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SUMMARY
Cerebral vasospasm is a typical complication occurring after Subarachnoid Hemorrhage, which may
lead to delayed cerebral ischemia and death. The standard method to detect vasospasm is
angiography, which is an invasive procedure. Monitoring of vasospasm is typically performed by
measuring Cerebral Blood Flow Velocity (CBFV) in the major cerebral arteries and calculating the
Lindegaard Index. State estimation techniques rely on mathematical models to estimate arterial radii
based on available measurements.

Mathematical models of cerebral hemodynamics have been proposed by Ursino and Di Giammarco
in 1991, and vasospasm was modeled by Lodi and Ursino in 1999. We propose two new models.
Model 1 is a more general version of Ursino’s 1991 model that includes the effects of vasospasm,
and Model 2 is a simplified version of Model 1. We use Model 1 to generate Intracranial Pressure
(ICP) and CBFV signals for different vasospasm conditions, where CBFV is measured at the middle
cerebral artery (MCA). Then we use Model 2 to estimate the states of Model 1, from which we readily
obtain estimates of the arterial radii. Simulations show that Model 2 is capable of providing good
estimates for the radius of the MCA, allowing the detection of the vasospasm.
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1. INTRODUCTION
Vasospasm is a typical complication occurring after Subarachnoid Hemorrhage (SAH) that
may lead to cerebral ischemia and death. It is known that between 5 and 10% of hospitalized
SAH patients die from vasospasm. What makes vasospasm interesting is that to some extent
it is predictable, preventable and treatable [1].

The typical method of detecting Vasospasm is through Angiography, which is an imaging
technique that allows visualization of cerebral arteries. It is a highly invasive procedure, since
it requires the insertion of a catheter into a peripheral artery and the addition of a dye for correct
visualization. Continuous monitoring of arterial radius is not possible through this technique.
A physiological quantity that is closely related to Vasospasm is Cerebral Blood Flow Velocity
(CBFV). CBFV through a vessel of (inner) radius r is equal to the ratio of Cerebral Blood Flow
(CBF) through the vessel, and its area, as follows
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(1)

CBFV may be measured non-invasively and continuously monitored using the Trans-Cranial
Doppler (TCD) technique. CBFV is typically measured at the Middle Cerebral Artery (MCA)
and Internal Carotid Artery (ICA), though measurements at the Anterior Cerebral Artery
(ACA), and Posterior Cerebral Artery (PCA) also possible.

It is clear that knowledge of CBFV is not sufficient for the correct prediction of arterial radius
r. An alternative method that is used often in practice is the evaluation of the Lindegaard ratio
[2], which is the ratio of the CBFV at the MCA to the CBFV at the ICA. Depending on the
value of L, a decision is made as follows: if L < 3, there is no spasm; if 3 ≤ L < 6, there is
moderate spasm; if L ≥ 6, the spasm is considered severe [2]. The Lindegaard ratio has been
shown to correlate well with angiographic measurements of Vasospasm, but still it is an
empirical approach which does not give exact information about the actual radii of the vessels
as Angiography does, and also the thresholds defined for prediction of outcome are rather ad-
hoc and may change for different patients.

In this work we resort to a completely different approach to estimate the radii of the arteries
without directly measuring them. It constitutes a Model-based approach where state-estimation
is applied to estimate physiological variables of interest such as arterial radii. The objective is
to obtain a better estimation than that offered by the Lindegaard ratio, avoid the invasiveness
of Angiography, and at the same time allow for continuous monitoring and possibly prediction
of future spastic states.

2. METHODOLOGY
The methodology used for arterial radii estimation is a Model-based State-Estimation
approach, based on the recent work [3]. We use two-step approach, consisting of Model
Training and State Estimation. All the variables mentioned in this work correspond to time
domain signals, sampled at 1Hz. The mathematical models used in this work have inputs,
outputs, state variables and parameters. The input in this case is Arterial Blood Pressure (ABP),
and the outputs are Intracranial Pressure (ICP) and Cerebral Blood Flow Velocity (CBFV).
We assume measurements of all inputs and outputs are available.

