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ABSTRACT

We address key theoretical questions concerning competing
diffusion (CD) algorithms [1], which are designed to solve
an important class of network game problems. Specifically,
we focus on a competition scenario involving two networks,
where each network consists of cooperating agents that are par-
tially connected to the other through a subset of intermediate
edges. During each interaction round, the networks simul-
taneously observe partial information about their opponents
and adapt their strategies accordingly. Building on the foun-
dations of the CD algorithm, we present first-, second-, and
fourth-order mean stability analyses, as well as a mean-square
deviation (MSD) analysis, providing useful performance guar-
antees for network competition scenarios under some mild
assumptions. Computer simulations conducted on quadratic
games illustrate our theoretical findings.

Index Terms— Network competition, Nash equilibrium,
stability analysis, mean-square deviation (MSD), competing
diffusion (CD)

1. INTRODUCTION

Network competition provides great flexibility to model com-
plex game-theoretic interactions among multi-agent systems.
This modeling capability lies at the heart of a wide range
of real-world applications, such as swarm robotics competi-
tion [2], Cournot team game [3], transportation networks [4],
and beyond. The rapid growth of existing applications, to-
gether with the emergence of new ones, call for the develop-
ment of efficient algorithms based on solid theoretical analysis.
This work studies an important class of network games
involving simultaneous competition between two networks.
Prior work [1] introduced the competing diffusion (CD) algo-
rithm to address this problem. The performance of the pro-
posed algorithm was demonstrated mainly through empirical
evaluation, leaving theoretical questions open for further inves-
tigation. In this work, we develop a theoretical framework to
analyze the mean stability and performance at various orders
of the CD framework in two-network competition scenarios.
Developing such a framework is nontrivial and is key to un-
derstanding the potential of competing algorithms. Our work
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addresses three primary challenges. First, network game prob-
lems capture both cooperative and competitive interactions oc-
curring concurrently, which makes the analysis fundamentally
more difficult than existing studies that focus exclusively on ei-
ther cooperation [5, 6, 7, 8, 9] or competition [10, 11, 12, 13].
Secondly, the MSD analysis has not been pursued in prior
game literature and establishing it is not straightforward. Fi-
nally, it is rather demanding to determine convergence and
stability conditions in scenarios where cross-network connec-
tivity can be extremely weak or sparse.

Some existing related works share similar themes, such
as [10, 11, 12, 13, 14, 15, 16, 17, 18]. Our work differs in
several aspects, especially in regard to the problem formula-
tion and theoretical guarantees. The work in [16] primarily
addresses game problems in single-agent settings, without ac-
counting for the strategic interaction over graphs and across
networks. The works [10, 11, 12, 13] did not explicitly con-
sider the possibility that competing agents may implicitly form
a team. Although some works consider the networked cooper-
ative game [17], the game dynamics is executed independently
within each agent, without involving strategic competition
across agents. The most closely related works to ours are
those on two-network competition [14, 15, 18]. However, they
either focus exclusively on zero-sum formulations or rely on
conditions, such as bipartite graphs without isolated nodes for
cross-team interactions, which can limit their applicability.

The main contributions of this paper are summarized as
follows. We present first-, second-, and fourth-order mean sta-
bility analyses of the CD algorithm under a general stochastic
game setting. Our theoretical results show that the CD algo-
rithm can converge even under an extremely weak cross-team
graph structure, where the two networks are connected by a
single pair of nodes. We present an MSD performance analysis
in the context of network games—a theoretical contribution
that is both of particular interest to the game theory commu-
nity and has the potential to inspire further analysis in broader
competition scenarios.

2. PROBLEM STATEMENT AND CD ALGORITHM

In this section, we present the formulation of the two-network
competition problem and provide an overview of the CD algo-



rithm [1] employed to address it. Let us consider a collection
of K agents split into two teams denoted by the index sets
N ={1,--- K} and N® = {K; +1,--- ,K}. These
teams comprise /{1 and K5 = K — K agents, respectively,
and the overall set of agents is denoted by A" = N U N?),
Each team aims to minimize its own objective defined as fol-
lows:

min JU(z,y), JO(zy) = Y )T (@y), (o
zERM1 v
min IO (wy), TNwy) = k%) pi 0 (), (1b)
where, for t € {1,2},
T (@, y) = Ego Q) (@,9. €. @)

Here, z € RM! and Yy € RM2 denote the strategies of net-
works 1 and 2, respectively, and Qg) denotes the stochastic
loss function dependent on the random sample £§€">. The su-
perscript (¢) and subscript k are the team and agent indices,
respectively. Furthermore, for ¢t € {1, 2}, it holds that each
pg) >0and ), o pg) = 1. Note that the two-network zero-
sum game [14, 15] is a special case of the problem (1a)—(1b)
when J® (z,y) = —JW(z,y).

