
Riemannian Diffusion Adaptation for Distributed Optimization on Manifolds

Xiuheng Wang 1 Ricardo Borsoi 1 Cédric Richard 2 Ali H. Sayed 3

Abstract
Online distributed optimization is particularly use-
ful for solving optimization problems with stream-
ing data collected by multiple agents over a net-
work. When the solutions lie on a Riemannian
manifold, such problems become challenging to
solve, particularly when efficiency and continuous
adaptation are required. This work tackles these
challenges and devises a diffusion adaptation strat-
egy for decentralized optimization over general
manifolds. A theoretical analysis shows that the
proposed algorithm is able to approach network
agreement after sufficient iterations, which allows
a non-asymptotic convergence result to be derived.
We apply the algorithm to the online decentral-
ized principal component analysis problem and
Gaussian mixture model inference. Experimental
results with both synthetic and real data illustrate
its performance.

1. Introduction
In the decentralized setting, this work deals with the multi-
agent optimization problem seeking consensus on a Rieman-
nian manifold M:

min
w∈M

1

K

K∑
k=1

Jk(w) , (1)

where Jk : M → R is a local risk function defined for each
agent by Jk(w) = Exk

{
Q(w;xk)

}
in terms of the expec-

tation of some loss function Q(w;xk). The computation
of Jk(w) is over the unknown distribution of the data xk,
which makes it necessary to use a stochastic approximation
for the gradient vector based on a set of independent realiza-
tions xk,t, observed sequentially over time. A wide range

Part of this work was done while Xiuheng Wang was a PhD
student at Université Côte d’Azur. 1Université de Lorraine, CNRS,
CRAN, France 2Université Côte d’Azur, CNRS, OCA, France
3École Polytechnique Fédérale de Lausanne, Switzerland. Corre-
spondence to: Xiuheng Wang <dr.xiuheng.wang@gmail.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

of applications in machine learning, signal processing, and
control can be written in the form of (1), including principal
component analysis (PCA) (Cunningham & Ghahramani,
2015; Zhang et al., 2016), parameter estimation for Gaus-
sian mixture models (GMM) (Hosseini & Sra, 2015; Collas
et al., 2023), low-rank matrix completion (Boumal & Absil,
2011; Vandereycken, 2013), and deep neural networks with
orthogonal constraints (Vorontsov et al., 2017).

Decentralized optimization in Euclidean spaces has been
extensively studied. As such, one may consider convert-
ing the constraint w ∈ M into a cost function in the Eu-
clidean space and solve (1) in a composite setting. Then,
a distributed proximal gradient-type algorithm can be ap-
plied if the projection onto the manifold is available. How-
ever, previous studies, e.g., (Bianchi & Jakubowicz, 2012;
Di Lorenzo & Scutari, 2016; Zeng & Yin, 2018), require a
convex regularizer or at least the convexity of its domain.
In addition, for certain manifolds, the dimension of an em-
bedded Euclidean space can be relatively high according to
the Whitney Embedding Theorem (Lee, 2013). Due to the
non-convexity and non-linearity of certain M, these decen-
tralized algorithms may fail when dealing with problem (1).

In response to these challenges, this paper aims to intro-
duce a general framework to solve (1) by developing fully
decentralized optimization on manifolds, which directly op-
erates on M by exploiting its inherent geometry. Our main
contributions are as follows:

1. Riemannian diffusion adaptation: We devise a Rie-
mannian diffusion adaptation strategy, which is fully
intrinsic and thus can be applied to general manifolds1.
It comprises a sequence of efficient adaptation and
combination steps. In the adaptation step, a Rieman-
nian stochastic gradient descent (R-SGD) method is
used to estimate the local solution at each agent. In the
combination step, the local estimates of the neighbor-
ing agents are combined on the tangent space of the
manifold.

2. Theoretical analysis: We provide a theoretical anal-
ysis for the performance of the proposed Riemannian
diffusion adaptation strategy with a constant step size.

1This strategy is not designed for a specific manifold as it does
not require an embedding of M into a Euclidean space.

1

Riemannian Diffusion Adaptation

We establish that all agents will approximately con-
verge to a network agreement (Theorem 5.12) in the
sense of a decreasing geodesic distance between their
estimates over the iterations. Additionally, we estab-
lish a curvature-dependent and non-asymptotic con-
vergence result with a proper design of a Lyapunov
function (Theorem 5.15).

3. Application to various manifolds: We tailor our algo-
rithm to suit two instances of Riemannian manifolds,
i.e., the Grassmann manifold and a product manifold
involving the manifold of symmetric positive definite
(SPD) matrices. We apply our algorithm to the online
distributed PCA and parameter estimation of GMMs
through numerical experiments on synthetic and real-
world datasets. Experimental results show its perfor-
mance compared to non-cooperative, consensus, and
centralized solutions.

2. Related work
In this section, we review related works on decentralized
optimization in Euclidean spaces and the recent advances in
(decentralized) optimization on Riemannian manifolds.

Decentralized optimization in Euclidean spaces: Dis-
tributed optimization in Euclidean spaces has been exten-
sively studied, including incremental (Blatt et al., 2007),
consensus (Nedic et al., 2010) and diffusion (Chen & Sayed,
2012; Sayed et al., 2013) strategies. In particular, diffusion
strategies have been demonstrated in (Sayed, 2014; Chen &
Sayed, 2015) to offer improved performance and stability
guarantees under constant step-size learning and adaptive
scenarios. Recently, decentralized optimization has been
extensively studied in non-convex environments (Bianchi &
Jakubowicz, 2012; Di Lorenzo & Scutari, 2016; Lian et al.,
2017; Tatarenko & Touri, 2017; Zeng & Yin, 2018; Wang
et al., 2019; Vlaski & Sayed, 2021).

Optimization on manifolds: Riemannian optimization
has garnered significant interest as it considers the geometry
of manifolds, recently presented in detail in the books (Ab-
sil et al., 2009) and (Boumal, 2023). Of particular interest
are stochastic optimization methods due to their efficiency
and scalability. The first asymptotic convergence analysis
of R-SGD was provided in (Bonnabel, 2013), highlighting
diverse applications such as PCA. The first global conver-
gence results for first-order Riemannian optimization with
geodesic convexity were obtained in (Zhang & Sra, 2016).
The finite-sum, stochastic setting has been further investi-
gated in (Zhang et al., 2016; Sato et al., 2019) for variance
reduction. The work (Tripuraneni et al., 2018) constructed
and analyzed a variant of R-SGD that generalizes the clas-
sical Polyak-Ruppert iterate-averaging scheme. Several

stochastic Riemannian Frank-Wolfe methods were intro-
duced in (Weber & Sra, 2022). More recently, the behavior
of various stochastic optimization algorithms around saddle
points in geodesically non-convex functions was studied
in (Hsieh et al., 2024). In (Wang et al., 2024a), the non-
asymptotic convergence of R-SGD with constant step sizes
was studied and applied to the change point detection on
manifolds.

Decentralized optimization on manifolds: The literature
on decentralized optimization on Riemannian manifolds can
be roughly divided into extrinsic and intrinsic methods.

The extrinsic methods are based on induced arithmetic
mean (Sarlette & Sepulchre, 2009), and rely on the specific
embedding of the manifolds in Euclidean spaces (where
traditional Euclidean consensus can be employed), which
is often studied for specific manifolds. For stochastic op-
timization, the incremental and consensus strategies have
been extended to decentralized R-SGD-type on the unit
sphere (Wang et al., 2023) and Stiefel manifolds (Chen
et al., 2021), respectively. For the deterministic case, an
augmented Lagrangian method (Wang & Liu, 2022) and a
type of conjugate gradient method (Chen et al., 2024) were
also designed for decentralized optimization on the Stiefel
manifold. In addition, a consensus strategy has also been
extended to compact submanifolds (Deng & Hu, 2023).

The intrinsic methods are based on Fréchet mean (Tron et al.,
2012) (or center of mass) and developed with the inherent
geometry of manifolds, such as geodesic distance, Rieman-
nian gradient, and exponential mapping. These methods
can be studied on more general manifolds including, but not
limited to, the unit sphere, Stiefel manifolds, Grassmann
manifolds, and the manifold of SPD matrices. Different dis-
tributed strategies (Tron et al., 2012; Kraisler et al., 2023a;b)
were studied to achieve network agreement on manifolds.
Another distributed strategy (Shah, 2017) was considered
to solve (1) with a diminishing step size and two rounds
of communication in each iteration. However, few meth-
ods have investigated the diffusion strategy on manifolds,
though it has been proven to have superior properties in
Euclidean spaces, especially in continuous learning and
adaptive scenarios. A work extending the diffusion strategy
to manifolds was introduced in (Wang et al., 2024b), but the
algorithm is inefficient due to inner-loop optimization2 and
does not have any theoretical analyses.

Recently, another branch of distributed optimization on man-
ifolds considering a central server was also investigated,
with settings of communication efficiency (Huang & Pan,
2020) and federated learning (Li & Ma, 2023; Huang et al.,
2024a;b).

2We further support this claim with a numerical evaluation in
Appendix D.1

2

Riemannian Diffusion Adaptation

3. Background
This section introduces some basic concepts of Riemannian
geometry, focusing on the essential tools for optimization
on manifolds. Detailed presentations can be found in (Absil
et al., 2009) and (Boumal, 2023).

A Riemannian manifold (M, g) is a constrained set M en-
dowed with a Riemannian metric gx(·, ·) : TxM×TxM →
R, defined for every point x ∈ M, with TxM the so-called
tangent space of M at x. A geodesic γv : [0, 1] → M is
the curve of minimal length linking two points x, y ∈ M
such that x = γv(0) and y = γv(1), with v ∈ TxM the
velocity of γv at 0 denoted by γ̇v(0). The geodesic dis-
tance d(· , ·) : M×M → R is defined as the length of the
geodesic linking two points x, y ∈ M. It satisfies all the
conditions to be a metric.

The exponential map w = expx(v) is defined as the point
w ∈ M located on the unique geodesic γv(t) with endpoints
x = γv(0), w = γv(1) and velocity v = γ̇v(0). Consider a
smooth function f : M → R. The Riemannian gradient of
f at x ∈ M is defined as the unique tangent vector ∇f(x) ∈
TxM satisfying d

dt

∣∣
t=0

f(expx(tv)) = ⟨∇f(x), v⟩x, for all
v ∈ TxM. The Riemannian Hessian of f at x is an operator
∇2

xf such that d
dt |t=0⟨∇f(expx(tv)),∇f(expx(tv))⟩x =

2⟨∇f(x), (∇2
xf)v⟩x.