The models have several parameters which are in general unknown. An example of a parameter
is the nominal value of a vessel resistance (see Section 3). Since these parameters are unknown,
it is necessary to estimate them using available measurements. This is the first step of the
Methodology, and is called Model Training.

Figure 1a shows the Model Training scenario. A Model is used to generate artificial outputs
(ICP and CBFV), and the measurements of these outputs are subtracted to generate an error
signal. An optimization block is used to select the set of parameters that minimizes some cost
function that depends on the error. For instance, in our case we use the cost function

(2)

where N is the total number of measurements, L is the total number of outputs, θ is the unknown
parameter vector, yl(i) is the ith measurement of output l, ŷl(i, θ) is the ith output l generated by
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the model using parameter θ, and wl(i) is some weighting function. In our case, we use the
weighting function that weights every variable yl inversely proportional to the energy of the
signal yl(i).

The models considered in this work are highly nonlinear, and hence Equation (2) will in general
be a non-convex function of θ. As such, algorithms based on gradient descent are not guaranteed
to converge to a global optimum. Hence, the optimization is done in two steps as proposed in
[3]. First, a global search is performed using a genetic algorithm known as Differential
Evolution (DE) [4], which has low complexity and good convergence. After the global search,
a local search is performed using a standard gradient descent algorithm through the MATLAB
Optimization Toolbox.

The second step of the Methodology is called State Estimation. The states typically represent
some physiological variables which may not be measured directly, such as arterial radii of the
vessels, compartment compliances, etc, and therefore need to be estimated. After the model
has been trained, and a good value of θ is known, the estimation is performed, as shown in
Figure 1b. This stage relies on models of the form shown in Equation (3) where x(t) and ẋ(t)
are vectors corresponding to the state of the system at time t and its derivative with respect to
time, respectively, y(t) is its output vector, u(t) is the input, v(t) and w(t) are process noise and
measurement noise, respectively, and f and g are some nonlinear functions that may change
with time.

(3)

Let x̂(t|t) denote the minimum Mean-Square Error (MMSE) estimate of x(t) given all
observations y(t) up to time t. It is well known that for linear systems in Gaussian noise, the
minimum MSE estimate can be obtained recursively using the Kalman Filter [5]. For non-
linear systems, however, this is not the case, and a typical approach to solve the problem is to
use the Extended Kalman Filter (EKF), which has the disadvantage of requiring the Jacobian
matrix of the system, its calculation being error prone. Derivative-free State Estimation
approaches for State Estimation in non-linear systems have also been proposed, for example,
the Unscented Kalman Filter [6] and the DD1 and DD2 filters [7], which have been shown to
provide better performance than the EKF. In this work we use DD1 and DD2 filters.

3. MATHEMATICAL MODELS
In Section 2 we introduced a methodology for the estimation of arterial radii based on
continuous time measurements of CBFV, ABP and ICP. This methodology relies heavily on
mathematical models that relate these quantities, together with the desired arterial radii. For
our purpose, a good mathematical model should provide good correlation with observed
quantities, and at the same time have low complexity to allow fast training and state estimation,
and avoid possible instability. In general, these two characteristics will contradict each other,
i.e., a less complex model will be less able to capture the interrelations between all the variables.

Another limitation of the approach is that even if we have a good model that closely matches
the observed variables, it is virtually impossible to obtain continuous measurements of the
actual arterial radii to compare it with its estimates. Hence, in this work we propose a
simulation-based approach as follows: we develop a mathematical model of cerebral
hemodynamics that is more general than previous models, and takes into account mechanisms
such as Autoregulation and Vasospasm. We will denote this model as Model 1. Then, we will
use Model 1 to generate artificial data for different values of spasm severity. Next, we will
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develop a second model, denoted as Model 2, to estimate the arterial radii from Model 1 based
on its outputs. As mentioned before, we want Model 2 to be simple, in order to reduce the
complexity of the parameter and state estimation. This simulation-based approach will give us
good insight into how capable are simple models to predict states from more complex ones,
and is the first step towards the application of the state estimation on actual patient data.