2.1. Revisiting the CD Algorithm

The competing diffusion algorithm is briefly revisited here
before presenting the associated theoretical analysis in the
next section. The algorithm is motivated by the adapt-then-
combine (ATC) diffusion learning strategy in distributed opti-
mization [6], incorporating essential elements to handle cross-
team information inference. Specifically, beyond the usual
ATC step that promotes cooperation within teams, an infer-
ence step is introduced to support cross-team information ex-
change. These core steps, referred to as within-team diffusion
and cross-team inference, constitute the main elements of the
CD algorithm.

In the phase of within-team diffusion, agents in each team
adapt their strategy by running an ATC step, i.e., performing a
stochastic gradient step before diffusing the local information
to their neighboring agents within the same team. With a slight
abuse of notation, let us consider either an agent & € N’V in
Team 1 or an agent k € N/ ) in Team 2. At time instant i,
these agents perform the following updates within their local
neighborhoods:

=0
T, = Z ay [we,z‘q -V, (wf,iflvyé,ifl)}»
LeN)
(3a)
=2
Yk, = Z ag, {yz,iq - v, J, (932,2;171/@,2;1)}7
LeN®)

(3b)

where azlk) represents the scaling factor for information flow-
ing from agent ¢ to agent k in Team 1, and y; ; , denotes the
inferred information, at an agent ¢ from Team 1, regarding
the strategy of Team 2 at iteration ¢ — 1. The variables afk)
and x ; , are defined in a similar manner. In streaming data
and online learning scenarios, the full gradient for each agent
cannot be directly computed and is instead approximated using

a stochastic gradient construction. For instance, the stochas-
tic gradient ﬁfil)(acg,i,l, y§7_1) at agent £ in Team 1 is
computed using a random sample Eé')l and evaluated at the
local model ;1 and inferred opponent’s action Ypi1- 1O
enable the competition among networks, both teams have to
infer their opponent’s strategy. The inference step in the CD
algorithm is designed to enable agents to access and respond
to adversarial information. In this step, each agent gathers
information received from neighboring agents, whether from
the same team or the opposing team:

Ypi = Z afkl)yé,i—l‘F Z a(elkl)y%,i—u (4a)

LEN®) LN
/ o (12) (22) s
T, = E Gy Toi—1 + § : Qg Ty ;1. (4b)
LeN® LeN®@)

Note that the cross-team combination coefficients play a crit-
ical role in this process, and we only need a weak condition
to ensure cross-team information exchange. The procedure
above is summarized in Algorithm 1.

Algorithm 1 Competing diffusion (CD).
initialize i = 0,
actions {Zx,—1, Yk, —1, Tk, 1, Yk, 1} forallk € N
while not done do
for k € N and k € N® in parallel do

(within-team diffusion)
_ (1) g W /
Lk,i = Z Ay, | Teim1 — ' Vady (ml,ifhyz,ifl)
LeN

=
Yki= Y ayy [ye,ze1 — 1V, J, (932,1'717%,1'71)}
LeN®)

(cross-team inference)

r_ (21) (11) s
Yk,i = Z Qg Yei—1 + Z Q' Yeji—1
LEN®) LeN®
r (12) (22) 1
Tk,i = Z Qg Tei—1 + Z Qg Toi—1
LeN® LEN®
end for
i i+1
end while




3. THEORETICAL ANALYSIS

This section presents the theoretical results for the CD algo-
rithm. The main results are split into two theorems which
include stability results for the weight error of first, second,
and fourth orders, and the MSD performance results, respec-
tively. For convenience of analysis, we introduce the composed
two-network global gradient mapping

F(2) = col{V,JV(z,y),V,J?(z,y)}, (5)

where z = col{r,y} € RMi+Mz and col{-} denotes the
column stacking of vectors. In addition, the short notation
J,it) (z) =J, ,(;) (2, y) for the risk value is used when necessary.

