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Abstract—In traditional social learning, a network of agents
wish to learn a common truth or hypothesis. However, in many
real-world applications, different agents may observe data related
to different hypotheses, resulting in clusters or communities
within the network. This setting gives rise to a multitask decision-
making (MDM) problem. Existing MDM approaches primarily
modify the network topology to reflect the community structures,
limiting each agent’s interactions to its local cluster. While
effective, this philosophy imposes strict neighborhood-based iden-
tifiability conditions on the agents. This work shows that an
alternative approach to solve the decision-making problem with
almost-sure guarantees goes in the opposite direction. Instead of
becoming self-interested, each agent should be curious about all
the truths co-existing in the network. We prove that when the
agents know the number of clusters, they almost surely learn the
true states of all agents.

Index Terms—multitask learning, opinion formation, social
learning, multitask decision-making.

I. INTRODUCTION AND MOTIVATION

Social learning is a distributed inference process in which
the agents in a network form beliefs about an unknown state
by iteratively combining their private observations with the
information received from their neighbors. Inspired by human
and animal learning behavior, this framework leverages local
interactions to achieve global knowledge without requiring a
centralized coordinator, even when local observations are noisy
or limited.

Several works have examined the convergence properties
of social learning and established conditions under which the
agents successfully learn the true state [1]–[10]. While these
approaches have been successful in numerous applications,
they predominantly focus on scenarios where all agents have
the same underlying true state. In many real-world settings,
however, different agents may observe data related to different
hypotheses. This heterogeneity might correspond to different
decision-making tasks or different data, driven by the underly-
ing structure of the network. Applications include distributed
sensor networks, where different regions have distinct envi-
ronmental states, and personalized recommendation systems,
where user communities may have heterogeneous preferences
that must be inferred simultaneously. In such cases, the as-
sumption of a single true state across the network is no longer
valid. Traditional social learning methods, designed to achieve
consensus, lead the entire network toward a global agreement

rather than enabling agents to identify their own underlying
true states [11].

This challenge gives rise to the multitask decision-making
(MDM) problem, in which the agents are organized into clus-
ters, each associated with a different true state. This problem
has been tackled before in the social learning literature. In [12],
social learning is studied in community-structured graphs,
where stochastic block models define topological communities
based on connectivity. It is assumed that agents within a com-
munity interact more frequently and share the same true hy-
pothesis, while cross-community interactions remain limited.
The authors show that adaptive social learning [13] enables
such networks to learn the truth on average. However, this
result holds only if topological communities—characterized
by high connectivity—align with communities of shared true
states. When the inter-community connectivity is high, this
assumption fails, leading to incorrect learning outcomes. In
real-world networks, agents’ true states do not necessarily ad-
here to predefined topological clusters. For example, in social
opinion networks, individuals may be grouped by geography
or profession but hold diverse political beliefs, making it
difficult to structure their truths into topological communities.
In contrast to [12], our work considers strongly connected
networks [14] and defines communities solely based on the
agents’ true states. Thus, agents belong to the same community
if they share the same underlying truth, regardless of their
position or connectivity within the network. Furthermore, the
agents are not assumed to have prior knowledge of these
communities.

In the context of strongly connected networks, the work [15]
addresses heterogeneous truths in social learning, without
imposing topological communities. The algorithm therein en-
courages the agents to become self-interested by modifying
the network topology so that agents only interact with neigh-
bors that share the same true state. The authors characterize
the asymptotic behavior of the agents’ beliefs and identify
conditions under which all agents can correctly learn their
true hypotheses. While this approach prevents the agents from
being misled by incorrect information sources, it imposes strict
local identifiability requirements, limiting its applicability in
real-world settings. In particular, the work in [15] assumes
that whenever two neighboring agents have different true
states, their indistinguishable hypothesis sets must be disjoint,



ensuring that no agent confuses its true hypothesis with that
of a neighbor. However, in many practical scenarios, local
observations are too noisy for neighboring agents to reliably
distinguish their true states. For instance, in industrial IoT fault
detection, machines can classify their equipment’s health states
using sensor data such as vibration, pressure, and temperature.
Due to proximity, load, or configuration, neighboring machines
with different underlying faults may record nearly identical
readings, making their states indistinguishable.