The mathematical models derived in this work are based on the models proposed by Ursino
et al. These models were first introduced in [8], [9] and [10]. Our work is based on the model
of [8]. One inconvenience of the model in [8] is that it does not model Vasospasm, and therefore
makes it inappropriate for the generation of data at different levels of spasm. Vasospasm was
modeled in the work by Lodi and Ursino [11], but unfortunately several simplifications were
introduced to the original Ursino model, such as a much simpler Autoregulation mechanism,
and collapsing of the small and large arterial cavities into one single cavity. Hence, we
combined the two aforementioned models into one more general model that takes into account
Vasospasm, has a detailed Autoregulation mechanism, and has four cavities: namely those
corresponding to the large arteries (MCA, ACA, PCA), followed by the large pial arteries,
small pial arteries and capillaries, and finally the venous compartment. We refer to this model
as Model 1, and present it in the form of an electrical circuit in Figure 2 (left circuit).

Next we introduced several simplifications to Model 1, namely collapsing small and large pial
arterial cavities into one, a simpler Autoregulation mechanism, and assuming Pv=Pic. We also
added one capacitance at the large arteries to obtain a state variable that allowed us to obtain
the desired MCA radius. We refer to this model as Model 2, and present it in the form of an
electrical circuit in Figure 2 (right circuit).

3.1. Details of Model 1
Model 1 has one input (ABP), two outputs (CBFV at the MCA and ICP) and 10 state variables.
The state rjk represents the radii of the arteries at compartment i, and branch k. The index i=1
represents the proximal (medium arteries) and i=2 represents the distal (small arteries and
capillaries). The index k=v represents the top branch of the compartment, which is in spastic
state, and k=n is the bottom branch, which is in normal state (see Figure 2).

According to the Hagen-Poiseuille law, the hydraulic resistance of several parallel tubes of
equal caliber is inversely proportional to the fourth power of the inner radius. The four states
rjk are related to the corresponding resistances via

where the sub-index “zero” indicates nominal values. The resistances between the nominal and
spastic branches have an equivalent resistance of Rj,tot in the absence of spasm. This is modeled
through the following equations

where kpv is a parameter that depends on the artery where the spasm is present (MCA, PCA or
ACA).
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In the absence of spasm, the resistances at the large arteries are given by

where lv and rv are the length and radius of the vessel, respectively. These values are shown
in Table 1 for different arteries, and will depend on the artery that has the spasm, which also
corresponds to the one where CBFV is being measured. When spasm is present, the spastic
radius is r̃v over a length kdlv, where kd is the coefficient of diffusion of the spasm (a number
between 0 and 1, 0 being no spasm). In this case, the resistance at the large arteries is given by

where qv is the flow through the spastic arteries (through Rla,v). CBFV at the affected arteries

is .

The spastic radius r̃v is assumed to fluctuate over its nominal value according to the following
equation

In order to calculate state equations for the inner radius rjk and calculating Pjk, from Laplace’s
law we obtain

where hjk is the thickness of the vessel and is given by

and rj0, hj0 are the corresponding values in unstressed conditions. The elastic, muscle and
viscous tensions, respectively, are
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Volume is related to radius according to the following equation

where Kvjv = kpvKvj and Kvjn = (1−kpv)Kvj, for j ∈ {1,2}, from which we obtain

Since dVjk/dt represents the current (or flow) from node Pjk to node Pic, we readily obtain four
equations for dVjk/dt through conservation of flow at the four nodes Pjk.

In order to compute state equations drjk/dt, we need to compute first the value of Rla,v, which
at the same time depends on P1v, which can be computed from dr1v/dt. Solving for dr1v/dt, we
obtain a third order equation in Rla,v from which we can compute its value. Then we can
compute all the state equations of the system, and also the intermediate pressures Pjk.