Before the theoretical results are established, some stan-
dard assumptions are introduced in the following.

Assumption 1 (Within- and cross-team combination ma-
trices). Let A1) ¢ RE1*X1 and A ¢ RX2XK> denote the
within-team combination matrices, and let A} € RE >/
and A" € RE*K> denote the cross-team combination ma-
trices. We assume that the entries of the combination ma-
trices A" and A® are nonnegative and that these matrices
are:

(i) Left-stochastic: 1 A" = 1} and 1} A® =1} .

(ii) Primitive: There exists a positive integer n such that all
entries of (AM)™ and (A®)™ are strictly positive.

On the other hand, the entries of the cross-team combination
matrices are nonnegative and these matrices are:

(iii) Left-stochastic: 15 A% = 1% and 1L Al = 17, .

(iv) Semi-weakly positive: Consider the partitioned form of
the cross-team combination matrices as follows:

21 A A(12)
A{)lk) = |:A(11) A(QQ) (6)

where A®) ¢ RE:xKv and AW ¢ REXEKe Tt is
assumed that the upper block matrices A™) have at
least one positive entry. Furthermore, A" are primitive.
Consequently, there exists a path from every agent in
Team 2 to every agent in Team 1, and vice versa. [

} and A&Qk) =

As the presentation will reveal, the conditions above on
the combination matrices enable consensus among teammates
and allow information inference from opponents with minimal
connectivity. Furthermore, the local risk functions are assumed
to satisfy the conditions that follow.

Assumption 2 (Step size condition). Assume that the step
sizes for the algorithm are chosen sufficiently small such that

4,“(2) 1), (2) 5(21) M(Z) 5(12) 2 > 7
W’jeﬂryeﬂC - eff + W eff Z 6 ( )

where € > 0 is an arbitrarily small parameter for which

Yo Vil @) Z 6 Vo gidrene,  (82)
KENT)

Z pgj)vzz/‘]](f)(xk?yk) Z €, V {xknyk:}kgj\[ﬂh (Sb)
keEN®
and
oy’ = sup S V2 0 @k )|, 9a)
{ZrYr} e n® EEN®
Vi = inf Z Pg)vit]ﬁ)(mkayk)‘a (%9b)
{acmyk}keN(l) RN
Vi = inf Z pif)VZJ,i”(wk,yk)’ . %)
{Ik;yk}kEN(Z) EEN®
O

Conditions (8a)—(8b) and (9a)—(9c) imply strong mono-
tonicity on the gradient mapping F'(z). In the context of
the game problem (1a)-(1b), this condition implies the ex-
istence and uniqueness of the Nash equilibrium point z* =
col{z*,y*} € RM characterized by the inequalities [19]:

JO (%, y*) < TV (w,y%), VazeRM, (102)
IO (%, y*) < TP (a*,y), VyeRM: (10b)
With a well-defined Nash equilibrium, the stability analysis of

the error moment and the MSD analysis can be conducted by
appropriately defining the weight error.

Assumption 3 (Local risk functions). For all k € N'¥, we
assume the local risk functions J, ,(;) (+,-) satisfy:

(i) Twice continuous differentiability with respect to both
arguments, meaning that all first-order and second-order
partial derivatives exist and are continuous.

(ii) Smoothness, i.e., for all vectors z; = col{x1,y1}, 22 =
col{za, y2} € RM1TM2 the inequalities

Vo di" (21) = Vadi (z2)I| < 81 (II21 — 22])),
(11a)

IV I (1) = VI (z2)]| < 67 (|21 — 22])) (11b)
hold for some 621), (553) > 0.

(iii) Hessian is locally Lipschitz continuous, i.e., the inequal-

ities

IV2J0 (2" + Az) = V2P (%) < wal| Az,
(12a)

V272 (2" + Az) = V2I2 ()| < wall Az,
(12b)

V2,002 + Az) = V2, I ()| < ka|Az]|
(12¢)
hold for a small ||Az|| < € and some rq > 0. O



The first two conditions are standard assumptions in the
diffusion learning context [6], implying

(13a)
(13b)

1 1 1 1
IV2I0) < oL, V2,700 < 6y,

2 2 2 2
V272 < 8¢, V2,2 < 8¢

The third condition, which is mild since it is merely imposed
around the neighborhood of z*, is usually employed to estab-
lish the first-order stability of stochastic algorithms [6].