4. Algorithm development
Let us define the product manifold MK ≜ M× · · · ×M,
which is the K-fold Cartesian product of M with itself. We
also define w ≜ col{w1, · · · ,wK} to indicate a point on
MK . The decentralized optimization problem (1) contains
an implicit consensus: the individual models are required to
be common on the manifolds, i.e., wk = w, ∀k. One can
encourage consensus on manifolds by penalizing pairwise
differences between connected agents. Let us represent the
K agents as the nodes of a graph G. With a natural gener-
alization of the Euclidean case, we consider the geodesic
distance-based consensus problem (Tron et al., 2012), i.e.,
minimization of the penalty P (w) ≜

∑K
k=1 Pk(wk) where

Pk(wk) ≜ 1
2

∑K
ℓ=1 cℓkd

2(wk,wℓ) and cℓk ≜ [C]ℓk, with
C a weighted adjacency matrix of the graph G, representing
the strength of link between each pair of agents. For a con-
nected graph, P (w) = 0 if and only if {wk}Kk=1 are equal
for all k. This results in the following optimization problem
with a constraint:

min
w∈MK

J(w) s.t. P (w) = 0, (2)

where J(w) ≜ 1
K

∑K
k=1 Jk(wk). To minimize the global

cost function in (2), we follow the diffusion adaptation strat-
egy in Euclidean spaces (Sayed et al., 2014; Yuan et al.,
2018; Vlaski et al., 2023), and appeal to an incremental
gradient descent argument. We first apply an R-SGD to

Algorithm 1 Riemannian Diffusion Adaptation
Input: Step sizes µ, α, graph adjacency matrix C.
Initialize {wk,0} for all k with a random point on M.
for t = 1, 2, · · · do

for each agent k do
ϕk,t = expwk,t−1

(
− µ∇̂Jk(wk,t−1)

)
;

wk,t = expϕk,t

(
α
∑K

ℓ=1 cℓk exp
−1
ϕk,t

(ϕℓ,t)
)
;

end for
end for

the risk J(w) and subsequently descend along the penalty
P (w). Using node-level quantities we have

ϕk,t = expwk,t−1

(
− µ∇̂Jk(wk,t−1)

)
, (3)

wk,t = expϕk,t

(
− α∇Pk(ϕk,t)

)
, (4)

where µ and α are step sizes, ∇̂Jk is a stochastic approxi-
mation of the Riemannian gradient of Jk, and ∇Pk can be
computed in an explicit form (Afsari et al., 2013), given by

∇Pk(ϕk,t) =
1

2

K∑
ℓ=1

cℓk∇d2(ϕk,t,ϕℓ,t)

= −
K∑
ℓ=1

cℓk exp
−1
ϕk,t

(ϕℓ,t). (5)

The Riemannian diffusion adaptation strategy, summarized
in Algorithm 1, contains two steps: an adaptation step (3)
where agent k uses its own data xk,t−1 to update its solu-
tion ϕk,t and a combination step (4) where the intermediate
estimates {ϕl,t} are combined, on the tangent space of ϕk,t,
according to the weighting coefficients {clk} in (5) to ob-
tain the estimate wk,t. Note that in the special case that
M is a Euclidean space, we can take expx(v) as vector
addition of x+v, and our algorithm reduces to the diffusion
adaptation algorithm in the Euclidean space (Chen & Sayed,
2012; Sayed et al., 2013). Here we emphasize that the local
update of each agent in (3) is performed by stochastic Rie-
mannian optimization with constant step size, which plays
an important role in tasks in need of continuous learning
and adaptation (Sayed et al., 2013; Sayed, 2014).

5. Theoretical analysis
In this section, we analyze the convergence of Algorithm 1
in the constant step size setting.

In analyzing the dynamics of the distributed algorithm (3)
and (4), it is useful to introduce the following stacked vector
notation by collecting variables from across the network:

wt ≜ col{w1,t, · · · ,wK,t} ∈ MK

∇̂J(wt) ≜ col
{
∇̂J1(w1,t), · · · , ∇̂JK(wK,t)

}
∈ TwtMK

3

Riemannian Diffusion Adaptation

ϕt ≜ col{ϕ1,t, · · · ,ϕK,t} ∈ MK

∇P (ϕt) ≜ col
{
−

K∑
ℓ=1

cℓ1 exp
−1
ϕ1,t

(ϕℓ,t), . . . ,

−
K∑
ℓ=1

cℓK exp−1
ϕK,t

(ϕℓ,t)
}
∈ Tϕt

MK

where col{·} is obtained by stacking the arguments colum-
nwise and TxMK is the tangent space of MK at x, see
Proposition 3.20 in (Boumal, 2023). We can then write (3)
and (4) compactly as

ϕt = expwt−1

(
− µ∇̂J(wt−1)

)
, (6)

wt = expϕt

(
− α∇P (ϕt)

)
. (7)

Step (7) can be regarded as a one-step Riemannian gradient
descent with a step size α to approximate a global mini-
mum of P (ϕ), belonging to the consensus submanifold A,
defined as

A ≜ {ϕ ∈ MK |ϕi = ϕj , ∀i, j} . (8)

We start by introducing some technical assumptions and
existing auxiliary results before presenting new results.

5.1. Assumptions and auxiliary results

Let us denote the convexity submanifold (Tron et al., 2012)
of product manifolds MK as B ⊆ MK . We introduce the
following standard assumptions in the literature on Rieman-
nian optimization:

Assumption 5.1 (Regularization on manifold). (Bonnabel,
2013; Zhang et al., 2016; Tripuraneni et al., 2018; Afsari,
2011) (a) The sequences {ϕt}t≥0 and {wt}t≥0 gener-
ated by the algorithm stay continuously in B, and J at-
tains its optimum w∗ in B; (b) the sectional curvature
in B is upper bounded by κmax; (c) the sectional curva-
ture in B is lower bounded by κmin; and (d) B is com-
pact, and the diameter of B is bounded by D, that is,
maxx,y∈B d(x, y) ≤ D; (e) D < D∗, where D∗ is de-
fined as D∗ ≜ min(inj(M), π√

κmax
) with inj(M) is the

injectivity radius of M, which implies that the exponential
map is invertible within B.

Also, it is necessary to assume some properties of the
weighted adjacency matrix C according to which the agents
interact over the graph topology G. In addiction to the di-
rect assumptions on G (e.g., left-stochastic) in Euclidean
space (Chen & Sayed, 2012; Sayed et al., 2013), for dis-
tributed optimization on manifolds, we also make the fol-
lowing assumptions on the eigenvalues of the Riemannian
Hessian of P , whose computation involves C, see Subsec-
tion 2.1.3 in (Afsari et al., 2013) and Proposition 8 in (Tron
et al., 2012) for examples.

Assumption 5.2 (Regularization on graph). (Chen &
Sayed, 2012; Sayed et al., 2013; Afsari et al., 2013) Assume
that the undirected G is connected and its adjacency matrix
C is left-stochastic, i.e., cℓk ≥ 0,

∑K
ℓ=1 cℓk = 1 for each

agent k, denote lower and upper bounds on the eigenvalues
of the Hessian of P in B as hmin and hmax, and suppose
that hmin ≥ 0.

Note this assumption implies that P is geodesically (strong)
convex and smooth on B. Under Assumption 5.2, the global
minimum exists and is unique if all {ϕk,t}Kk=1 are contained
in B, i.e., P : B → A is well-defined (Tron et al., 2012).

Recall the following trigonometric distance bound essential
in the Riemannian optimization analysis.

Lemma 5.3. (Bonnabel, 2013; Zhang & Sra, 2016) If a, b, c
are the side lengths of a geodesic triangle in a Riemannian
manifold with sectional curvature lower bounded by κmin,
and A is the angle between sides b and c (defined through
the inverse exponential map and inner product in tangent
space), then

a2 ≤
√
|κmin|c

tanh(
√
|κmin|c)

b2 + c2 − 2bc cos(A). (9)

We define the following key geometric constant that captures
the impact of manifold curvature:

ζ =

√

|κmin|D
tanh(

√
|κmin|D)

, if κmin < 0,

1, if κmin ≥ 0,
(10)

Note that most (if not all) practical manifold optimization
problems can satisfy these assumptions.

Leveraging Assumption 5.1 and Lemma 5.3, we can readily
establish the following corollary.

Corollary 5.4. (Zhang & Sra, 2016) For any Riemannian
manifold M where the sectional curvature is lower bounded
by κmin and for any points x, xt ∈ M, the update xt+1 =
expxt

(−µ∇F (xt)) satisfies the inequality:

⟨−∇F (xt), exp
−1
xt

(x)⟩ ≤ 1

2µ

(
d2(xt, x)− d2(xt+1, x)

)
+

ζµ

2
∥∇F (xt)∥2. (11)

This corollary unveils a significant relationship between two
consecutive updates within an iterative optimization algo-
rithm on a manifold with curvature bounded from below.

Part of our analysis will be performed under the following
assumption of geodesically convex risk functions.

Assumption 5.5 (Geodesical convexity). A function Jk :
M → R is geodesically convex (g-convex) if for any x, y ∈

4

Riemannian Diffusion Adaptation

M, a geodesic γ such that γ(0) = x and γ(1) = y, and
α ∈ [0, 1], we have:

Jk(γ(α)) ≤ (1− α)Jk(x) + αJk(y) , (12)

or equivalently, we have

Jk(y) ≥ Jk(x) + ⟨∇Jk(x), exp
−1
x (y)⟩ . (13)

Meanwhile, we require the risk function Jk at each agent to
be geodesically smooth.

Assumption 5.6 (Geodesic smoothness). A differentiable
function Jk is geodesically L-smooth (L-g-smooth) if its
gradient is L-Lipschitz, i.e., for any x, y ∈ M, it satisfies:

Jk(y) ≤ Jk(x)+ ⟨∇Jk(x), exp
−1
x (y)⟩+ L

2
∥ exp−1

x (y)∥2 ,
(14)

where the gradient of a function Jk : M → R is said to be
L-Lipschitz if, for any x, y ∈ M in the domain of Jk, it
satisfies:∥∥∇Jk(x)− Γx

y∇Jk(y)
∥∥ ≤ L ∥ exp−1

x (y)∥ , (15)

where Γx
y denotes the parallel transport operator from y to x.

