires a cyclic pattern

of collaboration among the nodes, and has the advantage

that for the last node in the cycle, the data from the entire

network are used to update the desired parameter estimate,

thereby offering excellent estimation performance. Moreover,

for every measurement, every node needs to communicate with

only one neighbor. However, incremental cooperation has the

disadvantage of requiring the definition of a cycle, and network

processing has to be faster than the measurement process, since

a full communication cycle is needed for every measurement.

This may become prohibitive for large networks. Incremental

networks are also less robust to node and link failures.

An alternative protocol is the diffusion implementation (see

Fig. 1b) where every node communicates with all of its

neighbors as dictated by the network topology. This approach

has no topology constraints and is more robust to node and

link failure (see, e.g., [7]). It will have some performance

degradation compared to an incremental solution, and also

every node will need to communicate with its neighbors for

every measurement, possibly requiring more energy than the

incremental case. Note, however, that when omnidirectional

communications are used, the energy required to transmit to

one neighbor may be the same as that required to transmit to

Incremental Diffusion Probabilistic
Diffusion
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Fig. 1. Three modes of cooperation.
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every neighbor.

The communication in the diffusion solution can be reduced

by allowing each node to communicate only with a subset

of its neighbors. This mode of cooperation is denoted proba-

bilistic diffusion (see Fig. 1c). The choice of which subset of

neighbors to communicate with can be randomized according

to some performance criterion.

This chapter describes several developments in distributed

processing over adaptive networks based on the works [13]–

[23]. The resulting adaptive learning rules rely on local data at

the individual nodes and on collaborations among neighboring

nodes in order to exploit the space-time dimension of the data

more fully. The ideas are illustrated by considering algorithms

of the least-mean-squares type, although more general adap-

tation rules are also possible including least-squares rules and

Kalman-type rules [16], [20], [21], [23]. Both incremental and

diffusion strategies are considered in the sequel.

A. Notation

In the remainder of the chapter we use boldface letters for

random quantities and normal font for non-random (determin-

istic) quantities. We also use capital letters for matrices and

small letters for vectors. For example, d is a random quantity

and d is a realization or measurement for it, and R is a

covariance matrix while w is a weight vector. The notation
∗ denotes complex conjugation for scalars and complex-

conjugate transposition for matrices. The index i is used to

denote iterations or time instants, and the indices k and ℓ are

used to denote different nodes in a network with a total of N
nodes.

II. MOTIVATION

We motivate adaptive networks by examining an application

in the context of data modeling. Thus, consider a set of

N sensors scattered over a geographical area and observing

some physical phenomenon of interest. Each node k collects

a measurement dk(i) at time i. It is assumed that these

measurements arise from an autoregressive (AR) model of the

form:

dk(i) =

M∑

m=1

βmdk(i−m) + vk(i) (1)

where vk(i) denotes additive zero-mean noise and the coeffi-

cients {βm} represent the underlying model. If we define the

M × 1 parameter vector

wo = col{β1, β2, . . . , βM}, (M × 1)

and the 1×M regression vector

uk,i =
[
dk(i− 1) dk(i − 2) . . . dk(i −M)

]

then we can express the measurement equation (1) at each

node k in the equivalent form:

dk(i) = uk,iw
o + vk(i) (2)

The objective is to estimate the AR model coefficients {βm}
or wo from measurements {dk(i)} at all nodes. In other words,

assuming that the {dk(i)} are realizations of a random variable

Fig. 2. A schematic representation of an adaptive network consisting of an
interconnected system of adaptive nodes interacting with each other and with
information flowing through the network in real-time.

dk and the {uk,i} are realizations of a random vector uk, the

objective is to find the vector w that minimizes the mean-

square error

1

N

N∑

k=1

E|dk − ukw|
2

One could employ individual adaptive filters at the nodes,

with each node k estimating wo independently of the other

nodes by relying solely on its local data {dk(i), uk,i, i ≥ 0}.
In this case, each node will end up with a local estimate for

wo and the quality of this estimate will be dictated by the

quality of the data at node k (such as the local SNR and noise

conditions).

However, in situations where a multitude of nodes has

access to data, and assuming some form of collaboration is

allowed among the nodes, it is more useful to seek solutions

that can take advantage of node cooperation. In addition, since

the statistical profile of the data may vary with time and space,

it is useful to explore cooperative strategies that are inherently

adaptive. For example, the noise and signal-to-noise (SNR)

conditions at the nodes may vary in time and space, and the

model parameters {βm} themselves may vary with time as

well. Under such conditions, it is helpful to endow the network

of nodes with learning abilities so that it can function as an

adaptive entity in its own right. By doing so, one would end up

with an adaptive network where all nodes respond to data in

real-time through local and cooperative processing, as well

adapt to variations in the statistical properties of the data

– see Fig. 2. It is expected that such cooperative adaptive

schemes will result in improved performance over the decou-

pled individual filters in a non-cooperative implementation,

and cooperation should help equalize the effect of varying

SNR conditions across the network.

This chapter illustrates these ideas with several algorithms.

We start by describing incremental adaptive networks in

Section III, followed by diffusion networks in Section IV. In

the process, we motivate and introduce the incremental LMS

algorithm and two versions of the diffusion LMS algorithm:

combine-then-adapt (CTA) and adapt-then-combine (ATC) dif-

fusion LMS. We also comment on the performance of the

algorithms via analysis and computer simulations.

III. INCREMENTAL ADAPTIVE SOLUTIONS

Consider a network with N nodes and assume initially

that at least one cyclic path can be established across the
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network. The cyclic path should enable information to be

moved from one node to a neighboring node around the

network and back to the initial node (see Fig. 3). Obviously,

some topologies may permit several possibilities for selecting

such cyclic trajectories.

Node 1

Node 2

Node k − 1

Node k
Node k + 1

Node N

{d1(i), u1,i}

{d2(i), u2,i}

{dk−1(i), uk−1,i}

{dk(i), uk,i}{dk+1(i), uk+1,i}

{dN (i), uN,i}

Fig. 3. A incremental network with N active nodes accessing space-time
data.