Assumption 4 (Gradient noise processes). Let

Fior= | {@ej vh reno ULZh j Uk brene (14)
j<i-1

denote the filtration generated by random processes in both
networks. For all kK € N'® and ¢ € {1,2}, we assume the
gradient noises defined by

o _ g3V

Sk,i = Vdy (@k,i- 1,ykz 1) — Vrjél)(wk,i—layl/g,iq),

(15a)

@ _g 37

Ski = VyJ, (m;c,i—lvyk,i—l) - vy‘]l(:)(m;c,i—la Yk,i—1)

(15b)

satisfy the following conditions:
E(Sg)z | Fie1) =0 (16a)
E(sysg) | Fica) =0, Vk#L (16b)
E(lsiil* | Fimr) < B zmi ]t + (@) (60)
for some B,(f), &g) > 0. ]

The assumption that follows will be employed in the MSD
performance analysis.

Assumption 5 (Noise covariance matrix). Let s| k ) (2) be the
gradient noise evaluated at z = col{z,y}. We assume the
gradient noise processes of all agents satisfy

£+m E( (z —|—Az) (z + Az) | Ficq)
-t B(s{l) ) 7| < LiselT )

for some v € (0,4], a positive constant L > 0, and small
perturbations ||Az|| < e. O

Our stability and performance analysis relies on an error
recursion characterized by the deviation between the current
iterates and the solution point at two successive iterations. In
order to derive it, we start from the networked recursion and
subtract the solution point from both sides. In the following,
we state the recursion and omit its lengthy derivation:

zZi=Bi_1Zi_1 + AT Ms; + ATMb, (18)

where
zi=col{r* o lk,y ol —2 (19a)
z; = colf{{@p,i}renm, {wz,i}ke/\/@v
{yk,i}keN(z)}v {yllc,i}ke./\f“) }7 (19b)
Bii1=0" - ATMH,_, (19¢)
[ AW Iy, A(”)@IM}
6 = blkdi . !
lag{ _OJV11K2><M1K1 A(22)®IM1
[ A(2> ® I]\/[2 A(m) ® I]wz:|
. (19d
Onr ko xMsk, A @ Ing, (19d)
A= blkdiag{ | AV @ hn OMlleMle]
|0nr Ko xvn Ky Oy Ko x M K
[ AP eIy,  Oak,x MoK,
Ok x Moy Oy iy iy | |7
(19)
M = diag{n" Las, k1 sy i} (19)
si = col{{s}.); brent, Oar, k60> {81 brenrs Onso i, }
(19¢)
b= col{{VoJ} (") beenw, Ony ks
{Vy i () e Onr i, ) (19h)
and
7" o o HM
0 0 0 0
H, = 0 H 0 ) (20a)
0 0 0 0
H = blkdiag{H : k € NV}, (20b)
H" = blkdiag{H, ;' : k € N} (20¢)

The matrices H ; are defined as definite integrals of Hessians
accordlng to [6, Eq (8.171)], but w1th the integrand replaced

by V2J{" if ¢ = 1 and by Vf/ % if ¢ = 2. Likewise, the
matrices H ,(;/f) follow the same definition, but with the inte-
grand replaced by V3, Yif (¢,¢') = (1,2) and by Vi, J, s
if (¢,t') = (2,1).

Theorem 1 (Stability results). Ler Assumptions -4 hold.
The weight error z; produced by running CD is mean-stable in

the first-, second-, and fourth-order moments under sufficiently
small step-sizes, namely,

limsup E || Z;]|> = O(ptmax), (21a)
1—+00
HmsupE || Z]|* = O(p2,ay), (21b)
i—+00

limsup ||E Z; || = O(ttmax), (21c)

1—+o00

where pimayx = max{uV, u®}.