In addition, we make assumptions about the average and
second moment of the gradient noise process.

Assumption 5.7 (Gradient noise process). Denote Ft as
the filtration generated by the random process wk,s for all
k and for s ≤ t, that is,

Ft ≜ {w0,w1, · · · ,wt} , (16)

where ws ≜ col{w1,s, · · · ,wK,s} contains the iterates
across the network at time s. Define St+1(wt) ≜
∇̂J(wt) − ∇J(wt) as the gradient noise process at the
time instant t. It is assumed that

E{St+1(wt)|Ft} = 0 , (17)

E{∥St+1(wt)∥2|Ft} ≤ σ2 , (18)

for some non-negative constant σ.

With these assumptions, we can build some preliminary
lemmas that will be used in the proof of our main results.

5.2. Preliminary lemmas

We first establish a lemma that bounds the gradient of the
penalty function P in terms of the penalty itself.

Lemma 5.8. Under Assumption 5.2, for the gradient of the
penalty, it holds that

∥∇P (ϕt)∥2 ≤ 2P (ϕt) . (19)

Proof. Appendix A.1.

Under Assumption 5.5, we can establish the following prop-
erty for the risk function J .

Lemma 5.9. Under Assumption 5.5, define w̄ =
col{wm, · · · ,wm} with wm being the Fréchet mean
(barycenter) of w1, . . . ,wK , we have

J(w̄) ≤ J(w) . (20)

Proof. Appendix A.2.

This proof follows similarly to Proposition 10 in (Yokota,
2016) and Theorem 1.1 in (Paris, 2020).

The following lemma builds on assumptions 5.1 and 5.6,
and establishes an upper bound on ∥∇J(wt)∥.

Lemma 5.10. Under assumptions 5.1 and 5.6, we have:

∥∇J(wt)∥ ≤ G , (21)

for a non-negative constant G < ∞.

Proof. Appendix A.3.

This upper bound is similar to the one used in (Shah, 2017;
Deng & Hu, 2023) under a diminishing step size.

5.3. Network agreement

To begin with, we first show that the Riemannian diffu-
sion adaptation algorithm approximately converges toward
network agreement. In other words, wt converges to the
consensus submanifold A with high probability. The fol-
lowing lemma builds on Lemma 5.10 under the additional
conditions set forth in assumption 5.7 and 5.2.

Lemma 5.11. Under assumptions 5.1, 5.2, 5.6 and 5.7,
suppose α ∈ (0, h−1

max]. The sequence {P (ϕt)}t≥0 satisfies
the following relation:

E{P (ϕt+1)− P (ϕt)} ≤ − α

4
E∥∇P (ϕt)∥2 +

5µ2

α
G2

+
µ2

α
σ2 . (22)

Proof. Appendix A.4.

This lemma reveals the evolution of the difference
E{P (ϕt+1) − P (ϕt)} in the optimization process. The
first term on the right-hand side of (22) is strictly negative
and suggests a decrease in the expectation of penalty by
a magnitude proportional to E∥∇P (ϕt)∥2. However, the
second and third terms on the right-hand side of (22) could
be large enough to allow the objective value to increase. In

5

Riemannian Diffusion Adaptation

the following, with an additional assumption that the cost J
is geodesically convex (Assumption 5.5), we prove that the
expectation of penalty decreases strictly and can be upper
bounded with a small value after sufficient iterations.
Theorem 5.12. Under assumptions 5.1, 5.2, 5.5, 5.6,
and 5.7, suppose α ∈ (0, h−1

max]. The sequence {P (ϕt)}t≥0

satisfies the following relation:

E{P (ϕt)} ≤ 11µ2

2ατ
G2 +

3µ2

ατ
σ2 , (23)

after sufficient iterations so, given by

so =
2 log(µ)

log(1− τ)
+O(1) = O(µ−1) , (24)

where τ = min{ 1
2ζ , αhmin}, O(1) denotes a constant term,

and O(µ−1) denotes a term that is equal or higher in order
than µ−1, the last equality holds for sufficiently small µ.

Proof. Appendix B.1.

The result in Theorem 5.12 establishes that after sufficient
iterations so = O(µ−1), we have:

E{P (ϕt)} ≤ O(µ2) , (25)

or, from Markov’s inequality:

Pr{P (ϕt) ≥ µ} ≤ O(µ) , (26)

which means the local estimates in ϕt coalesce around
ϕ∗

t ∈ A (where P (ϕ∗
t) = 0) with high probability. These

results are consistent with Theorem 1 in (Vlaski & Sayed,
2021) where the Euclidean diffusion adaptation algorithm
is analyzed for non-convex environments.

Combined with Lemma 5.8, Theorem 5.12 leads to the
following corollary.
Corollary 5.13. With the assumptions in Theorem 5.12. The
sequence {∥∇P (ϕt)∥2}t≥0 satisfies the following relation:

E∥∇P (ϕt)∥2 ≤ 11µ2

ατ
G2 +

6µ2

ατ
σ2 , (27)

after sufficient iterations so = O(µ−1).

Hence, according to ∇P (ϕ∗
t) = 0 and the update in (7), we

conclude that wt approximately approaches ϕt and achieves
network agreement, or equivalently wt ∈ A with high
probability after sufficient iterations.

5.4. Non-asymptotic convergence

Next, we examine the convergence of Algorithm 1 after
sufficient iterations so. For this purpose, we make use of
the upper bound on E∥∇P (ϕt)∥2 given in Corollary 5.13.
Before this, we introduce the following lemma that builds
on the same assumptions as in Lemma 5.11 and can be
regarded as a symmetric result of the relation (22).

Lemma 5.14. Under assumptions 5.1, 5.2, 5.6 and 5.7,
suppose µ ∈ (0, L−1]. The sequence {J(wt)}t≥0 satisfies
the following relation:

E{J(wt+1)− J(wt)} ≤ − µ

4
E∥∇̂J(wt)∥2

+
5α2

µ
E∥∇P (ϕt+1)∥2 . (28)

Proof. Appendix A.5.

This lemma shows the evolution of the term E{J(wt+1)−
J(wt)} in the optimization process. The strictly negative
term on the right-hand side of (28) suggests a decrease in
the expectation of the risk function by a magnitude pro-
portional to E∥∇̂J(wt)∥2, while the positive one could be
large enough to allow the objective value to increase.

In the following, we consider (and study the convergence
of) a streaming average of iterates {wso+1, · · · ,wt}, given
by {w′

so+1, · · · ,w′
t} with w′

so+1 = wso+1, w′
s+1 =

expw′
s

(
1

s−so+1 exp
−1
w′

s
(ws+1)

)
for so + 1 ≤ s ≤ t − 2,

and

w′
t = expw′

t−1

(
2ζ

2ζ + t− so − 1
exp−1

w′
t−1

(wt)

)
. (29)

This provides a natural way of averaging along a trajectory
restricted to a manifold (Tripuraneni et al., 2018). For ex-
ample, when M is a Euclidean space, we can write expx(v)
as x + v, and the streaming average reduces to w′

so+1 =
wso+1, w′

s+1 = w′
s +

1
s−so+1 (w

′
s −ws+1) for so + 1 ≤

s ≤ t − 2 and w′
t = w′

t−1 + 2ζ
2ζ+t−so−1 (w

′
t−1 − wt).

Inspired by (Zhang & Sra, 2016), we design a Lyapunov
function of wt as

∆′
t ≜ J(w′

t)− J(w∗) , (30)

with auxiliary variables w′
t defined in (29) and w∗ denoted

as the optimal solution to (2). Under an additional assump-
tion of geodesic convexity (Assumption 5.5), we can estab-
lish the following result that E∆′

t decreases strictly and can
be bounded above.

Theorem 5.15. Under assumptions 5.1, 5.2, 5.5, 5.6 and 5.7,
suppose α ∈ (0, h−1

max] and µ ∈ (0, L−1]. The sequence
{J(w′

t)}t≥so+1 satisfies the following relation:

E∆′
t ≤

ζLD2 + (t− so)
(

231ζαµ
2τ G2 + 63ζαµ

τ σ2
)

2ζ + t− so − 1
.

(31)

Proof. Appendix B.2.

Theorem 5.15 establishes that non-asymptotic convergence
of Algorithm 1 can be guaranteed after sufficient iterations

6

Riemannian Diffusion Adaptation

for sufficiently small step sizes µ and α, if J is geodesically
convex and smooth.

Compared to the Euclidean counterpart (Chen & Sayed,
2012; Sayed et al., 2013; Vlaski & Sayed, 2021), key dif-
ferences in our analysis include the impact of manifold
curvature κ (captured in the parameter ζ) and the non-linear
nature of the combination step (4). This makes traditional
techniques like adjacency matrix decomposition unfeasible,
since the network centroid cannot be computed using simple
linear expressions. We address these challenges through a
novel framework that studies network agreement via the
evolution of the penalty term P (ϕt), and establish non-
asymptotic convergence results using the carefully designed
Lyapunov function in (30).

6. Examples and applications
In this section, we tailor Algorithm 1 to two common in-
stances of Riemannian manifolds. The first one is the Grass-
mann manifold, a set of k-dimensional linear subspaces of
Rp, denoted by Gp

n. The second is the manifold of p × p
SPD matrices, denoted by S++

n . We consider applying our
algorithms on Gp

n and a product manifold involving S++
n to

online distributed PCA and GMM inference, respectively.
While the exponential map is convenient for theoretical
analysis, the retractions often lead to more practical and
efficient computations. Thus, for computational simplicity,
we replace the exponential maps in the updates (3) and (4)
with approximate retractions as in (Bonnabel, 2013). We
provide definitions of the geodesic distance, Riemannian
gradient, and retraction of Gp

n and S++
n in Appendix C. The

computational complexity of our algorithm is discussed in
Appendix E.