Our approach to solving the MDM problem takes the
opposite direction of [15]. Rather than promote self-interested
behavior, we allow the agents to become curious and interested
in learning not only their own truths but also the truths of all
other agents in the network. Reformulating the problem in
this manner provides the agents with a common objective: to
learn the true states across the entire network. This approach
transforms the MDM problem into a collaborative process that
facilitates consensus while preserving the distinct truths of
the different agents. In this way, by facilitating information
flow across the entire network, our approach bypasses strict
neighborhood-based identifiability conditions, allowing neigh-
boring agents to have common indistinguishable hypotheses.
We establish the optimality of our approach by proving that it
enables each agent to almost surely learn the true states of all
agents. Consequently, agents benefit not only from cooperation
with those in the same cluster but also from insights gained
through interactions with agents from other clusters.

II. PROBLEM FORMULATION

In a traditional social learning setting, a set of K coop-
erating agents, each collecting streaming observations about a
common phenomenon, learn the hypothesis that best describes
the phenomenon. This hypothesis, referred to as the true state
or the true hypothesis, is chosen from a set of plausible
hypotheses Θ = {θ1, . . . , θH}. In the heterogeneous setting
of this work, each agent can have a different true hypothesis.
Specifically, we assume that there are C distinct true hypothe-
ses distributed among the agents, where 1 ≤ C < H . Thus, we
rule out the case where all hypotheses are simultaneously true
across the network. We define the global true state/hypothesis
s⋆ as the collection of all true states across the agents, namely
s⋆ =

(
s⋆(1), . . . , s

⋆
(K)

)
, where each component s⋆(k) ∈ Θ

represents the true hypothesis of the agent k. Obviously, some
states can appear repeated within s⋆. For this reason, and since
we have exactly C distinct true hypotheses distributed among
the agents, we define the global set of plausible hypotheses as

SC(Θ) =

{
s =

(
s(1), . . . , s(K)

)
∈ ΘK

such that s has C distinct entries
}
. (1)

Therefore, instead of each agent k focusing solely on identify-
ing its true hypothesis from the set Θ, it will focus on learning
the global true state s⋆ from within the set SC(Θ).

At each time step i ≥ 1, each agent k ∈ {1, . . . ,K} receives
an observation xk,i from its observation space Xk. Each agent

k is equipped with a set of likelihood models, {Lk(·|θ)}θ∈Θ,
which are known only to that agent. The observations of agent
k are governed by the k-th component of the global true state
s⋆. In other words, for each agent k, the observation xk,i is
drawn from the distribution Lk(·|s⋆(k)).

In traditional social learning, each agent k starts with an
initial belief vector representing a probability mass function
over the set of plausible hypotheses Θ and subsequently
updates it based on its local observations and the belief vectors
of its neighbors. To adapt this approach to the heterogeneous
setting, we propose that each agent k begins with an initial
belief vector µk,0, which represents a probability distribution
over the global set of hypotheses SC(Θ) so that the dimension
of µk,0 is the cardinality of SC(Θ). At each time step i,
upon receiving a new observation xk,i, the agent uses its
likelihood models {Lk(·|θ)}θ∈Θ to perform a local Bayesian
update. This step integrates the new observation into the
previous belief vector µk,i−1 to produce an intermediate
belief vector ψk,i. Following the local update, each agent k
performs a combination step by aggregating the intermediate
beliefs received from its neighbors. This aggregation is carried
out using a weighted geometric or arithmetic averaging rule,
resulting in the private belief vector µk,i.

The social learning algorithm in this heterogeneous setting
thus evolves iteratively over time according to the following
update rule for s ∈ SC(Θ), k ∈ {1, . . . ,K}, and i ≥ 1:

ψk,i(s) ∝ Lk

(
xk,i | s(k)

)
µk,i−1(s), (2)

µk,i(s) ∝
∏
ℓ∈Nk

[
ψℓ,i(s)

]aℓk , (3)

where the proportionality symbol ∝ indicates that the entries
of µk,i and ψk,i are normalized to add up to 1. The quantity
aℓk is a nonnegative weight assigned by agent k to the
information received from neighbor ℓ satisfying the following
conditions:

0 ≤ aℓk ≤ 1,

K∑
ℓ=1

aℓk = 1, aℓk = 0 for ℓ /∈ Nk, (4)

where Nk denotes the neighborhood of agent k (which in-
cludes agent k as well). The collection of the weights aℓk
forms the combination matrix A of the graph connecting the
agents.