Assume further that each node k has access to time-

realizations {dk(i), uk,i} of zero-mean data {dk, uk}, k =
1, . . . , N , where each dk is a scalar and each uk is a 1 ×M
(row) regression vector. We denote the M × M covariance

matrices of the regression data by

Ru,k
∆
= E u∗

kuk (at node k) (3)

and the M × 1 cross-covariance vectors by

Rdu,k
∆
= E dku∗

k (at node k) (4)

where E is the expectation operator. Observe that

{Ru,k, Rdu,k} depend on k and, therefore, for generality,

we are allowing the statistical profile of the data to vary

spatially across the nodes. The special case of uniform

statistical profile would correspond to assuming Ru,k = Ru
and Rdu,k = Rdu for all k.

Our objective is to develop a mechanism that would allow

the nodes to cooperate with each other in order to estimate

some unknown M ×1 vector wo. We focus here on the mean-

square error criterion and assume that the network seeks a

vector wo that solves the following estimation problem:

wo = argmin
w

(
1

N

N∑

k=1

E |dk − ukw|
2

)
(5)

In other words, the optimal solution, wo, should be such that

it minimizes the average mean-square error (MSE) across the

network. We shall refer to the optimal minimum cost as the

resulting MSE network performance, namely,

MSEnetwork ∆
=

1

N

N∑

k=1

E |dk − ukw
o|2 (6)

Likewise, we shall denote the MSE performance at an indi-

vidual node k by

MSEk
∆
= E |dk − ukw

o|2 (7)

Note that since N denotes the size of the network and is

independent of the unknown w, then the optimization problem

(5) is also equivalent to

wo = argmin
w

N∑

k=1

E |dk − ukw|
2

(8)

where the factor 1/N has been removed. We shall denote the

cost function in (8) by

J(w)
∆
=

N∑

k=1

E |dk − ukw|
2

(9)

It is worth noting that J(w) decouples into a sum of individual

cost functions, namely,

J(w) =

N∑

k=1

Jk(w) (10)

where each individual Jk(w) is given by

Jk(w)
∆
= E |dk − ukw|

2
(11)

In optimization problems involving such decoupled cost func-

tions, incremental methods have been used to seek the solution

in a distributed manner [8]–[11], as we now explain.

A. Steepest-Descent Solution

To begin with, the traditional iterative steepest-descent so-

lution for determining wo in (8) takes the form

wi = wi−1 − µ [∇wJ(wi−1)]
∗

(12)

where µ > 0 is a step-size parameter and wi is an estimate

for wo at iteration i. Moreover, ∇wJ denotes the complex

gradient of J(w) with respect to w, which is given by

∇wJ(w) =
N∑

k=1

(Ru,kw −Rdu,k)
∗

Substituting into (12) leads to

wi = wi−1 + µ

N∑

k=1

(Rdu,k −Ru,kwi−1) (13)

Thus observe that each iteration step in (13) involves evaluat-

ing a sum of N terms, namely,

N∑

k=1

(Rdu,k −Ru,kwi−1)

and adding the result to wi−1 in order to arrive at wi. This

same result can be achieved by splitting the update into N
separate steps whereby each step adds one term, Rdu,k −
Ru,kwi−1, at a time and gives an intermediate value, say as

follows:
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ψ
(i)
0 ← wi−1

ψ
(i)
1 = ψ

(i)
0 + µ(Rdu,1 −Ru,1wi−1)

ψ
(i)
2 = ψ

(i)
1 + µ(Rdu,2 −Ru,2wi−1)

ψ
(i)
3 = ψ

(i)
2 + µ(Rdu,3 −Ru,3wi−1)

...
... (14)

ψ
(i)
N = ψ

(i)
N−1 + µ(Rdu,N −Ru,Nwi−1)

wi ← ψ
(i)
N

Observe that we are denoting the intermediate value at node k

by ψ
(i)
k , and we are using ψ

(i)
0 to denote the initial condition

at a virtual node 0. The procedure (14) defines a cycle visiting

every node only once. At every iteration (or time i), the

information cycles through all N nodes. Each ψ
(i)
k represents

a local estimate of wo at node k and time i, and the process

assumes that each node k has access to ψ
(i)
k−1, which is the

local estimate of wo at node k − 1 – see Fig. 4.

Node 1

Node 2

Node k − 1

Node k
Node k + 1

Node N

ψ
(i)
1

ψ
(i)
2

ψ
(i)
k−1

ψ
(i)
k

ψ
(i)
k+1

ψ
(i)
N

Fig. 4. A cycle covering nodes 1 through N .

The procedure (14) can be described more compactly as

follows:




ψ
(i)
0 ← wi−1

ψ
(i)
k = ψ

(i)
k−1 + µ [Rdu,k −Ru,kwi−1]
k = 1, . . . , N

wi ← ψ
(i)
N

(15)

Note, in particular, that the iteration for ψ
(i)
k is over the

spatial index k. Note further that the update for ψ
(i)
k requires

knowledge of wi−1, which enters into the computation of the

update direction in (15), namely,

Rdu,k −Ru,kwi−1

The implication of this fact is that all N nodes will need to

have access to wi−1, which requires communicating the wi−1

to all nodes at each time i.

B. Incremental Solution

A distributed solution can be motivated by resorting to an

approximation whereby the estimate wi−1 at each node in (15)

is replaced by its local estimate, thus leading to what is known

as an incremental solution. Specifically, if each node k relies

solely on the local estimate ψ
(i)
k−1 received from node k−1, as

opposed to requiring also wi−1, then an incremental version

of algorithm (15) would result in the following form:





ψ
(i)
0 ← wi−1

ψ
(i)
k = ψ

(i)
k−1 + µ

[
Rdu,k −Ru,kψ

(i)
k−1

]

k = 1, . . . , N

wi ← ψ
(i)
N

(16)

where wi−1 in (15) has been replaced by ψ
(i)
k−1 in the update

for ψ
(i)
k . Such incremental techniques have been studied ex-

tensively in the literature, and especially in the optimization

literature and in works on distributed computational algorithms

(e.g., [6], [8], [9], [12], [11]).