6.1. Distributed PCA

We consider applying our algorithm on Gp
n to the online

distributed PCA problem with xk ∈ Rn being data samples
observed by each agent k. In the decentralized setting, we
consider the following problem:

min
π(Uk)∈Gp

n

−Exk

{
tr(UT

k xkx
T
kUk)

}
, (32)

where π(Uk) represents the local estimate at agent k. The
expectation in the loss function (32) is approximated by
realizations xk,t at each time instant t. Note that although
various works formulate PCA on the Stiefel manifold (Chen
et al., 2021; Wang & Liu, 2022; Wang et al., 2023), the loss
function in (32) is invariant to orthonormal transformations.
Thus, we formulate the problem on the Grassmannian man-
ifold since it makes the solution unique (Cunningham &
Ghahramani, 2015). This formulation has also been found
to have a similar mathematical structure of strong geodesic
convexity, allowing arguments from convex optimization on

manifolds to be applied (Alimisis & Vandereycken, 2024).
The Riemannian stochastic gradient of the loss function
in (32) on Gp

n is computed using the Euclidean gradient
of (32) at Uk,t and (90) given in Appendix C.1, leading to:

h(Uk,t,xk,t) = 2(I −Uk,tU
T
k,t)xk,tx

T
k,tUk,t .

The retraction used is defined in (91). In order to evaluate
the accuracy of the solutions, we consider the geodesic
distance (89) between the estimates at each time instant
π(Uk,t) and the optimal solution π(U∗), and we define the
mean square deviation (MSD) accordingly as

MSD =
1

K

K∑
k=1

d2Gp
n
(Uk,t,U

∗) .

6.2. Distributed GMM inference

Another challenging application of our algorithm is dis-
tributed parameter estimation for GMMs with xk ∈ Rn

being data samples observed by each agent k. The decen-
tralized inference of mixtures of M Gaussians with coef-
ficients ρ ≜ {ρ1, · · · , ρM}, whose probability density is
p(x) ≜

∑M
i=1 ρi pN (x;mi,Σi) with pN a multivariate

Gaussian with mean mi and covariance Σi ≻ 0, can be
reformulated as in (Hosseini & Sra, 2015):

min
{Si}M

i=1

{ηi}M−1
i=1

−Exk

{
log

(M∑
i=1

eηi∑M
i=1 e

ηi

qN (yk;Si)
)}

,

(33)
where yT

k = [xT
k 1], ηi = log ρi

ρM
for i = 1, · · · ,M−1 and

ηM = 0, which makes the problem unconstrained (Jordan
& Jacobs, 1994), and qN (yk;Si) =

√
2πe

1
2 pN (yk;0,Si).

The problem (33) reformulated on the product manifold∏M
i=1 S++

n × RM−1 has the same optimum as that of the
original log-likelihood of p(x) (Hosseini & Sra, 2015), i.e.,

S∗
i =

(
Σ∗

i +m∗
im

∗T
i m∗

i

m∗T
i 1

)
.

The log-likelihood has been shown to be geodesically con-
vex for the case of a single Gaussian (Hosseini & Sra, 2015),
but not necessarily for multiple Gaussians. From this ex-
ample, we can find the proposed algorithm itself can work
even in some situations when not all these assumptions
are satisfied. The Riemannian gradient of the loss func-
tion in (33) on the product manifold is composed of the
(Riemannian) gradients w.r.t. {Si}Mi=1 on

∏M
i=1 S++

n and
{ηi}M−1

i=1 in RM−1. Specifically, the Riemannian gradient
w.r.t. Si was computed via the Euclidean gradient of (33) at
Si,k,t and (93) given in Appendix C.2. The retraction used
is defined in (94). In this task, it is not very meaningful to
compute the MSD values according to (92), because GMM

7

Riemannian Diffusion Adaptation

Figure 1. Graph topology.

is not inherently identifiable, which means that the parame-
ters of the model may not be uniquely determined. Thus, to
evaluate the performance of the solutions, we consider the
average log-likelihood (ALL) as in (Hosseini & Sra, 2015;
Collas et al., 2023).

7. Numerical experiments
In this section, we present numerical experiments on
distributed PCA and parameter estimation of GMMs,
which are formulated on manifolds as explained in Sec-
tion 6. Our method is implemented in Python with
the Pymanopt toolbox (Townsend et al., 2016). Open-
source code to reproduce the results is publicly avail-
able on https://github.com/xiuheng-wang/
diffusion_manifold_release. The graph topol-
ogy of the multi-agent system used for the experiments is
illustrated in Figure 1. The weights in matrix C were ran-
domly generated by the Metropolis rule (Xiao et al., 2006)
with K = 20 agents3. For simulation on synthetic data,
the MSD results are averaged over 100 times independent
Monte Carlo experiments. Hereafter, we briefly describe
the baselines.

Baselines: We compare our algorithm against the Rieman-
nian non-cooperative and centralized strategies for both
PCA and GMM inference. The non-cooperative algo-
rithm independently applies R-SGD on each agent using
its local data xk,t, while the centralized works on data
Xt = {xk,t}Kk=1 collected from all agents. We also pro-
vide comparisons with an extrinsic consensus algorithm on
the Stiefel manifold: Decentralized Riemannian Stochastic
Gradient Descent (DRSGD) (Chen et al., 2021) for PCA.
For GMM inference, to the best of our knowledge there
are no approaches that are both online and decentralized.
Thus, for comparison, we extend the decentralized consen-
sus SGD (Nedic et al., 2010; Lian et al., 2017) to the product
manifold presented in Section 6.2 using a projection oper-
ator to ensure the constraints are satisfied. This Extrinsic
Consensus strategy for GMM inference is named ECGMM.

3To illustrate the applicability to more networks, we include
additional experimental results in Appendix D.2.

0 200 400 600 800 1000 1200 1400
iteration

25

20

15

10

5

0

5

M
SD

 (d
B)

Riemannian non-cooperative
DRSGD
Riemannian diffusion
Riemannian centralized

Figure 2. Illustration of MSD performance of the algorithms for
distributed PCA on synthetic data.

0 500 1000 1500 2000 2500 3000 3500
iteration

15

10

5

0

5

10

M
SD

 (d
B)

Riemannian non-cooperative
DRSGD
Riemannian diffusion
Riemannian centralized

Figure 3. Illustration of MSD performance of the algorithms for
distributed PCA on real data.

7.1. Experiments on PCA

We first present results on PCA formulated on Gp
n with both

synthetic and real data.

Synthetic data: We generate synthetic data as in (Chen
et al., 2021). First, we set n = 10, p = 5, and indepen-
dently sample 1500K data points according to a multivari-
ate Gaussian model to obtain a matrix S ∈ Rn×1500K .
Let S = UΛV T be its truncated SVD. We modify the
distribution of Λ as Λ′ = diag(λi) with λ = 0.8 and
i = 0, · · · , n−1 to reset S as S′ = UΛ′V T . We randomly
shuffle and split the columns of S′ ∈ Rn×1500K into 1500
subsets to obtain Xt for all time instants t = 1, . . . , 1500.
The simulations used fixed step sizes µ = 0.05 and α = 0.8.
For our algorithm, the step sizes control the tradeoff be-
tween convergence speed and steady-state performance; this
is illustrated with experimental results in Appendix D.3.

Real data: We also obtain numerical results on the
MNIST dataset (LeCun, 1998). The dataset contains 70000
hand-written images with n = 784 pixels. The data ma-
trix is normalized such that the elements are in the range
[0, 1] and then centered. To compute MSD, we perform
PCA on the full data matrix and regard its result as the opti-
mum. We randomly shuffle the images, partition them into
K = 20 subsets, and then run the algorithms to compute the
first p = 5 principal components with the fixed step sizes
µ = 0.002 and α = 0.005.

8

https://github.com/xiuheng-wang/diffusion_manifold_release
https://github.com/xiuheng-wang/diffusion_manifold_release

Riemannian Diffusion Adaptation

0 200 400 600 800 1000 1200 1400
iteration

20

15

10

5

0

5

AL
L

*
AL

L
(d

B)

Riemannian non-cooperative
ECGMM
Riemannian diffusion
Riemannian centralized

Figure 4. Illustration of ALL differences of the algorithms for dis-
tributed GMM inference on synthetic data.

Discussion: Figure 2 shows the MSD learning curves for
the compared algorithms on synthetic data. It can be seen
that the Riemannian diffusion adaptation strategy achieves
a significant improvement in MSD performance compared
to the non-cooperative case, which indicates the benefit of
information exchange. Moreover, our method also outper-
forms DRSGD. The centralized solution achieves the lowest
MSD, as it can access information over the whole graph.
The proposed algorithm is fully decentralized, where each
agent uses only locally observed data to update its local
estimate and exchange information only among neighbor-
ing agents. Although the proposed algorithm has lower
performance compared to the centralized method, it can
be computed in parallel on multiple agents. The MSD of
the different methods on real data, shown in Figure 3, be-
haves similarly to that in the experiment with synthetic data,
showing the same comparative performances between the
different approaches.

7.2. Experiments on GMM inference

Now we show results on a more challenging task: GMM
inference formulated on

∏M
i=1 S++

n ×RM−1 with synthetic
and real data. As in (Hosseini & Sra, 2015), we initialize the
mixture parameters for all the methods using k-means++.

Synthetic data: To generate synthetic data, we choose the
parameters m,Σ and ρ of the Gaussian mixture similarly
to (Collas et al., 2023). First, Σ is generated using its eigen-
decomposition Σ = UΛUT . U is drawn from the uniform
distribution on the orthogonal group, and all the elements of
Λ are drawn from a chi-squared distribution with a degree
of freedom 3. Second, the elements of ρ are drawn from
a Gamma distribution with a shape parameter 10, and then
normalized. Third, m is sampled from a multivariate Gaus-
sian distribution N (0, 3I), where sampling is repeated until
the following inequality is satisfied (Hosseini & Sra, 2015):

∀i, j, ∥mi −mj∥ ≥ max
i,j

{tr(Σi), tr(Σj)} .

We set n = 8 and M = 3 and independently sample 1500K
data points according to the Gaussian mixture above. These

0 500 1000 1500 2000 2500 3000 3500
iteration

5.0

2.5

0.0

2.5

5.0

7.5

10.0

AL
L

*
AL

L
(d

B)

Riemannian non-cooperative
ECGMM
Riemannian diffusion
Riemannian centralized

Figure 5. Illustration of ALL differences of the algorithms for dis-
tributed GMM inference on real data.

data points are randomly shuffled and split into 1500 subsets
to obtain Xt for all time instants t = 1, . . . , 1500. The
simulations used fixed step sizes µ = 0.04 and α = 0.05.