Proof. The derivation needs to extend arguments similar to
those used in [6]. For brevity, we summarize the main steps.
To obtain the first two results, one needs to consider the Jordan
canonical form of the matrix © = VJV~! and transform re-
cursion (18) into a recursion for VT Z;. Moreover, the analysis
needs to handle two parts, one related to the noisy term and
the other associated with V2, ;. Using Assumption 4 and
the fact that the transition matrix multiplying the previous iter-
ate V'z;_1 decays out over iterations, the moment E || VT z;||*
can be upper bounded. For the analysis of the first-order error
moment, we need to verify the stability of B8;_; when it is
evaluated at z* and the subsequent analysis can be closed by
invoking Assumption 2. O

Theorem 2 (Performance analysis). Under Assumptions 1-5,
it holds that

1
—limsupE||Z;]|? = — Tr(X e 22
15 limsup ([EA] K 1(X) 4 0(fimax), (22a)
limsupE [y — 2*[|* = Te(J &) + 0(ptmax),  (22b)
1—+o00
limsupE ygs — v*|” = Tr(T7X) + 0(pimax)  (22€)
1—+o00
where
+oo
X=|> BB |ATMSEMA, (23a)
n=0
B=60"— ATMH, (23b)

S= blkdiag{s(l)a 0M1K2><JV[1K2 ) S(Q)a 01\42K1 X M2 K1 }a

(23¢)

S = blkdiag { lim E(s);(2") 810} (%) | Fic1)
ke N, (23d)
TV = diag{Oas, k11, Lazy, Onts k—a1aks Onsyic b (23€)
TP = diag{Oa, &, Onak—ta> 1ty Orty e —atai ) (23D)

In (23b), ‘H denotes the deterministic version of H;_1 and is
defined according to (20a), but evaluated at the Nash equi-
librium. Finally, the convergence rate of E||z;||? in (22a) is

a=1—Q(tmax)-

Proof. The proof for performance results relies on a long-term
dynamics version of (18), which is given by

z; = Bz;_, + ATMs; + ATMb. (24)

For a long sequence of iterations, one can show that the long-
term dynamics of the error recursion remains close to the
original model within a very small neighborhood, i.e.,
. > 312 2
h_InsupIE ||ZZ - Z:H =0 (:u’max) .

1—+00

(25)

The analysis focuses, therefore, on a more tractable 51"- Due to
space constraints, we omit the details of the proof. O

4. SIMULATION RESULTS

In order to validate our theoretical findings, we present simula-
tion results for a quadratic game. Such competition problems
are particularly relevant in the context of network games in
economics [20]. In the setting considered next, the local risk
function at agent k is given by

1 .
IV (2) = S E|uf 2 — d(k. )%, (26)

S 2
where {uy, ;, d(k, )} are the observations at agent k. In this
experiment, these observations are generated according to the
random processes ux; ~ N (0, Ry,,), v(k,1) ~ N(0,0’i)v)
and d(k,i) = wy 25 + v(k, i), where z;; € RM is the so-
lution vector, Ry, € RM*M 5, ., € Rsq are the problem
parameters, and v (k, ) is the independent white noise. For the
settings above, we can verify that there exists a unique Nash
equilibrium. We additionally consider M; = 5, My = 10,
K; = 2, and Ky = 4. The simulation results of first- and
fourth-order error moments and the MSD performance are
plotted in Fig. 1. We observe that CD is mean-stable in first-
and fourth-order moments. Moreover, smaller error moments

Fourth-order error moment First-order error moment

80 20
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m 1#,=0.0008, 1,=0.0003|{ &’ 1,=0.0006, 11,,=0.0003
c c
—~ —11,=0.0004, 11,=0.0002|| = —11,=0.0004, 11,,=0.0002
8 8
=} g
= M
-40
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Fig. 1. Simulation results for the first- and fourth-order error
moments and the MSD performance. The first plot depicts the
fourth-order error curves over several step-sizes, the second
plot depicts the first-order error curves over several step-sizes,
the third to sixth plot depict the MSD error curves of the first
agent of each team compared to the theoretical performance
levels. Each MSD plot depicts a separate step-size configura-
tion.



can be obtained via choosing a smaller step size. More impor-
tantly, the MSD results match with the theoretical predictions
at both the agent and team levels.

5. CONCLUSION

In this paper, we established first-, second-, and fourth-order
mean stability results, as well as MSD results, for the com-
peting diffusion (CD) algorithm. Our theoretical results allow
for the better understanding of the steady-state behavior of
competing networks. In particular, we established a perfor-
mance analysis of the CD algorithm—an important step that
has not yet been conducted in prior literature. Simulations of
a quadratic game were presented to validate the theoretical
claims.
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