The remaining states are the pressure on the venous bed Pv, the intracranial pressure Pic, and
the four Autoregulation variables xjk, j ∈ {1,2}, k ∈ {v, n}. The state equations for these
variables are

where q2k is the flow through R2k, k ∈ {v, n}, and q2kn is the nominal value of q2k, and is given
by q2vn = kpvqn and q2nn = (1−kpv)qn. Finally, state equations for Pic and Pv may be computed
from the conservation of flow at their corresponding nodes, and noting that the diode in the
circuit only allows current to flow from Pc to Pic and from Pic to Pvs.

We also need the resistance Rvs = R′vs (Pv − Pvs)/(Pv − Pic) and the capacitances Cvi = 1/
kven(Pv − Pic − Pv1) and Cic = 1/kEPic.

The fixed parameters, trained parameters (nominal values) and initial values of states (nominal
values) for Model 1 are shown in Table 1. For both the trained parameters, and initial values
of states, the nominal values are provided, though the model training of Section 2 selects a
better set of parameters which are close to the nominal ones.

3.2. Details of Model 2
Model 2 has one input (ABP), and two outputs (ICP and CBFV at the MCA). It has four states,
namely, pressure at the large arteries, Pla, pressure at pial arteries, Ppa, intracranial pressure,
Pic, and capacitance at pial arteries, Cpa.

One simplification of the model is that it assumes a linear relation between volume and pressure
at the large and pial arteries (recall from Model 1 that this relation is of exponential nature).
Thus, we have for the volumes (Vka and Vka,0, k ∈ {l, p} )
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From these volumes we can readily compute the resistances at the large and pial arteries as
follows

(4)

Another simplification of the model is the assumption that Pv=Pic, which eliminates one state
variable. This assumption was introduced in [9]. State equations for Pla, and Ppa, can now be
obtained by differentiating (4). Care must be exercised while differentiating (4) since Cpa also
depends on time due to autoregulation. Using Cic = 1/kEPic, a state equation for state Pic may
be obtained through the conservation of flow at node Pic.

A third approximation of the model is a much simpler Autoregulation mechanism at the pial
arteries as in [11]. This is accomplished using a state variable for the compliance at the pial
arteries

where qpa is the flow through Rpa, and Δσ = Δσmax if x<0 and Δσmax if x>0. Finally, the radius
at the large arteries is given by rla = (krla/Rla)4. The total CBFV at the large arteries is given
by vla = qla/πrla

2, where qla is the flow through Rla. Cerebral Blood Flow Velocity at the MCA
is approximated by a sixth of the total, i.e., CBFVMCA = vla/6.

The fixed parameters, trained parameters (nominal values) and initial values of states (nominal
values) for Model 2 are shown in Table 2.

4. SIMULATION RESULTS AND DISCUSSION
The two models (Model 1 and Model 2) were implemented in C code and the Differential
Equation solver CVODE was used for the simulations. The parameter and state-estimation
algorithms were implemented in MATLAB.

Figure 3 shows the radius at the MCA versus time in seconds. The dashed curve corresponds
to the actual MCA radius of Model 1. This radius was gradually decreased during simulation
from about 0.14 cm to 0.11 cm. The solid curve shows the Estimate obtained using Model 2.
It can be noted that even though the estimated radius is slightly off by about 0.01 cm, it correctly
tracks the dashed curve and allows estimation of the variation in radius.

It is interesting to note that the changes in arterial radius are being tracked based on
measurements of CBFV only. From Equation (1), we recall that these two variables are related
also to Cerebral Blood Flow (CBF), but CBF is never being measured directly. Although this
may seem counterintuitive, this is the main advantage of the model-based approach. This
approach takes into account several inter-relations between CBF, CBFV, ABP and ICP, which
are captured by the differential equations of the model.
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We also note that the simpler Model 2 is able to estimate the MCA radius from Model 1, even
though these two models have several differences. This is a first step towards the application
of the estimation framework using Model 2, to the much more relevant problem of estimating
vasospasm from real patient data.
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Figure 1.
Model Training and State Estimation