Real data: Again, we perform the same data processing
for the MNIST dataset (LeCun, 1998) as in Section 7.1.
Then, we apply PCA to reduce the dimensionality n = 20.
We compute the Expectation Maximization (EM) solution
on the full dataset and regard its result as an optimum. To
evaluate the performance, we compare the difference be-
tween the ALL values of the optimum and estimated solu-
tions, denoted as ALL∗ − ALL. We implement the com-
pared algorithms to infer mixtures of Gaussian models with
M = 7 and fixed step sizes µ = 0.08 and α = 0.08.

Discussion: Figure 4 and Figure 5 illustrate the ALL dif-
ference values for the compared methods on synthetic and
real data, respectively. The results demonstrate that our
method outperforms both the non-cooperative algorithm
and ECGMM, further highlighting its effectiveness. As
expected, the centralized case achieves the lowest ALL dif-
ference.

8. Conclusions
In this paper, the Riemannian diffusion adaptation algorithm
is proposed. The strategy consists of two efficient steps: an
adaptation step, where R-SGD is used at each agent to up-
date the estimate of the local solution on the manifold, and a
combination step, where the estimates of neighboring agents
are combined on the tangent space. A theoretical analysis
is provided under constant step size, showing that network
agreement is achieved with high probability and the algo-
rithm converges non-asymptotically to a neighborhood of
the optimal solution. The proposed method is applied to on-
line decentralized PCA and GMM inference. Experimental
results on both synthetic and real-world data illustrate the
efficacy of the proposed strategy. One main limitation of
this work is that the theoretical results rely on the use of the
exponential map, which can be computationally heavy. This
is discussed in more detail in Appendix F.

9

Riemannian Diffusion Adaptation

Impact Statement
This paper presents work that aims to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

Acknowledgements
The authors would like to thank the reviewers for their con-
structive feedback. The work of Cédric Richard was sup-
ported in part by the French Government through the 3IA
Côte d’Azur Investments in the Future Project under grant
ANR-19-P3IA-0002, and in part by grant ANR-19-CE48-
0002. The work of Ricardo Borsoi was supported in part by
the French National Research Agency, under grants ANR-
23-CE23-0024, ANR-23-CE94-0001, and by the National
Science Foundation, under grant NSF 2316420. Xiuheng
Wang would like to thank Dr. Mengfei Zhang for the benefi-
cal discussion in the early exploratory stage of this work.

References
Absil, P.-A., Mahony, R., and Sepulchre, R. Optimization

Algorithms on Matrix Manifolds. Princeton University
Press, 2009.

Afsari, B. Riemannian ℓp center of mass: existence, unique-
ness, and convexity. Proceedings of the American Mathe-
matical Society, 139(2):655–673, 2011.

Afsari, B., Tron, R., and Vidal, R. On the convergence
of gradient descent for finding the Riemannian center of
mass. SIAM Journal on Control and Optimization, 51(3):
2230–2260, 2013.

Alimisis, F. and Vandereycken, B. Geodesic convexity of
the symmetric eigenvalue problem and convergence of
steepest descent. Journal of Optimization Theory and
Applications, pp. 1–40, 2024.

Bianchi, P. and Jakubowicz, J. Convergence of a multi-agent
projected stochastic gradient algorithm for non-convex
optimization. IEEE Transactions on Automatic Control,
58(2):391–405, 2012.

Blatt, D., Hero, A. O., and Gauchman, H. A convergent
incremental gradient method with a constant step size.
SIAM Journal on Optimization, 18(1):29–51, 2007.

Bonnabel, S. Stochastic gradient descent on Riemannian
manifolds. IEEE Transactions on Automatic Control, 58
(9):2217–2229, 2013.

Boumal, N. An Introduction to Optimization on Smooth
Manifolds. Cambridge University Press, 2023.

Boumal, N. and Absil, P.-a. Rtrmc: A Riemannian trust-
region method for low-rank matrix completion. Advances
in Neural Information Processing Systems, 24, 2011.

Chen, J. and Sayed, A. H. Diffusion adaptation strategies
for distributed optimization and learning over networks.
IEEE Transactions on Signal Processing, 60(8):4289–
4305, 2012.

Chen, J. and Sayed, A. H. On the learning behavior of adap-
tive networks—part I: Transient analysis. IEEE Transac-
tions on Information Theory, 61(6):3487–3517, 2015.

Chen, J., Ye, H., Wang, M., Huang, T., Dai, G., Tsang, I.,
and Liu, Y. Decentralized Riemannian conjugate gra-
dient method on the stiefel manifold. In The Twelfth
International Conference on Learning Representations,
2024.

Chen, S., Garcia, A., Hong, M., and Shahrampour, S. De-
centralized Riemannian gradient descent on the Stiefel
manifold. In International Conference on Machine Learn-
ing, pp. 1594–1605. PMLR, 2021.

Collas, A., Breloy, A., Ren, C., Ginolhac, G., and Ovarlez,
J.-P. Riemannian optimization for non-centered mixture
of scaled gaussian distributions. IEEE Transactions on
Signal Processing, 2023.

Cunningham, J. P. and Ghahramani, Z. Linear dimensional-
ity reduction: Survey, insights, and generalizations. The
Journal of Machine Learning Research, 16(1):2859–2900,
2015.

Deng, K. and Hu, J. Decentralized projected Riemannian
gradient method for smooth optimization on compact
submanifolds. arXiv:2304.08241, 2023.

Di Lorenzo, P. and Scutari, G. Next: In-network nonconvex
optimization. IEEE Transactions on Signal and Informa-
tion Processing over Networks, 2(2):120–136, 2016.

Edelman, A., Arias, T. A., and Smith, S. T. The geometry
of algorithms with orthogonality constraints. SIAM jour-
nal on Matrix Analysis and Applications, 20(2):303–353,
1998.

Hosseini, R. and Sra, S. Matrix manifold optimization
for gaussian mixtures. Advances in Neural Information
Processing Systems, 28, 2015.

Hsieh, Y.-P., Karimi Jaghargh, M. R., Krause, A., and Mer-
tikopoulos, P. Riemannian stochastic optimization meth-
ods avoid strict saddle points. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

Huang, L.-K. and Pan, S. Communication-efficient dis-
tributed PCA by Riemannian optimization. In Interna-
tional Conference on Machine Learning, pp. 4465–4474.
PMLR, 2020.

10

Riemannian Diffusion Adaptation

Huang, Z., Huang, W., Jawanpuria, P., and Mishra, B. Feder-
ated learning on Riemannian manifolds with differential
privacy. arXiv preprint arXiv:2404.10029, 2024a.

Huang, Z., Huang, W., Jawanpuria, P., and Mishra, B. Rie-
mannian federated learning via averaging gradient stream.
arXiv preprint arXiv:2409.07223, 2024b.

Jordan, M. I. and Jacobs, R. A. Hierarchical mixtures of
experts and the EM algorithm. Neural Computation, 6
(2):181–214, 1994.

Kraisler, S., Talebi, S., and Mesbahi, M. Consensus on lie
groups for the Riemannian center of mass. In 2023 62nd
IEEE Conference on Decision and Control (CDC), pp.
4461–4466. IEEE, 2023a.

Kraisler, S., Talebi, S., and Mesbahi, M. Distributed consen-
sus on manifolds using the Riemannian center of mass.
In 2023 IEEE Conference on Control Technology and
Applications (CCTA), pp. 130–135. IEEE, 2023b.

LeCun, Y. The MNIST database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998.

Lee, J. M. Introduction to Smooth Manifolds. Springer, 2nd
edition, 2013.

Li, J. and Ma, S. Federated learning on Riemannian mani-
folds. Applied Set-Valued Analysis and Optimization, 5
(2), 2023.

Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang, W.,
and Liu, J. Can decentralized algorithms outperform
centralized algorithms? a case study for decentralized
parallel stochastic gradient descent. Advances in Neural
Information Processing Systems, 30, 2017.

Nedic, A., Ozdaglar, A., and Parrilo, P. A. Constrained con-
sensus and optimization in multi-agent networks. IEEE
Transactions on Automatic Control, 55(4):922–938, 2010.

Paris, Q. Jensen’s inequality in geodesic spaces with lower
bounded curvature. arXiv:2011.08597, 2020.

Pennec, X., Fillard, P., and Ayache, N. A Riemannian
framework for tensor computing. International Journal
of Computer Vision, 66(1):41–66, 2006.

Sarlette, A. and Sepulchre, R. Consensus optimization on
manifolds. SIAM journal on Control and Optimization,
48(1):56–76, 2009.

Sato, H., Kasai, H., and Mishra, B. Riemannian stochastic
variance reduced gradient algorithm with retraction and
vector transport. SIAM Journal on Optimization, 29(2):
1444–1472, 2019.

Sayed, A. H. Adaptive networks. Proceedings of the IEEE,
102(4):460–497, 2014.

Sayed, A. H., Tu, S.-Y., Chen, J., Zhao, X., and Towfic,
Z. J. Diffusion strategies for adaptation and learning over
networks: an examination of distributed strategies and
network behavior. IEEE Signal Processing Magazine, 30
(3):155–171, 2013.

Sayed, A. H. et al. Adaptation, learning, and optimization
over networks. Foundations and Trends® in Machine
Learning, 7(4-5):311–801, 2014.

Shah, S. M. Distributed optimization on Riemannian mani-
folds for multi-agent networks. arXiv:1711.11196, 2017.

Tatarenko, T. and Touri, B. Non-convex distributed opti-
mization. IEEE Transactions on Automatic Control, 62
(8):3744–3757, 2017.

Townsend, J., Koep, N., and Weichwald, S. Pymanopt:
A python toolbox for optimization on manifolds using
automatic differentiation. Journal of Machine Learning
Research, 17(137):1–5, 2016.

Tripuraneni, N., Flammarion, N., Bach, F., and Jordan, M. I.
Averaging stochastic gradient descent on Riemannian
manifolds. In Conference on Learning Theory, pp. 650–
687. PMLR, 2018.

Tron, R., Afsari, B., and Vidal, R. Riemannian consensus for
manifolds with bounded curvature. IEEE Transactions
on Automatic Control, 58(4):921–934, 2012.

Vandereycken, B. Low-rank matrix completion by Rieman-
nian optimization. SIAM Journal on Optimization, 23(2):
1214–1236, 2013.