Although we have reformulated the MDM problem to align
with the traditional social learning framework, the algorithm
described in (2)-(3) operates over belief vectors of significantly
higher dimensionality, specifically, |SC(Θ)| instead of |Θ| =
H . As a result, each agent’s belief has size

|SC(Θ)| =
(
H

C

)
×#surjective mappings from {1, . . . ,K}

to a set of C distinct elements.

=

(
H

C

)
S(K,C) C! (5)

where S(K,C) is the Stirling number of the second kind [16],
which counts the number of ways to partition a set of K



objects into C nonempty subsets. Then, the multiplication
by C! accounts for the number of ways we can label the C
nonempty subsets, which is the number of permutations among
C elements.

We see that the size of the global set of plausible hypotheses
grows exponentially with K, H , and C. However, for rela-
tively small networks with a constrained set of plausible hy-
potheses, the computational requirements remain manageable
with modern computing capabilities. Consider the example of
a network with K = 10 agents, H = 3 possible hypothesis
states, and C = 2 observation classes. Then, |SC(Θ)| = 3066.
Each entry of the belief vector is stored as a 64-bit double-
precision floating-point number, requiring 8 bytes per entry.
Consequently, storing or transmitting a complete belief vector
requires approximately 24.52 KB. This storage requirement
is negligible for contemporary devices, which can efficiently
manage gigabytes even with consumer-grade hardware. From
a communication perspective, the communication overhead for
an agent k is Nk×24.52 KB. For a network of 10 agents, the
communication overhead per agent can be upperbounded by
10×24.52 = 245.2 KB. Given that modern network infrastruc-
ture can handle data transfers on the order of megabytes per
second, this communication overhead is manageable.

III. MAIN RESULTS

In this section, we characterize the learning behavior of the
social learning algorithm described in (2)-(3).

Assumption 1 (Primitive matrix) The combination matrix
A is assumed to be primitive [17]. ■

A sufficient condition for a primitive combination matrix is the
existence of bidirectional paths with non-zero weights between
any pair of distinct nodes, along with at least one self-loop,
indicating that there exists at least one agent k for which akk >
0.

Under Assumption 1, the combination matrix A is irre-
ducible [17]. By the Perron-Frobenius theorem [17], A has
a spectral radius equal to 1 and a single eigenvalue at 1,
associated with the Perron vector π, which is scaled to have
all positive entries summing to 1, namely,

Aπ = π,

K∑
k=1

πk = 1, πk > 0 for k = 1, 2, . . . ,K. (6)

We introduce the following assumption on the statistical
model for the observations.

Assumption 2 (Statistical model) Let xi ≜ {xk,i}Kk=1 col-
lect all observations from the agents at time i, and let
s =

(
s(1), . . . , s(K)

)
∈ SC(Θ). The joint likelihood at time

i satisfies

L(xi|s) =
K∏

k=1

Lk(xk,i|s(k)). (7)

■

Furthermore, we introduce the following assumption on the
intial beliefs of the agents.

Assumption 3 (Positive initial beliefs) The initial belief
vectors of all agents are positive, i.e., µk,0(s) > 0 for each
agent k ∈ {1, . . . ,K} and all s ∈ SC(Θ). ■

We also introduce, for k ∈ {1, . . . ,K} and θ ∈ Θ with θ ̸=
s⋆(k), the Kullback-Leibler (KL) divergence between Lk(.|θ)
and Lk(.|s⋆(k)),

Dk(s
⋆
(k), θ) ≜ Es⋆

(k)

[
log

Lk(x|s⋆(k))
Lk(x|θ)

]
, (8)

where the subscript on the expectation operator means that the
expectation is computed under Lk(·|s⋆(k)).

Theorem 1 (Truth learning) We construct a subset of agents
R ⊂ {1, . . . ,K} such that for every distinct θ that appears
in s⋆, there exists a unique agent in R that has θ as its true
hypothesis:

∀θ ∈ Set(s⋆),∃! ℓ ∈ R : s⋆(ℓ) = θ.