Cattivelli et al. Page 9

Acta Neurochir Suppl. Author manuscript; available in PMC 2009 April 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
The more general Model 1 (left) and the simpler Model 2 (right)
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Figure 3.
Actual (dashed) and Estimated (solid) MCA arterial radius versus time.
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Table 1
Parameters for Model 1

Fixed Parameters

Pvs = 6.07437 mmHg rm1 = 0.027 cm

Pan = 100 mmHg rm2 = 0.0128 cm

qn = 12.5 ml s−1 rt1 = 0.018 cm

Picn = 9.5 mmHg rt2 = 0.0174 cm

Plan = 92.5 mmHg nm1 = 1.83

P1normal = 85 mmHg nm2 = 1.75

Pcn = 25 mmHg η1 = 232 mmHg.s

Rlatot = (Pan−Plan)/qn mmHg.s.ml−1 η2 = 47.8 mmHg.s

R1,tot = 2(Plan−P1normal)/qn mmHg s ml−1 σ01 = 0.1425 mmHg

R2,tot = (Plan−Pcn)/qn−R1tot mmHg s ml−1 σ02 = 11.19 mmHg

ρ = 7.87563e-4 mmHg s2/cm2 kσ1 = 10

kt = 1 kσ2 = 4.5

kf = 12 σcoll1 = 62.79 mmHg

km = 0.5 σcoll2 = 41.32 mmHg

Rpv = 0.875 mmHg.s.ml−1 G1 = 0.02 mmHg−1

R′vs= 0.3656 mmHg.s.ml−1 τ1= 10 s

Pv1 = −2.5 mmHg G2 = 5.2 mmHg−1

Rf= 2.38e3 mmHg.s.ml−1 τ2 = 20 s

R0 = 0.526e3 mmHg.s.ml−1 r10 = 1.5e-2 cm

Mmin = −1 r20 = 7.5e-3 cm

Mmax = 1 h10 = 3e-3 cm

Tmax,1 = 2.16 mmHg.cm h20 = 2.5e-3 cm

Tmax,2 = 1.50 mmHg.cm r1nom = 0.023435 cm

kv1 = 4640 cm r2nom = 0.007346 cm

kv2 = 154320 cm

Vessel Parameters for different arteries

MCA: kp = 0.3, rv = 0.14 cm, lv = 10.87 cm

ACA: kp = 0.1, rv = 0.09 cm, lv = 5.57 cm

PCA: kp = 0.1, rv = 0.095 cm, lv = 6.92 cm

Trained Parameters (nominal)

ke = 0.11 ml−1 kven = 0.31 ml−1

Cmax = 0.2 ml mmHg−1 Rcoll1 =56 mmHg.s.ml−1

kd = 0.368 Rcoll2 =56 mmHg.s.ml−1

Initial Values of States (nominal)

r1v = 0.023435 cm Pic = 9.5 mmHg

r1n = r1v cm x1v = x1n = x2v = x2n = 0
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r2v = 0.007346 cm Pv = 14.0682 mmHg

r2n = r2v cm
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Table 2
Parameters for Model 2

Fixed Parameters

Pvs = 6.07437 mmHg Δσmax = 6

qn = 12.5 ml s−1 Δσmin = 0.6

Pic0 = 9.5 mmHg Rpv = 0.875 mmHg.s.ml−1

Ppa0 = 58.75 mmHg R′vs = 0.3656 mmHg.s.ml−1

Gaut = 2 mmHg−1 Rf = 2.38e3 mmHg.s.ml−1

τaut = 20 s R0 = 0.526e3 mmHg.s.ml−1

krla = 3.04e-4 mmHg s cm

Trained Parameters (nominal)

ke = 0.11 ml−1 Vla0 = 2.5 cm3

Cla = 2.5/(Pla−Pic) ml mmHg−1 Rla0 = 0.6 mmHg.s.ml−1

Cpa0 = 0.202 ml mmHg−1 Rpa0 = 5.4 mmHg.s.ml−1

Initial Values of States (nominal)

Pla = 92.5 mmHg Pic = 9.5 mmHg

Ppa = 58.75 mmHg Cpa = 0.202 ml mmHg−1
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