Vlaski, S. and Sayed, A. H. Distributed learning in non-
convex environments—Part I: Agreement at a linear rate.
IEEE Transactions on Signal Processing, 69:1242–1256,
2021.

Vlaski, S., Kar, S., Sayed, A. H., and Moura, J. M. Net-
worked signal and information processing: Learning by
multiagent systems. IEEE Signal Processing Magazine,
40(5):92–105, 2023.

Vorontsov, E., Trabelsi, C., Kadoury, S., and Pal, C. On
orthogonality and learning recurrent networks with long
term dependencies. In International Conference on Ma-
chine Learning, pp. 3570–3578. PMLR, 2017.

Wang, L. and Liu, X. Decentralized optimization over
the Stiefel manifold by an approximate augmented La-
grangian function. IEEE Transactions on Signal Process-
ing, 70:3029–3041, 2022.

11

Riemannian Diffusion Adaptation

Wang, X., Jiao, Y., Wai, H.-T., and Gu, Y. Incremental aggre-
gated Riemannian gradient method for distributed PCA.
In International Conference on Artificial Intelligence and
Statistics, pp. 7492–7510. PMLR, 2023.

Wang, X., Borsoi, R. A., and Richard, C. Non-parametric
online change point detection on Riemannian manifolds.
In International Conference on Machine Learning, pp.
50143–50162. PMLR, 2024a.

Wang, X., Borsoi, R. A., and Richard, C. Riemannian dif-
fusion adaptation over graphs with application to online
distributed PCA. In IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp.
9736–9740, 2024b.

Wang, Y., Yin, W., and Zeng, J. Global convergence of
ADMM in nonconvex nonsmooth optimization. Journal
of Scientific Computing, 78:29–63, 2019.

Weber, M. and Sra, S. Projection-free nonconvex stochastic
optimization on Riemannian manifolds. IMA Journal of
Numerical Analysis, 42(4):3241–3271, 2022.

Xiao, L., Boyd, S., and Lall, S. A space-time diffusion
scheme for peer-to-peer least-squares estimation. In Pro-
ceedings of the 5th International Conference on Informa-
tion Processing in Sensor Networks, pp. 168–176, 2006.

Yokota, T. Convex functions and barycenter on cat (1)-
spaces of small radii. Journal of the Mathematical Society
of Japan, 68(3):1297–1323, 2016.

Yuan, K., Ying, B., Zhao, X., and Sayed, A. H. Exact
diffusion for distributed optimization and learning—part
I: Algorithm development. IEEE Transactions on Signal
Processing, 67(3):708–723, 2018.

Zeng, J. and Yin, W. On nonconvex decentralized gradient
descent. IEEE Transactions on Signal Processing, 66
(11):2834–2848, 2018.

Zhang, H. and Sra, S. First-order methods for geodesically
convex optimization. In Conference on Learning Theory,
pp. 1617–1638, 2016.

Zhang, H., Reddi, S. J., and Sra, S. Riemannian SVRG:
Fast stochastic optimization on Riemannian manifolds.
In Advances in Neural Information Processing Systems,
pp. 4592–4600, 2016.

12

Riemannian Diffusion Adaptation

A. Proofs of the lemmas
A.1. Lemma 5.8

From the definition of P (ϕt), we have

∥∇P (ϕt)∥
2
=

K∑
k=1

∥∥∥∥∥−
K∑
ℓ=1

cℓk exp
−1
ϕk,t

(ϕℓ,t)

∥∥∥∥∥
2

≤
K∑

k=1

K∑
ℓ=1

cℓk

∥∥∥exp−1
ϕk,t

(ϕℓ,t)
∥∥∥2 = 2P (ϕt) , (34)

where the inequality follows from Jensen’s inequality and the fact that C is left-stochastic, as stated in Assumption 5.2.

A.2. Lemma 5.9

Due to the g-convexity of Jk under Assumption 5.5, we have

Jk(wm)− Jk(wk) ≤ ⟨−∇Jk(wm), exp−1
wm

(wk)⟩ (35)

Multiply the above by 1
K and sum over k, we get

1

K

∑
k

Jk(wm)− 1

K

∑
k

Jk(wk) ≤
1

K

∑
k

⟨−∇Jk(wm), exp−1
wm

(wk)⟩ (36)

Using 1
K

∑
k Jk(wm) := J(w̄) and rearranging the terms, this can be rewritten as

J(w̄)− 1

K

∑
k

Jk(wk) ≤ ⟨−∇Jk(wm),
1

K

∑
k

exp−1
wm

(wk)⟩ (37)

Note that 1
K

∑
k exp

−1
wm

(wk) = 1
K∇x

∑
k d

2(wk,x)
∣∣
x:=wm

is the gradient of the cost function 1
K

∑
k d

2(wk,x)
evaluated at the Fréchet mean wm, which is its minimizer, therefore, the first order optimality condition implies
1
K

∑
k exp

−1
wm

(wk) = 0. Combining this with the previous results leads to J(w̄) ≤ 1
K

∑
k Jk(wk) = J(w).

A.3. Lemma 5.10

Since B is compact (Assumption 5.1), from the geodesic smoothness of Jk (Assumption 5.6), we have:

∥∇Jk(wt)∥ ≤ G , (38)

for a non-negative constant G < ∞. Observe that (38) implies a similar condition on the deviation from the centralized
gradient via Jensen’s inequality:

∥∇J(wt)∥ =

∥∥∥∥∥ 1

K

∑
k

∇Jk(wt)

∥∥∥∥∥ ≤ 1

K

∑
k

∥∇Jk(wt)∥ ≤ G . (39)

A.4. Lemma 5.11

Let us start with the update wt = expϕt

(
− α∇P (ϕt)

)
from (7), define γ1(α) ≜ expϕt

(
− α∇P (ϕt)

)
as the minimal

geodesic from ϕt to wt, and use the second-order Taylor expansion of α 7→ P (γ1(α)) around α = 0, under assumptions 5.1
and 5.2, then we have (Tron et al., 2012)

P (wt) ≤ P (ϕt) + ⟨∇P (ϕt),−α∇P (ϕt)⟩+
hmax∥ − α∇P (ϕt)∥2

2

= P (ϕt)− ϵ∥∇P (ϕt)∥2 , (40)

where ϵ ≜ α
(
1 − αhmax

2

)
> 0 since α ∈ (0, h−1

max]. Also, we use the first-order Taylor expansion of α 7→ ∇P (γ1(α))

around α = 0 to obtain the following bound:

∥∇P (wt)− Γwt

ϕt
∇P (ϕt)∥ ≤ hmaxα∥∇P (ϕt)∥ . (41)

13

Riemannian Diffusion Adaptation

Similarly, for the update ϕt+1 = expwt

(
− µ∇̂J(wt)

)
from (6), define γ2(µ) ≜ expwt

(
− µ∇̂J(wt)

)
as the minimal

geodesic from wt to ϕt+1, use the second-order Taylor expansion of µ 7→ P (γ2(µ)) around µ = 0, under assumptions 5.1
and 5.2, then we have

P (ϕt+1) ≤ P (wt) + ⟨∇P (wt),−µ∇̂J(wt)⟩+
hmaxE∥ − µ∇̂J(wt)∥2

2
. (42)

Take the expectation on (42) w.r.t. {xs}ts=0 and consider (17) and (18) in Assumption 5.7, we have

EP (ϕt+1) ≤ EP (wt) + E{⟨∇P (wt),−µ∇̂J(wt)⟩}+
hmaxE∥ − µ∇̂J(wt)∥2

2

= EP (wt) + E{⟨∇P (wt),−µE{∇̂J(wt)|Ft}⟩}+
hmaxµ

2

2
E∥∇̂J(wt)∥2

= EP (wt) + E{⟨∇P (wt),−µ∇J(wt)⟩}+
hmaxµ

2

2
E∥∇̂J(wt)∥2

≤ EP (wt) +
ξ

2
E∥∇P (wt)∥2 +

1

2ξ
µ2E∥∇J(wt)∥2 +

hmaxµ
2

2
E∥∇̂J(wt)−∇J(wt) +∇J(wt)∥2

≤ EP (wt) +
ξ

2
E∥∇P (wt)∥2 +

(
1

2ξ
+ hmax

)
µ2E∥∇J(wt)∥2 + hmaxµ

2E{E{∥∇̂J(wt)−∇J(wt)∥2|Ft}}

= EP (wt) +
ξ

2
E∥∇P (wt)∥2 +

(
1

2ξ
+ hmax

)
µ2E∥∇J(wt)∥2 + hmaxµ

2σ2 , (43)

where we use the facts ⟨a, b⟩ ≤ ξ
2a

2 + 1
2ξ b

2 for ξ > 0 and 1
2 (a + b)2 ≤ a2 + b2 in the second and third inequalities,

respectively. Next, we take the expectation on (40) w.r.t. {xs}ts=0, and combine the result with (43) to obtain

EP (ϕt+1) ≤ EP (ϕt)− ϵE∥∇P (ϕt)∥2 +
ξ

2
E∥∇P (wt)∥2 +

(
1

2ξ
+ hmax

)
µ2E∥∇J(wt)∥2 + hmaxµ

2σ2. (44)

Now we need to upper bound E∥∇P (wt)∥2. Consider

1

2
E∥∇P (wt)∥2 =

1

2
E∥∇P (wt)− Γwt

ϕt
∇P (ϕt) + Γwt

ϕt
∇P (ϕt)∥2

≤ E∥∇P (wt)− Γwt

ϕt
∇P (ϕt)∥2 + E∥∇P (ϕt)∥2

≤ (α2h2
max + 1)E∥∇P (ϕt)∥2 , (45)

where the first inequality uses the fact 1
2 (a+ b)2 ≤ a2 + b2, the second inequality uses (41). Plugging the upper bound of

1
2E∥∇P (wt)∥2, as provided in (45), into (44) and reordering, we have

EP (ϕt+1) ≤ EP (ϕt)− ϵE∥∇P (ϕt)∥2 + ξ(α2h2
max + 1)E∥∇P (ϕt)∥2 +

(
1

2ξ
+ hmax

)
µ2E∥∇J(wt)∥2 + hmaxµ

2σ2

= EP (ϕt)−
ϵ

2
E∥∇P (ϕt)∥2 +

(
α2h2

max + 1

ϵ
+ hmax

)
µ2E∥∇J(wt)∥2 + hmaxµ

2σ2

≤ EP (ϕt)−
ϵ

2
E∥∇P (ϕt)∥2 +

(
α2h2

max + 1

ϵ
+ hmax

)
µ2G2 + hmaxµ

2σ2 , (46)

where in the equality we select ξ = ϵ
2(α2h2

max+1) for simplicity, and in the second inequality we use (21) from Lemma 5.10.
Since α ∈ (0, h−1

max], we have hmax ≤ α−1 and ϵ ≥ α
2 , and thus we can further simplify (46) as

EP (ϕt+1) ≤ EP (ϕt)−
α

4
E∥∇P (ϕt)∥2 +

5µ2

α
G2 +

µ2

α
σ2 . (47)

Re-arranging the terms in (47) gives the desired result.