It is instructive to compare the performance of the steepest-

descent algorithm (13) or (15) and its incremental version

(16) [14]. Thus, recall that the desired vector wo in (8) is

the solution to the normal equations [24], [25]:
(

N∑

k=1

Ru,k

)
wo =

N∑

k=1

Rdu,k (17)

We assume that the coefficient matrix is positive-definite,

N∑

k=1

Ru,k > 0

so that a unique solution wo exists. Let

w̃i = wo − wi

denote the weight-error vector at iteration i. Subtracting wo

from both sides of the steepest-descent recursion (13) leads to

w̃i =

[
I − µ

N∑

k=1

Ru,k

]
w̃i−1 (18)

This recursion describes the dynamics of the weight-error

vector; it is seen that the evolution of the weight-error vector

is governed by the modes of the coefficient matrix

Fsd
∆
=

[
I − µ

N∑

k=1

Ru,k

]
(steepest-descent)

Let us now examine the evolution of w̃i when evaluated by

means of the incremental implementation (16). Subtracting wo

from both sides of (16) gives, for k = N ,

ψ̃
(i)
N = ψ̃

(i)
N−1 − µ

[
Rdu,N −Ru,Nψ

(i)
N−1

]
(19)

where

ψ̃
(i)
k = wo − ψ

(i)
k

Replacing ψ
(i)
N−1 in (19) by its update in terms of ψ

(i)
N−2 (as

given by (16)), and continuing in this manner, some algebra

will show that the evolution for the weight-error vector is now

described by a recursion of the form:

w̃i =

[
N∏

k=1

(I − µRu,k)

]
w̃i−1 + O(µ2) (20)
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where O(µ2) denotes terms that are independent of w̃i−1 and

of the order of µ2 or higher powers in µ. In the special case

when the statistical profile is uniform across all nodes, i.e.,

Ru,k = Ru and Rdu,k = Rdu, it can be verified that the

driving term denoted by O(µ2) in (20) becomes zero.

Therefore, the evolution of the weight-error vector w̃i that

is generated by the incremental solution (16) is governed by

the modes of the coefficient matrix:

Finc
∆
=

[
N∏

k=1

(I − µRu,k)

]
(incremental)

In order to illustrate the difference in the dynamics of both im-

plementations, consider the special case of uniform statistical

profile across all nodes. Then

Fsd = (I − µNRu) , Finc = (I − µRu)
N

from which we find that the M modes of convergence of the

algorithms are given by

modessd = {1− µNλm}

modesinc = {(1− µλm)N}

m = 1, 2, . . . ,M

in terms of the eigenvalues {λm} of Ru. In this case, a

necessary condition for convergence in the steepest-descent

case (18) is

µ <
2

Nλmax
(steepest-descent)

whereas a necessary condition for convergence in the incre-

mental case (20) is

µ <
2

λmax
(incremental)

where λmax is the maximum eigenvalue of Ru. These con-

ditions indicate that the incremental solution (16) converges

over a wider range of the step-size.

Figure 5 shows the magnitudes of the modes of conver-

gence for the case Ru = λI and N = 6 nodes, as a

function of µλ, both for the steepest-descent and incremental

algorithms (18) and (20), respectively. Note that for very

small µλ, (1 − µλ)N ≈ 1 − Nµλ, and both algorithms

have similar performance. As we increase µλ, the steepest-

descent algorithm has faster convergence, though it quickly

becomes unstable when µλ = 2/N . For larger step-sizes, the

incremental algorithm has a faster convergence rate than the

steepest-descent solution. Note further that the stability range

for the incremental algorithm is wider, leading to a more robust

implementation.

Still both algorithms tend to exhibit the same behavior for

diminishing step-sizes. This can be seen from the weight-

error recursion (20) for the incremental solution, where the

coefficient matrix can be expressed as
[
N∏

k=1

(I − µRu,k)

]
=

[
I − µ

N∑

k=1

Ru,k

]
+ O(µ2)

so that for vanishingly small step-sizes,

Finc = Fsd + O(µ2)

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

Steepest descent (18)

Incremental (20)

2
N µλ

{
|1

−
µ
N
λ
|,
|1

−
µ
λ
|N

}

Fig. 5. Modes of convergence for algorithms (15) and (16) for N = 6.

and the weight-error vectors {w̃i} from both algorithms (15)

and (16) evolve along similar dynamics. This same conclusion

follows from examining the update equation for the weight

estimates directly [14]. Indeed, note from (11) that

[∇Jk(w)]
∗ = −Rdu,k +Ru,kw (21)

Inspecting (21) we note that the following property holds for

a scalar µ and any two column vectors x and y:

[∇Jk(x− µy)]
∗ = [∇Jk(x)]

∗ − µ [∇Jk(y)]
∗ − µRdu,k (22)

where ∇Jk is computed relative to w.

Now, if we iterate the incremental solution (16) starting with

ψ
(i)
0 = wi−1, we get:

ψ
(i)
k−1 = wi−1 − µ

k−1∑

ℓ=1

[
∇Jℓ(ψ

(i)
ℓ−1)

]∗
(23)

Substituting (23) into (16) gives

ψ
(i)
k = ψ

(i)
k−1 − µ

[
∇Jk

(
wi−1 − µ

k−1∑

ℓ=1

[
∇Jℓ(ψ

(i)
ℓ−1)

]∗)
]∗

Using relation (22) with the choices

x = wi−1, y =

k−1∑

ℓ=1

[
∇Jℓ(ψ

(i)
ℓ−1)

]∗

leads to

ψ
(i)
k = ψ

(i)
k−1 − µ

(
[∇Jk(wi−1)]

∗

)

︸ ︷︷ ︸
steepest−descent as in (15)

(24)