Under Assumptions 1-3, and if R satisfies the following two
conditions:

1) Every agent in R can distinguish its true hypothesis from
the rest of the plausible hypotheses:

∀k ∈ R : Dk(s
⋆
(k), θ) > 0, ∀θ ̸= s⋆(k). (9)

2) Every agent outside of R can distinguish its true hy-
pothesis from every other hypothesis that appears in s⋆:

∀k /∈ R : Dk(s
⋆
(k), θ) > 0, ∀θ ∈ Set(s⋆), θ ̸= s⋆(k),

where Set
(
.
)

denotes the set of distinct elements in its vector
argument, then each agent k ∈ {1, . . . ,K} learns the truth
almost surely:

lim
i→∞

µk,i(s
⋆) = 1 a.s. (10)

■

Proof: Due to space limitations, we outline a sketch of the
proof. Algorithm (2)–(3) represents traditional social learning
over the global set of plausible hypotheses SC(Θ) instead of
the typical set of plausible hypotheses Θ. Thus, we follow
similar steps to those for traditional social learning [11] to
show that under Assumptions 1-3, for all k ∈ {1, . . . ,K}, for
all s ∈ SC(Θ), s ̸= s⋆

lim
i→∞

1

i
log

µk,i(s
⋆)

µk,i(s)
=

K∑
k=1

πkDk

(
s⋆(k), s(k)

)
a.s. (11)

In order to prove (10), we need to show that for all agents k
and for all s ̸= s⋆

K∑
k=1

πkDk

(
s⋆(k), s(k)

)
> 0. (12)

In what follows, we show that conditions 1)-2) of Theorem 1
imply (12). Let s ̸= s⋆:



If there exists an agent ℓ ∈ R such that s⋆(ℓ) ̸= s(ℓ), then
in view of condition 1), Dℓ

(
s⋆(ℓ), s(ℓ)

)
> 0. Therefore, (12)

holds.
If for all agents k ∈ R, s⋆(k) = s(k), we first observe that

|R| = C and suppose without loss of generality that R =
{1, . . . , C}. Thus,

K∑
k=1

πkDk

(
s⋆(k), s(k)

)
=

K∑
k=C+1

πkDk

(
s⋆(k), s(k)

)
. (13)

There exists at least one agent ℓ′ ∈ {C + 1, . . . ,K} such
that s⋆(ℓ′) ̸= s(ℓ′) because otherwise s would be equal to s⋆.
Now, we will show that s(ℓ′) ∈ Set(s⋆). Suppose, for the
sake of contradiction, that s(ℓ′) /∈ Set(s⋆). Since the number
of distinct hypothesis that appear in s⋆ is C and s and s⋆

have the same hypothesis for agents 1, . . . , C, then the number
of distinct hypotheses in s must be greater than or equal to
C. Now, since s(ℓ′) does not appear in s⋆, the number of
distinct hypotheses in s becomes greater than or equal to C+
1. This implies that s /∈ SC(Θ), which is a contradiction.
Therefore, we have ℓ′ /∈ R and s(ℓ′) ∈ Set(s⋆), which in view
of condition 2) implies that Dk

(
s⋆(k), s(k)

)
> 0. Thus, (12)

follows from (13).

Theorem 1 presents conditions for truth learning. While
Assumptions 1-3 are standard in social learning, conditions 1)-
2) are specific to the heterogeneous setting of this work. The
subset of agents R is constructed such that for each distinct
hypothesis θ in s⋆, there is exactly one agent ℓ ∈ R with
s⋆(ℓ) = θ. Thus, R can be viewed as a set of representative
agents, where each cluster is uniquely represented by one
agent. We refer to R as the representative set. Condition 1)
requires that each agent in R has local identifiability, meaning
they can distinguish their true hypothesis from all others
in Θ using only their local observations. This assumption
ensures that even with heterogeneous states, a small subset
of well-defined agents (i.e., R) can guide the network toward
accurate inference. Condition 2) requires agents outside R to
only distinguish the hypotheses appearing in s⋆ from their
true hypothesis. In other words, they are not required to
differentiate any hypothesis that does not appear in s⋆ from
their true hypotheses.

In summary, the two conditions in Theorem 1 ensure the
existence of a representative set R, where each agent in R
has local identifiability, while agents outside R only need
to distinguish hypotheses present in s⋆. Consequently, any
agent k outside R can confuse its true hypothesis with any
θ ∈ Θ \ Set(s⋆)

(
i.e., Dk

(
s⋆(k), θ

)
= 0

)
without affecting the

algorithm’s ability to guarantee truth learning. This property
reflects a form of partial identifiability, where some agents can-
not distinguish certain hypotheses from their true hypotheses
using only local observations.