14

Riemannian Diffusion Adaptation

A.5. Lemma 5.14

Consider the smoothness property of J in Assumption 5.6 with exp−1
wt

(ϕt+1) = −µ∇̂J(wt) from (6), we can write:

J(ϕt+1) ≤ J(wt) + ⟨∇J(wt), exp
−1
wt

(ϕt+1)⟩+
L∥ exp−1

wt
(ϕt+1)∥2

2

= J(wt) + ⟨∇J(wt),−µ∇̂J(wt)⟩+
L∥ − µ∇̂J(wt)∥2

2
. (48)

Also, we can obtain the following bound:

∥∇J(ϕt+1)− Γ
ϕt+1
wt ∇J(wt)∥ ≤ Lµ∥∇̂J(wt)∥ . (49)

Take expectation on (48) w.r.t. {xs}ts=0 and consider (17) in Assumption 5.7, we have:

EJ(ϕt+1) ≤ EJ(wt) + E{⟨∇J(wt),−µ∇̂J(wt)⟩}+
LE∥ − µ∇̂J(wt)∥2

2

= EJ(wt) + E{⟨E{∇̂J(wt)|Ft},−µ∇̂J(wt)⟩}+
Lµ2

2
E∥∇̂J(wt)∥2

= EJ(wt)− ϵE∥∇̂J(wt)∥2 . (50)

where ϵ ≜ µ
(
1 − µL

2

)
> 0 since µ ∈ (0, L−1]. Again, consider the smoothness property of J in Assumption 5.6 with

exp−1
ϕt+1

(wt+1) = −α∇P (ϕt+1) from (7), we obtain:

J(wt+1) ≤ J(ϕt+1) + ⟨∇J(ϕt+1), exp
−1
ϕt+1

(wt+1)⟩+
L∥ exp−1

ϕt+1
(wt+1)∥2

2

= J(ϕt+1) + ⟨∇J(ϕt+1),−α∇P (ϕt+1)⟩+
L∥ − α∇P (ϕt+1)∥2

2

≤ J(ϕt+1) +
ξ

2
∥∇J(ϕt+1)∥2 +

(
1

2ξ
+ L

)
α2∥∇P (ϕt+1)∥2 , (51)

where the second inequality uses the fact ⟨a, b⟩ ≤ ξ
2a

2 + 1
2ξ b

2. Next, we take the expectation on (51) w.r.t. {xs}ts=0, and
combine the result with (50) to obtain

EJ(wt+1) ≤ EJ(wt)− ϵE∥∇̂J(wt)∥2 +
ξ

2
E∥∇J(ϕt+1)∥2 +

(
1

2ξ
+ L

)
α2E∥∇P (ϕt+1)∥2 , (52)

Now we need to upper bound E∥∇J(ϕt+1)∥2. Consider

1

2
E∥∇J(ϕt+1)∥2 =

1

2
E∥∇J(ϕt+1)− Γ

ϕt+1
wt ∇J(wt) + Γ

ϕt+1
wt ∇J(wt)∥2

≤ E∥∇J(ϕt+1)− Γ
ϕt+1
wt ∇J(wt)∥2 + E∥∇J(wt)∥2

≤ (µ2L2 + 1)E∥∇̂J(wt)∥2 , (53)

where the first inequality uses the fact 1
2 (a+ b)2 ≤ a2 + b2, the second inequality uses (49) and the fact E∥∇J(wt)∥2 ≤

E∥∇̂J(wt)∥2. Plugging the upper bound of 1
2E∥∇J(ϕt+1)∥2, as provided in (53), into (52) and reordering, we have

EJ(wt+1) ≤ EJ(wt)−
(
ϵ− ξ(µ2L2 + 1)

)
E∥∇̂J(wt)∥2 +

(
1

2ξ
+ L

)
α2E∥∇P (ϕt+1)∥2

= EJ(wt)−
ϵ

2
E∥∇̂J(wt)∥2 +

(
µ2L2 + 1

ϵ
+ L

)
α2E∥∇P (ϕt+1)∥2 , (54)

where in the equality we select ξ = ϵ
2(µ2L2+1) for simplicity. Since µ ∈ (0, L−1], we have L ≤ µ−1 and ϵ ≥ µ

2 , and thus
we can further simplify (54) as

EJ(wt+1) ≤ EJ(wt)−
µ

4
E∥∇̂J(wt)∥2 +

5α2

µ
E∥∇P (ϕt+1)∥2 . (55)

Re-arranging the terms in (55) gives the desired result.

15

Riemannian Diffusion Adaptation

B. Proofs of the theorems
B.1. Theorem 5.12

Define ϕ̄t = col{ϕm,t, · · · ,ϕm,t} with ϕm,t being the Fréchet mean of ϕt, i.e., ϕm,t ≜ argminϕ
∑K

k=1 d
2(ϕk,t, ϕ).

Further, define γ3(β) ≜ expϕt

(
β exp−1

ϕt
ϕ̄t

)
as the minimal geodesic from ϕt to ϕ̄t, use the second-order Taylor expansion

of β 7→ P (γ3(β)) around β = 0, then we have (Afsari et al., 2013):

⟨∇P (ϕt), exp
−1
ϕt

(ϕ̄t)⟩+
hmin∥ exp−1

ϕt
(ϕ̄t)∥2

2
≤ P (ϕ̄t)− P (ϕt) , (56)

Considering P (ϕ̄t) = 0, we can further write

P (ϕt) = P (ϕt)− P (ϕ̄t) ≤ ⟨−∇P (ϕt), exp
−1
ϕt

(ϕ̄t)⟩ −
hmin∥ exp−1

ϕt
(ϕ̄t)∥2

2

≤ 1− αhmin

2α
d2(ϕt, ϕ̄t)−

1

2α
d2(wt, ϕ̄t) +

ζα

2
∥∇P (ϕt)∥2

≤ 1− αhmin

2α
d2(ϕt, ϕ̄t)−

1

2α
d2(wt, w̄t) +

ζα

2
∥∇P (ϕt)∥2 , (57)

where the second inequality is from Corollary 5.4, for the update wt = expϕt

(
− α∇P (ϕt)

)
from (7) and the

third inequality uses the fact d2(wt, w̄t) =
∑K

k=1 d
2(wk,t,wc,t) ≤

∑K
k=1 d

2(wk,t,ϕm,t) = d2(wt, ϕ̄t) where
w̄t = col{wm,t, · · · ,wm,t} with wm,t being the Fréchet mean of wt.

From Corollary 5.4, for the update ϕt+1 = expwt

(
− µ∇̂J(wt)

)
in (6), we have

⟨−∇̂J(wt), exp
−1
wt

(w̄t)⟩ ≤
1

2µ
d2(wt, w̄t)−

1

2µ
d2(ϕt+1, w̄t) +

ζµ

2
∥∇̂J(wt)∥2 . (58)

Take the expectation on the previous result w.r.t. {xs}ts=0 and consider (17) in Assumption 5.7, we obtain

E{⟨−∇̂J(wt), exp
−1
wt

(w̄t)⟩} = E{⟨−E{∇̂J(wt)|Ft}, exp−1
wt

(w̄t)⟩}
= E{⟨−∇J(wt), exp

−1
wt

(w̄t)⟩} , (59)

Combining (58) and (59), we can write

E{⟨−∇J(wt), exp
−1
wt

(w̄t)⟩} ≤ 1

2µ
Ed2(wt, w̄t)−

1

2µ
Ed2(ϕt+1, w̄t) +

ζµ

2
E∥∇̂J(wt)∥2 , (60)

Consider J to be a geodesically convex function under Assumption 5.5. Using (13), taking its expectation w.r.t. {xs}ts=0

and combining the result with (60), we further write

E{J(wt)− J(w̄t)} ≤ E{⟨−∇J(wt), exp
−1
wt

(w̄t)⟩}

≤ 1

2µ
Ed2(wt, w̄t)−

1

2µ
Ed2(ϕt+1, w̄t) +

ζµ

2
E∥∇̂J(wt)∥2 . (61)

Using J(w̄t) ≤ J(wt) in Lemma 5.9, from (61), we have

−Ed2(wt, w̄t) ≤ −Ed2(ϕt+1, ϕ̄t+1) + ζµ2E∥∇̂J(wt)∥2

≤ −Ed2(ϕt+1, ϕ̄t+1) + 2ζµ2E∥∇J(wt)∥2 + 2ζµ2E{∥∇̂J(wt)−∇J(wt)∥2}

= −Ed2(ϕt+1, ϕ̄t+1) + 2ζµ2E∥∇J(wt)∥2 + 2ζµ2E{E{∥∇̂J(wt)−∇J(wt)∥2|Ft}}
≤ −Ed2(ϕt+1, ϕ̄t+1) + 2ζµ2E∥∇J(wt)∥2 + 2ζµ2σ2 , (62)

where we use the fact 1
2 (a+ b)2 ≤ a2 + b2 in the second equality, and (18) from Assumption 5.7 in the third inequality.