+µ2

([
∇Jk

( k−1∑

ℓ=1

[
∇Jℓ(ψ

(i)
ℓ−1)

]∗ )
]∗

+Rdu,k

)

︸ ︷︷ ︸
extra term due to incremental procedure

Therefore, the incremental algorithm can be written as a sum

of the steepest-descent update plus extra terms. As µ→ 0, the

µ term dominates the µ2 term and the incremental algorithm

(16) and the steepest-descent algorithm (15) tend to exhibit

the same behavior.
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C. Adaptation: Incremental LMS

Now note that the incremental algorithm (16) requires

knowledge of the second-order moments {Ru,k, Rdu,k}. An

adaptive implementation of (16) can be obtained by replacing

these second-order moments by local instantaneous approxi-

mations, say of the LMS type, as follows:

Rdu,k ≈ dk(i)u
∗
k,i, Ru,k ≈ u

∗
k,iuk,i (25)

Obviously, more involved approximations are possible and

they would lead to alternative adaptive implementations.

Using the approximations (25) leads to the incremental LMS

algorithm derived in [14], [18], where we additionally allow

for the step-sizes to vary across the nodes:

Incremental LMS: Start with w−1 = 0. For each time i ≥ 0,

repeat:





ψ
(i)
0 = wi−1

ψ
(i)
k = ψ

(i)
k−1 + µku∗

k,i

(
dk(i)− uk,iψ

(i)
k−1

)

k = 1, . . . , N

wi = ψ
(i)
N

(26)

One question is how well the adaptive algorithm (26) performs.

A detailed mean-square and stability analysis of the algorithm

is performed in [14], [18]. The analysis relies on the following

assumptions on the data: {dk(i), uk,i}:

1) The unknown vector wo relates {dk(i), uk,i} as

dk(i) = uk,iw
o + vk(i) (27)

where vk(i) is some white noise sequence with variance

σ2
v,k and independent of {dℓ(j), uℓ,j} for all ℓ, j.

2) uk,i is independent of uℓ,i for k 6= ℓ (spatial indepen-

dence).

3) For every k, the sequence {uk,i} is independent over

time (time independence).

4) The regressors {uk,i} arise from a source with circular

Gaussian distribution with covariance matrix Ru,k.

It is worth noting that for linear data models of the form

(27), the solution wo of the mean-square-error criterion in (5)

coincides with the desired unknown vector in (27) [24], [25].

The following results are simplifications of the general

expressions derived in [14] assuming sufficiently small step-

sizes. Define the error signals:

ψ̃
(i)

k

∆
= wo −ψ

(i)
k (28)

ea,k(i)
∆
= uk,iψ̃

(i)

k−1 (29)

where (28) denotes the weight-error vector and (29) denotes

the a priori local error, both at node k and time i. Observe

that we are now denoting ψ̃
(i)

k and ea,k(i) by boldface letters

to highlight the fact that they are random quantities whose

variances we are interested in evaluating.

For each node k, the mean-square deviation (MSD) and the

excess mean-square error (EMSE) are defined as the steady-

state values of the variances of these error quantities, namely,

ηk
∆
= E

∥∥∥∥ψ̃
(∞)

k

∥∥∥∥
2

(MSD) (30)

ζk
∆
= E|ea,k(∞)|2 (EMSE) (31)

In the case of small step-sizes, simplified expressions for the

MSD and EMSE can be described as follows. For each node

k, introduce the eigen-decomposition

Ru,k = UkΛkU
∗
k

where Uk is unitary and Λk is a diagonal matrix with the

eigenvalues of Ru,k:

Λk = diag{λk,1, λk,2, . . . , λk,M} (node k)

Define further the quantities:

D
∆
= 2

N∑

k=1

µkΛk (diagonal matrix)

bk
∆
= diag{Λk} (column vector)

a
∆
=

N∑

k=1

µ2
kσ

2
v,kbk (column vector)

q
∆
= col{1, 1, . . . , 1}

where σ2
v,k denotes the noise variance at node k. Then,

according to the results from [13], [14]:

ηk ≈ aTD−1q (MSD) (32)

ζk ≈ aTD−1bk (EMSE) (33)

or, more explicitly,

ηk ≈
1

2

M∑

j=1

(∑N

ℓ=1 µ
2
ℓσ

2
v,ℓλℓ,j∑N

ℓ=1 µℓλℓ,j

)
(34)

ζk ≈
1

2

M∑

j=1

(
λk,j ·

∑N

ℓ=1 µ
2
ℓσ

2
v,ℓλℓ,j∑N

ℓ=1 µℓλℓ,j

)
(35)

Moreover, the mean-square performance at each node is given

by

MSEk = ζk + σ2
v,k (36)

The fact that the expression (32) for the MSD is independent

of k reveals an interesting behavior. Namely, there is an

equalization effect on the MSD throughout the network.

In order to illustrate the adaptive network performance, we

present a simulation example in Figs. 6 and 7. Fig. 6 depicts

the network topology with N = 15 nodes, together with

the network statistical profile. The regressors are zero-mean

Gaussian, independent in time and space, with covariance

matrices Ru,k. The background noise power is denoted by

σ2
v,k. Fig. 7 shows the steady-state performance for the incre-

mental LMS algorithm (26), using a uniform µ = 0.01. The

results were averaged over 200 experiments, and the steady-

state values were calculated by averaging the last 50 samples

after convergence. The figure shows the simulated steady-state

MSD and EMSE for every node in the network, and compares

them with the theoretical results from (34) and (35).
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Fig. 7. Steady-state performance of the incremental LMS algorithm (26);
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IV. DIFFUSION ADAPTIVE SOLUTIONS

The adaptive incremental solution (26) requires a cyclic

trajectory across the entire network, which can limit its ap-

plication and make the procedure less robust to node and

link failures. In particular, observe that the updates progress

sequentially from one node to another so that the generation of

ψ
(i)
k at node k can only happen after ψ

(i)
k−1 has been generated

at node k − 1.