IV. ILLUSTRATIVE EXAMPLES

We consider a strongly connected network of K = 8 agents,
as shown in Fig. 1, where agents 1, 2, and 8 have self-
loops that are omitted for clarity. The combination matrix

k = 1

k = 4

k = 5

k = 7

k = 8

k = 2

k = 3

k = 6

s∗(k) = 0.5

s∗(k) = 1.0

Fig. 1: Strongly connected network with K = 8 agents, where
k denotes the agent index and s⋆(k) denotes its true hypothesis.

A is constructed using the uniform-averaging rule [14], [17],
resulting in a left-stochastic matrix that satisfies Assumption
1. We consider Θ = {0, 0.5, 1, 1.5} and we set C = 2. The
global true state is given by s⋆ = (1, 0.5, 0.5, 0.5, 1, 1, 1, 1),
where we recall that the k-th entry corresponds to the true state
of agent k. In Fig. 1, agents with true state 0.5 are marked in
black, while those with true state 1 are marked in orange.

The likelihood models of the agents belong to a family
of Gaussian distributions with mean θ ∈ Θ and standard
deviation 1. We also assume that certain agents are unable
to locally distinguish some hypotheses from their true states,
as presented in the identifiability setup in Table I. The con-
figuration in Table I satisfies conditions 1)–2) of Theorem 1.
Specifically, the set of representative agents in this example
is R = {1, 2}, since these agents uniquely represent each
true hypothesis present in s⋆ (i.e., each cluster). Consequently,
agents 1 and 2 have local identifiability. In contrast, the
remaining agents are unable to distinguish their respective true
states from the hypotheses 0 and 1.5.

In this setting, the truth learning conditions in [15] fail,
leading to incorrect outcomes. Specifically, although agents
7 and 3 are neighbors with different true states, neither can
distinguish 1.5 and 0 from their true hypotheses, violating
condition (30) in [15]. Our proposed approach overcomes this
limitation by eliminating neighborhood-based identifiability
constraints, enabling truth learning even in such cases. This
comes at the cost of requiring agents 1 and 2 to have local
identifiability, which guides the whole network into truth
learning.

To illustrate the results of Theorem 1, we initialize the
beliefs of the multitask social learning algorithm in (2)–(3)
uniformly and run it for 1000 iterations. For comparison, we
also run the traditional social learning algorithm under the
same setting [11]. In Fig. 2, we plot the belief evolution over
time for agent 7 for both algorithms.

As shown in Fig. 2a, agent 7 in the traditional social learning
algorithm converges to a belief vector that is maximized at θ =
1, despite its true hypothesis being s⋆(7) = 0.5. This outcome
demonstrates how the consensus-driven nature of traditional



TABLE I: Identifiability setup for the agents.

Likelihood model: Lk(·|θ)Agent k
θ = 0 θ = 0.5 θ = 1 θ = 1.5

1, 2 f0 f0.5 f1 f1.5
3, 4 f0.5 f0.5 f1 f0.5

5, 6, 7, 8 f1 f0.5 f1 f1

social learning causes all agents to incorrectly converge to a
single hypothesis (i.e., θ = 1) which corresponds to the true
state of the majority of agents in this scenario.

On the other hand, agent 7 in multitask social learning,
as shown in Fig. 2b, converges to the hypothesis s =
(1, 0.5, 0.5, 0.5, 1, 1, 1, 1) = s⋆. This not only gives agent 7
access to its true state 1 by simply reading the 7-th component
of s but also gives it access to the true states of the remaining
of agents by simply considering the hypothesis corresponding
to their index in s.

For a clearer understanding of the network behavior, in
Fig. 3 we show the network after convergence for both
traditional and multitask social learning. On the left, we depict
the network after convergence of the multitask social learning
algorithm, where the color of each node k corresponds to
the k-th component of the agent’s belief at iteration 1000.
On the right, we show the network after convergence for the
traditional social learning algorithm, where each node’s color
represents the hypothesis that maximizes the agent’s belief at
iteration 1000. In both plots, the inferred hypothesis of agent
k is denoted as ŝ⋆(k).

As shown in Fig. 2, the traditional social learning algorithm
drives the entire network toward a global consensus, leading
each agent to incorrectly believe that its true hypothesis is
θ = 1. In contrast, when compared with Fig.1, we observe
that the multitask social learning algorithm enables each agent
to correctly identify its true hypothesis.
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