However, when more communication resources are avail-

able, we should be able to take advantage of the network

connectivity and devise more sophisticated cooperation rules

among the nodes. For instance, node k does not need to rely

solely on information from node k− 1; it should also be able

to rely on information from other nodes in its neighborhood.

In addition, it should be possible for all nodes in the network

to undergo updates simultaneously whenever possible without

being limited by sequential processing.

Thus observe from (26) that the update for each node k

relies on receiving the local estimate ψ
(i)
k−1 from its neighbor

k − 1. What if the network topology allows cooperation

between node k and several other neighboring nodes? In this

case, one could consider providing node k with a local estimate

that is not only based on what node k − 1 has to offer, but

also on the information that the other neighboring nodes can

offer. For example, one could consider replacing the local

estimate ψ
(i)
k−1 in the incremental iteration (26) by some linear

combination of the local estimates at the neighbors of node k,

say, replace ψ
(i)
k−1 by

φ
(i−1)
k

∆
=

∑

ℓ∈Nk

akℓψ
(i−1)
k (37)

The coefficients {akℓ} are scaling factors that add up to one,

∑

ℓ∈Nk

akℓ = 1 (for each node k) (38)

and the notation Nk denotes the set of all nodes lying in the

neighborhood of node k (including k itself), i.e., it is the set

of all nodes ℓ that can communicate with node k:

Nk = {set of nodes connected to k including itself} (39)

More generally, the neighborhood Nk could also vary with

time, say as Nk,i, but we are going to continue to work with

Nk in this chapter for simplicity of exposition. We comment

on choices for the combination coefficients {akℓ} later in

Section IV-C.

A. Adaptation: Node-Based Diffusion

Using (37), one can then consider replacing the incremental

update (26) by the following recursion proposed in [15], [19]

– see Fig. 8:

CTA Diffusion LMS: Start with
{
ψ
(−1)
ℓ = 0

}
for all ℓ. For

each time i ≥ 0 and for each node k, repeat:

φ
(i−1)
k =

∑

ℓ∈Nk

akℓ ψ
(i−1)
ℓ (CTA version) (40)

ψ
(i)
k = φ

(i−1)
k + µku

∗
k,i

(
dk(i)− uk,iφ

(i−1)
k

)

Note that the cyclic update through the nodes has been

removed. Now, instead, at each iteration i, every node k
performs a two-step procedure: an initial aggregation step to

evaluate the aggregate (intermediate) estimate φ
(i−1)
k and a

subsequent adaptation step to update the local node estimate

to ψ
(i)
k . The aggregation step combines estimates {ψ

(i−1)
ℓ }

from the previous time step i−1. In this way, all nodes across

the network can perform their diffusion updates at the same

time.

We refer to the above algorithm as diffusion LMS or,

more specifically, as the Combine-then-Adapt (CTA) diffusion

LMS version. The term diffusion is used to highlight the

fact that information is being shared (or diffused) among the

nodes in the neighborhood and, more generally, among the

nodes in the entire network. This is because the aggregation

step incorporates information from other neighborhoods into

φ
(i−1)
k .



8

Exchange

Combine

Adapt

k

Node k

Combine

AF

{ψ
(i−1)
ℓ

}ℓ∈Nk φ
(i−1)
k

φ
(i−1)
k

ψ
(i)
k

{dk(i), uk,i}

{akℓ}ψ
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Fig. 8. A network with CTA diffusion strategy.

A useful alternative to the diffusion algorithm (40) is to

perform the adaptation step first followed by the aggregation

step, say (see Fig. 9):

ATC Diffusion LMS: Start with
{
ψ
(−1)
ℓ = 0

}
for all ℓ. For

each time i ≥ 0 and for each node k, repeat:

φ
(i)
k = ψ

(i−1)
k + µku

∗
k,i

(
dk(i)− uk,iψ

(i−1)
k

)

ψ
(i)
k =

∑

ℓ∈Nk

akℓ φ
(i)
ℓ (ATC version) (41)

We refer to (41) as the Adapt-then-Combine (ATC) dif-

fusion LMS algorithm. Analysis and simulations show that

ATC outperforms CTA. Intuitively, this is because the ATC

version performs the adaptation step first, which incorporates

the current data into the local weight estimates, φ
(i)
ℓ , before

combining them. We should note that for both versions, the

local weight vector estimate at node k and time i is taken as

ψ
(i)
k .

One could also consider other diffusion schemes whereby

the aggregation step involves more general functions of the

local estimates, say as [15]:

φ
(i−1)
k = fk

(
ψ
(i−1)
ℓ ; ℓ ∈ Nk

)
(42)

ψ
(i)
k = φ

(i−1)
k + µku

∗
k,i

(
dk(i)− uk,iφ

(i−1)
k

)

for some local combiner fk (·). The combiners fk(·) can be

nonlinear or even time-variant, to reflect, for instance, chang-

ing topologies or to respond to non-stationary environments.

For illustration purposes we continue to focus on the linear

combination structures defined by (40) and (41).

B. Mean-Square-Error Optimization

The CTA and ATC diffusion LMS algorithms so described

can be motivated formally in the same manner as the incre-

mental LMS algorithm by starting from a mean-square cost

Exchange

Combine

Adapt

k

Node k

Combine

AF
φ
(i)
k

{φ
(i)
ℓ }ℓ∈Nk

ψ
(i−1)
k

ψ
(i)
k

{dk(i), uk,i}

{akℓ}

φ
(i)
k

φ
(i)
2

φ
(i)
3

φ
(i)
4

Fig. 9. A network with ATC diffusion strategy.

function as follows. Consider node k and assume each node

ℓ in its neighborhood has some initial estimate for the weight

vector w, say {ψℓ, ℓ ∈ Nk}. We then formulate at node k the

problem of estimating the weight vector w that solves:

min
w

(
δ
∑

ℓ∈Nk

ckℓ‖w − ψℓ‖
2 + E |dk − ukw|

2

)
(43)

where δ > 0 is a regularization parameter and the {ckℓ} are

some weighting coefficients that add up to one:

∑

ℓ∈Nk

ckℓ = 1

The second term in the above cost function is the same

function Jk(w) used earlier in (11); this term involves only

local information and seeks that value of w that helps match

dk to ukw in the mean-square error sense. The first term in the

cost function (43) penalizes the distance between the solution

w and the prior information represented by the available local

estimates {ψℓ}. This is a useful term because it incorporates

global information from other neighborhoods in the network;

this is because the estimates {ψℓ} are expected to have been

influenced by data across the other neighborhoods.

Now note that the cost function in (43) decouples into the

sum of two individual cost functions:

δ
∑

ℓ∈Nk

ckℓ‖w − ψℓ‖
2

and

E |dk − ukw|
2

Thus, as before, an incremental approach can be used to carry

out the optimization at node k. Let {ψ
(i)
k , i ≥ 0} denote

the successive iterates at node k that result from applying

a steepest-descent approach to minimizing (43). Then the

traditional steepest-descent solution, with the gradient vector

of the cost function evaluated at the prior iterate ψ
(i−1)
k , is
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given by

ψ
(i)
k = ψ

(i−1)
k + µ

(
Rdu,k −Ru,kψ

(i−1)
k

)

− µδ
∑

ℓ∈Nk

ckℓ

(
ψ
(i−1)
k − ψℓ

)

We can split this update into two incremental update steps,

say as:

φ
(i)
k = ψ

(i−1)
k + µ

(
Rdu,k −Ru,kψ

(i−1)
k

)
(44)

ψ
(i)
k = φ

(i)
k − µδ

∑

ℓ∈Nk

ckℓ

(
ψ
(i−1)
k − ψℓ

)
(45)

with the intermediate variable denoted by φ
(i)
k . And, just like

we replaced wi−1 of (15) by the local estimate ψ
(i)
k−1 in (16),

we can also replace ψ
(i−1)
k in (45) by the local estimate φ

(i)
k

from (44). This approximation leads to

φ
(i)
k = ψ

(i−1)
k + µ

(
Rdu,k −Ru,kψ

(i−1)
k

)
(46)

ψ
(i)
k = φ

(i)
k − µδ

∑

ℓ∈Nk

ckℓ

(
φ
(i)
k − ψℓ

)
(47)

Recall that the {ψℓ} in (47) are local estimates at the nodes

ℓ in the neighborhood of k. One useful way to approximate

these estimates is by replacing them by the values {φ
(i)
l } that

are available at time i at these nodes, so that iteration (47)

becomes

ψ
(i)
k = φ

(i)
k − µδ

∑

ℓ∈Nk

ckℓ

(
φ
(i)
k − φ

(i)
ℓ

)

= (1 − µδ + µδckk)φ
(i)
k +

∑

ℓ∈Nk−{k}

µδckℓφ
(i)
ℓ

Introduce the coefficients

akk = (1 − µδ + µδckk), akℓ = µδckℓ, k 6= ℓ

Note that the {akℓ} defined in this manner add up to one. Note

also that akℓ = ckℓ if we set δ = µ−1. Then we obtain

φ
(i)
k = ψ

(i−1)
k + µ

(
Rdu,k −Ru,kψ

(i−1)
k

)

ψ
(i)
k =

∑

ℓ∈Nk

akℓφ
(i)
ℓ

If we apply the instantaneous approximations (25), and make

the step-size node-dependent, then we arrive at the ATC

diffusion LMS algorithm (41).

The CTA version (40) can be obtained in a similar manner

if we simply reverse the order by which the incremental split

was done in (44)–(45).

C. Combination Rules

There are several ways by which the combination weights

{akℓ} can be selected. We list here some examples that have

been used in the literature in the context of graph problems.

We also motivate the case where the weights {akℓ} can be

adapted as well; in this case, the network gains another level of

adaptation and the nodes are able to give less or more weight

selectively to their neighbors according to their performance

and reliability.

One of the simplest choices for the {akℓ} is to average the

neighboring estimates. Thus, let nk denote the degree of node

k, which is defined as the number of incident links at the node

(including a link from the node onto itself). In other words,

nk is the size of the neighborhood of k:

nk
∆
= number of neighbors of node k including itself

= | Nk |

Then we may select (see, e.g., [26])

akℓ =
1

nk
for each ℓ ∈ Nk

In this case, each node is assigned the same weight and

∑

ℓ∈Nk

akℓ = 1

This scheme exploits network connectivity rather fully, leading

to robust algorithms. If links or nodes eventually fail, the

adaptive network can still react by relying on the remaining

topology.

The so-called Laplacian rule is described as follows. In

graph theory, the entries of the N × N Laplacian matrix L
of a graph with N nodes is defined as [27]:

Lkℓ =





−1 if k 6= l are linked

nk − 1 for k = l
0 otherwise

Note that for k = l, the entry of the Laplacian matrix is

the number of incident links on node k. The Laplacian of

a graph has several important properties. For example, it is

always a nonnegative-definite matrix and the number of times

that 0 occurs as an eigenvalue is equal to the number of

connected components in the graph. The weights A = [akℓ] in

the Laplacian rule are chosen as follows (see, e.g., [28], [29]):

A = IN − γL

for some constant γ. A possible choice is γ = nmax where

nmax denotes the maximum degree across the network. In this

case we get

akℓ =





1/nmax if k 6= l are linked

1− (nk − 1)/nmax for k = l
0 otherwise

Another choice is the maximum-degree weights rule (e.g.,

[30]) which uses γ = 1/N , or equivalently,

akℓ =






1/N if k 6= ℓ are linked

1− (nk − 1)/N for k = ℓ
0 otherwise

In this case, all links are assigned weights 1/N and each node

complements the sum of the weights to 1.

The so-called Metropolis rule is described in [29] and mo-

tivated by earlier works on sampling methods [31], [32]. Let
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nk and nℓ denote the degrees of nodes k and ℓ, respectively.

Then akℓ is selected as follows:

akℓ =





1/max(nk, nℓ) if k 6= ℓ are linked

1−
∑
ℓ∈Nk−{k} akℓ for k = l

0 otherwise

In this case, the weighting assigned to a link is dependent on

the degree of the node (i.e., on the number of incident links

into that node).

Another choice is the relative-degree rule from [16], which

does not yield symmetric weight matrices but generally yields

better performance as illustrated in the examples further ahead:

akℓ =

{
nℓ/

∑
m∈Nk

nm if k and ℓ are linked or k = ℓ

0 otherwise
(48)

In this case, every neighbor is weighted according to its degree.

Reference [16] also suggests an optimal design procedure for

the combination matrix A that is aimed at enhancing the

network mean-square-error performance.

In the above rules, the combination weights are largely

dictated by the sizes of the neighborhoods (or by the node

degrees). When the neighborhoods vary with time, the degrees

will also vary. However, for all practical purposes, these

combination schemes are not adaptive in the sense that the

schemes do not learn which nodes are more or less reliable

so that the weights can be adjusted accordingly.

An adaptive combination rule along these lines can be

motivated by the analysis results of [17]. The rule allows

the network to assign convex combination weights to the

local estimates and the aggregate estimate. Moreover, the

combination weights can be adjusted adaptively so that the

network can respond to node conditions and assign smaller

weights to nodes that are subject to higher noise levels. For

example, one possibility could be as follows [15]. Consider

a set of coefficients bkℓ that add up to one when node k
is excluded. These coefficients could be obtained from the

coefficients akℓ as follows:

bkℓ =

{
akℓ∑

ℓ∈Nk−{k} akℓ
if k 6= ℓ are linked

0 otherwise

Now, we combine the local estimates at the neighbors of node

k, say as before, but excluding node k itself. This step results

in an intermediate estimate:

ψ
(i−1)

k =
∑

ℓ∈Nk−{k}

bkℓψ
(i−1)
ℓ

Then this aggregate estimate is combined adaptively with the

local estimate at node k to provide the desired combination

(compare with (40) and see Fig. 10):

φ
(i−1)
k = γk(i) ψ

(i−1)
k + [1− γk(i)] ψ

(i−1)

k

where the coefficient {γk(i)} is adapted in order to improve

performance (such as reducing the mean-square error further

whenever possible) [15], [17]. The idea is that the selection

of γk will give more or less weight to the local weight as

opposed to the combination from the neighbors depending on

which source of information is more reliable (or less noisy);

Neighbors Node k

bk1

bk2

bkN

ψ
(i−1)
1

ψ
(i−1)
2

ψ
(i−1)
N

ψ̄
(i−1)
k

ψ
(i−1)
k

γk(i)

φ
(i−1)
k

1− γk(i)

Fig. 10. An example of a network with an adaptive diffusion strategy.

we forgo the details of adapting the coefficient γk. Once this

is done, we may continue to the adaptation step:

ψ
(i)
k = φ

(i−1)
k + µ u∗k,i

(
dk(i)− uk,iφ

(i−1)
k

)

Alternatively, one could consider adapting all the coefficients

{akℓ} in the diffusion schemes (40)–(41) directly.

D. Simulation Examples

In order to illustrate the adaptive network performance,

we present a simulation example. Fig. 6 depicts the network

topology with N = 15 nodes, together with the network

statistical profile. The regressors are zero-mean Gaussian,

independent in time and space, with covariance matrices Ru,k.

The background noise power is denoted by σ2
v,k . Fig. 11 shows

the learning behavior of several algorithms in terms of the

network EMSE and MSD. These are evaluated as

ζnetwork(i) =
1

N

N∑

k=1

ζk(i) (EMSE)

ηnetwork(i) =
1

N

N∑

k=1

ηk(i) (MSD)

by averaging the corresponding curves across all nodes. For the

diffusion and no-cooperation cases, a value of µk = 0.01 was

used, whereas for the incremental LMS algorithm, the value

was µk = 0.01/N ; this is because the incremental algorithm

uses N LMS-type iterations for every measurement time.

The relative-degree weights (48) were used in the diffusion

algorithms. The curves were averaged over 200 experiments,

and the steady-state values were calculated by averaging the

last 50 samples after convergence.

Note how the incremental and diffusion algorithms (26),

(40), and (41) significantly outperform the non-cooperative

case (where each node runs an individual filter). Also note

that the ATC algorithm (41) outperforms the CTA version

(40). Also shown is the incremental diffusion LMS algorithm

(26), which outperforms the diffusion solutions. This behavior

by the incremental solution is expected since the incremental

algorithm uses data from the entire network at every iteration.

Fig. 12 shows the steady-state network EMSE and MSD for

every node in the network.
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Fig. 11. Transient network EMSE (top) and MSD (bottom) for LMS without
cooperation, CTA diffusion LMS, ATC diffusion LMS, individual LMS filters
(no cooperation), and incremental LMS.

E. Cooperation Enhances Stability

We illustrate in this section a useful property of the diffusion

algorithms, namely, that cooperation does not only enhance

performance but it also enhances stability relative to the non-

cooperative solution with individual filters at the nodes. Let

us focus on the CTA version (40) of diffusion LMS.

The coefficients akℓ give rise to an N × N combination

matrix A = [akℓ], which carries information about the network

topology: a non-zero entry akℓ means that nodes k and ℓ
are connected. Note that A is a stochastic matrix, namely,

it satisfies

Aq = q

where q
∆
= col{1, . . . , 1}. Let X ⊗ Y denote the Kronecker

product of the matrices X and Y . Note in particular that if

X and Y are both M ×M , then their Kronecker product is

M2 ×M2. Moreover,

Im ⊗X = diag{X,X, . . . , X︸ ︷︷ ︸
m times

}
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Fig. 12. Steady-state EMSE (top) and MSD (bottom) per node, for
LMS without cooperation, CTA diffusion LMS, ATC diffusion LMS, and
incremental LMS.

Introduce the global quantities

ψ̃
i ∆

= col{ψ̃
(i)

1 , ψ̃
(i)

2 , . . . , ψ̃
(i)

N }

M
∆
= diag{µ1IM , µ2IM , . . . , µNIM}

A
∆
= A⊗ IM

Ru
∆
= diag{Ru,1, Ru,2, . . . , Ru,N}

where {M,A,Ru} are NM×NM matrices. Then, under the

data assumptions described earlier in (27), some straightfor-

ward algebra will show that the mean of the extended weight-

error vector evolves according to the following dynamics:

Eψ̃
i
=
(
INM −MRu

)
A Eψ̃

i−1
(49)

For simplicity of notation, let

B
∆
= INM −MRu

Then, expression (49) shows that the adaptive network will be

stable in the mean if, and only if, the spectral radius of BA
is strictly less than one, i.e.,

∣∣λ
(
BA
)∣∣ < 1 (50)

In the absence of cooperation (i.e., when the nodes evolve

independently of each other and therefore A = INM ), the

mean-error vector would instead evolve according to

Eψ̃
i
=
(
INM −MRu

)
Eψ̃

i−1
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with coefficient matrix B alone. Thus, in the diffusion network

case, convergence in the mean also depends on the network

topology (as represented byA). Using matrix 2-norms we have

‖BA‖2 ≤ ‖B‖2 · ‖A‖2 (51)

However, for any matrix X it holds that

|λmax

(
X
)
| ≤ ||X ||2 (52)

with equality if X is Hermitian. Moreover, due to the block

structure of Ru, B is Hermitian, and recall that A = A⊗ IM .

Hence, we have

|λmax

(
BA
)
| ≤ ‖A‖2 · |λmax

(
B
)
| (53)

That is, the network mean stability depends on the local data

statistics (represented by B) and on the cooperation strategy

(represented by A). Whenever a combiner rule is picked so

that ‖A‖2 ≤ 1, the cooperative scheme will enforce robustness

over the non-cooperative scheme. For combiners that render

stochastic and symmetric matrices A, we have that ‖A‖2 = 1.

As a result, we conclude that

|λmax(BA)| ≤ |λmax(B)| (54)

In other words, the spectral radius of BA is generally smaller

than the spectral radius of B. Hence, cooperation under the

diffusion protocol (40) has a stabilizing effect on the network.

Figure 13 presents a simulation example for the network

defined in Fig. 6, and a value µk = 0.05. Here we show

the magnitude of the network modes (i.e., the magnitude

of the eigenvalues of BA) for all nodes in the network,

for a total of MN modes. We present the modes when

there is no cooperation (A = I), and when cooperation

is introduced through the diffusion algorithms, for differ-

ent choices of weighting matrices, namely, maximum-degree

weights, metropolis weights, and relative-degree weights. Note

how cooperation significantly decreases the eigenmodes of

the mean weight error evolution, as compared with the non-

cooperative scheme, thus yielding faster convergence. The

top-right plot of Fig. 13 zooms on the largest eigenmodes,

which generally determine the convergence speed. Again the

diffusion algorithms outperform the no cooperation case. The

bottom plot shows the MSD learning curves for different

choices of weighting matrices.

F. Mean-Square Performance

We may also examine the mean-square performance of

the diffusion schemes. A detailed mean-square and stability

analysis of the CTA diffusion algorithm (40) is performed in

[15]. The following results are simplifications of the general

expressions derived in [15]; the simplification assumes a

uniform statistical profile across the network, i.e., Ru,k = Ru,

Rdu,k = Rdu, and σ2
v,k = σ2

v for all k, as well as uniform and

sufficiently small step-sizes, µk = µ. The results in [15] apply

to the more general scenario of varying statistical profile and

step-sizes across the nodes.

Introduce the vec(·) notation, which transforms an M ×M
matrix X into an M2 × 1 column vector x by stacking the

columns of X on top of each other:

x = vec(X)
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Fig. 13. Comparison of diffusion schemes using different weighting matrices
and the case where there is no cooperation. The simulation uses N = 15,
M = 5 (75 modes in total), µk = 0.05 and network statistics as in Fig. 6. All
diffusion schemes use the ATC diffusion LMS algorithm (41). Plots include
the network modes for different choices of weighting matrices (top-left plot),
a zoomed-in version showing the largest eigenmodes (top-right plot), and the
MSD learning curves (bottom plot).

In the case of small step-size µ, simplified expressions for the

MSD and EMSE for the CTA diffusion algorithm (40) can be

described as follows. Introduce the quantities:

D
∆
= I −AT ⊗ (I − µRTu )⊗A

T ⊗ (I − µRu) (55)

a
∆
= µ2σ2

v · vec(IN ⊗Ru)

bk
∆
= vec(diag(ek)⊗Ru)

qk
∆
= vec(diag(ek)⊗ IM )

Then

ηk ≈ aTD−1qk (MSD) (56)

ζk ≈ aTD−1bk (EMSE) (57)

where ek denotes the M×1 basis vector with 1 corresponding

to the position of the k−th node and zeros elsewhere. Observe

how the network topology influences the performance through

the matrix A, which appears in the expressions for the MSD

and the EMSE.

Fig. 14 shows the steady-state performance of the CTA

diffusion LMS algorithm (40), both for simulation and the

theoretical results of (56) and (57), for a network with N = 15
nodes, µk = 0.02, and uniform noise variances and regressor

covariances across the nodes.

V. CONCLUDING REMARKS

This chapter describes several distributed and cooperative

algorithms that endow networks with learning abilities. The

algorithms address distributed estimation problems that arise
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Fig. 14. Steady-state performance of the CTA diffusion LMS algorithm (40);
theory and simulation.

in a variety of applications, such as environment monitoring,

target localization and sensor network problems.

Although the chapter focused on algorithms of the LMS

type, several other extensions are possible and have been

pursued including algorithms of the least-squares type as well

as Kalman filtering and smoothing procedures. The objective

of this chapter has been to introduce the main ideas and

to illustrate them by focusing on simpler algorithms for the

benefit of clarity.
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