Take expectation of (57) w.r.t. {xs}ts=0 and combine the result with (62), we obtain

EP (ϕt) ≤
1− αhmin

2α
Ed2(ϕt, ϕ̄t)−

1

2α
Ed2(ϕt+1, ϕ̄t+1) +

ζα

2
E∥∇P (ϕt)∥2 +

ζµ2

α
E∥∇J(wt)∥2 +

ζµ2σ2

α
. (63)

16

Riemannian Diffusion Adaptation

Multiplying (22) in Lemma 5.11 by 2ζ and summing the result to (63), and considering the upper bound of ∥∇J(wt)∥2
given in Lemma 5.10, we have

2ζEP (ϕt+1)− (2ζ − 1)EP (ϕt) ≤
1− αhmin

2α
Ed2(ϕt, ϕ̄t)−

1

2α
Ed2(ϕt+1, ϕ̄t+1) +

11ζµ2

α
G2 +

3ζµ2

α
σ2 . (64)

Multiplying (64) by (1− τ)−t, we have:

(1− τ)−t2ζEP (ϕt+1)− (1− τ)−t(1− 1

2ζ
)2ζEP (ϕt) ≤ (1− τ)−t 1− αhmin

2α
Ed2(ϕt, ϕ̄t)

− (1− τ)−t 1

2α
Ed2(ϕt+1, ϕ̄t+1)

+ (1− τ)−t 11ζµ
2

α
G2 + (1− τ)−t 3ζµ

2

α
σ2 . (65)

Now we sum (65) from t = 0 to t = s− 1. To simplify the summation, we consider the case t = 0 and t ≥ 1 separately as
we can get a simpler upper bound in the latter case. Consider the case t = 0, which is simple. From (64) we have:

2ζEP (ϕ1)− (2ζ − 1)EP (ϕ0) ≤
1− αhmin

2α
Ed2(ϕ0, ϕ̄0)−

1

2α
Ed2(ϕ1, ϕ̄1) +

11ζµ2

α
G2 +

3ζµ2

α
σ2 . (66)

For the case t ≥ 1, inspired by (Zhang & Sra, 2016), let τ = min{ 1
2ζ , αhmin}, this implies τ ≤ 1

2ζ and τ ≤ αhmin.
Consider α ≤ h−1

max < h−1
min, we have τ ∈ (0, 1). For t ≥ 1, from (65) we can obtain:

(1− τ)−t2ζEP (ϕt+1)− (1− τ)−(t−1)2ζEP (ϕt) ≤ (1− τ)−(t−1) 1

2α
Ed2(ϕt, ϕ̄t)− (1− τ)−t 1

2α
Ed2(ϕt+1, ϕ̄t+1)

+ (1− τ)−t 11ζµ
2

α
G2 + (1− τ)−t 3ζµ

2

α
σ2 . (67)

Finally, summing (65) over t from t = 0 to t = s− 1, and using the previous results, we have:

(1− τ)−(s−1)2ζEP (ϕs)− (2ζ − 1)EP (ϕ0) ≤
1− αhmin

2α
Ed2(ϕ0, ϕ̄0)− (1− τ)−(s−1) 1

2α
Ed2(ϕs, ϕ̄s)

+

s−1∑
t=0

(1− τ)−t 11ζµ
2

α
G2 +

s−1∑
t=0

(1− τ)−t 3ζµ
2

α
σ2

≤ D2

2α
+

s−1∑
t=0

(1− τ)−t 11ζµ
2

α
G2 +

s−1∑
t=0

(1− τ)−t 3ζµ
2

α
σ2 , (68)

where the second inequality drops the negative terms and plugs in d(ϕ0, ϕ̄0) ≤ D (Assumption 5.1).

Define γ4(β) ≜ expϕ0

(
β exp−1

ϕ0
(ϕ̄0)

)
as the minimal geodesic from ϕ0 to ϕ̄0. Using the second-order Taylor expansion

of β 7→ P (γ4(β)) around β = 1, considering P (ϕ̄0) = 0, ∇P (ϕ̄0) = 0, we have (Afsari et al., 2013):

P (ϕ0) ≤ P (ϕ̄0) + ⟨∇P (ϕ̄0), exp
−1
ϕ0

(ϕ̄0)⟩+
hmax∥ exp−1

ϕ0
(ϕ̄0)∥2

2

=
hmax

2
d2(ϕ0, ϕ̄0) . (69)

This ensures P (ϕ0) ≤ hmax

2 D2 ≤ D2

2α since d(ϕ0, ϕ̄0) ≤ D and α ∈ (0, h−1
max], one can thus obtain from (68) that

EP (ϕs) ≤
(1− τ)(s−1)D2

2α
+

s−1∑
t=0

(1− τ)t
11µ2

2α
G2 +

s−1∑
t=0

(1− τ)t
3µ2

2α
σ2

≤ (1− τ)(s−1)D2

2α
+

∞∑
t=0

(1− τ)t
11µ2

2α
G2 +

∞∑
t=0

(1− τ)t
3µ2

2α
σ2

17

Riemannian Diffusion Adaptation

≤ (1− τ)(s−1)D2

2α
+

11µ2

2ατ
G2 +

3µ2

2ατ
σ2

≤ 11µ2

2ατ
G2 +

3µ2

ατ
σ2 , (70)

where the last inequality holds whenever:

(1− τ)(s−1)D2

2α
≤ 3µ2

2ατ
σ2 ⇐⇒ (1− τ)(s−1) ≤ 3µ2

τD2
σ2

⇐⇒ (s− 1) log(1− τ) ≤ 2 log(µ) +O(1)

⇐⇒ s ≤ 2 log(µ)

log(1− τ)
+O(1) . (71)

We conclude that

E{P (ϕs)} ≤ 11µ2

2ατ
G2 +

3µ2

ατ
σ2 , (72)

with sufficiently small step sizes µ after sufficient iterations so, where

so =
2 log(µ)

log(1− τ)
+O(1) = O(µ−1) (73)

where the second equality follows since limµ→0 µ log(µ) = 0, which means that the magnitude of log(µ) can be bounded
above by a constant multiple of µ−1 for µ → 0.

B.2. Theorem 5.15

Denote ∆t = J(wt)− J(w∗), from Lemma 5.14, we have:

E∆t+1 − E∆t ≤ −µ

4
E∥∇̂J(wt)∥2 +

5α2

µ
E∥∇P (ϕt+1)∥2 . (74)

From Corollary 5.4, for the update ϕt+1 = expwt

(
− µ∇̂J(wt)

)
in (6), we have

⟨−∇̂J(wt), exp
−1
wt

(w∗)⟩ ≤ 1

2µ
d2(wt,w

∗)− 1

2µ
d2(ϕt+1,w

∗) +
ζµ

2
∥∇̂J(wt)∥2 . (75)

Take the expectation on the previous result w.r.t. {xs}ts=0 and consider (17) in Assumption 5.7, we obtain

E{⟨−∇̂J(wt), exp
−1
wt

(w∗)⟩} = E{⟨−E{∇̂J(wt)|Ft}, exp−1
wt

(w∗)⟩}
= E{⟨−∇J(wt), exp

−1
wt

(w∗)⟩} , (76)

Combining (75) and (76), we have

E{⟨−∇J(wt), exp
−1
wt

(w∗)⟩} ≤ 1

2µ
Ed2(wt,w

∗)− 1

2µ
Ed2(ϕt+1,w

∗) +
ζµ

2
E∥∇̂J(wt)∥2 , (77)

Consider that J is a geodesically convex function under Assumption 5.5, from (77) one can obtain

E∆t = E{J(wt)− J(w∗)} ≤ E{⟨−∇J(wt), exp
−1
wt

(w∗)⟩}

≤ 1

2µ
Ed2(wt,w

∗)− 1

2µ
Ed2(ϕt+1,w

∗) +
ζµ

2
E∥∇̂J(wt)∥2 . (78)

Now we need to upper bound −d2M(ϕt+1,w
∗). From Corollary 5.4, for the update wt+1 = expϕt+1

(
− α∇P (ϕt+1)

)
in (7), we have

d2(wt+1,w
∗)− d2(ϕt+1,w

∗) ≤ ζα2∥∇P (ϕt+1)∥2 + 2α⟨∇P (ϕt+1), exp
−1
ϕt+1

(w∗)⟩

18

Riemannian Diffusion Adaptation

≤ ζα2∥∇P (ϕt+1)∥2 + 2α
(
P (w∗)− P (ϕt+1)

)
≤ ζα2∥∇P (ϕt+1)∥2 , (79)

where the second inequality uses the convexity property of P with (13), and the third inequality uses the fact P (w∗) = 0
and P (ϕt+1) ≥ 0.

Take the expectation on the previous result w.r.t. {xs}ts=0, and combine the result with (78), we have

E∆t ≤
1

2µ
Ed2(wt,w

∗)− 1

2µ
Ed2(wt+1,w

∗) +
ζµ

2
E∥∇̂J(wt)∥2 +

ζα2

2µ
E∥∇P (ϕt+1)∥2 . (80)

Multiplying (74) by 2ζ and adding to (80), we have:

2ζE∆t+1 − (2ζ − 1)E∆t ≤
1

2µ
Ed2(wt,w

∗)− 1

2µ
Ed2(wt+1,w

∗) +
21ζα2

2µ
E∥∇P (ϕt+1)∥2 . (81)

From Corollary 5.13, we know E∥∇P (ϕt)∥2 converges to a small value after sufficient iterations so, now we tend to study
the convergence of our algorithm after so iterations. For t ≥ so where so defined in (24), from (27) one can rewrite (81) as

2ζE∆t+1 − (2ζ − 1)E∆t ≤
1

2µ
Ed2(wt,w

∗)− 1

2µ
Ed2(wt+1,w

∗) +
231ζαµ

2τ
G2 +

63ζαµ

τ
σ2 . (82)

Summing (82) from t = so to t = s− 1 and plugging in d(wso ,w
∗) ≤ D, we obtain

2ζE∆s +

s−1∑
t=so+1

E∆t ≤ (2ζ − 1)E∆so +
1

2µ
d2(wso ,w

∗)− 1

2µ
Ed2(ws,w

∗) + (s− so)

(
231ζαµ

2τ
G2 +

63ζαµ

τ
σ2

)
≤ (2ζ − 1)E∆so +

1

2µ
d2(wso ,w

∗) + (s− so)

(
231ζαµ

2τ
G2 +

63ζαµ

τ
σ2

)
≤ (2ζ − 1)E∆so +

D2

2µ
+ (s− so)

(
231ζαµ

2τ
G2 +

63ζαµ

τ
σ2

)
. (83)

Recall the geodesic L-smoothness of J in Assumption 5.6 and plugging into d(wso ,w
∗) ≤ D and ∇J(w∗) = 0, we have:

∆so = J(wso)− J(w∗) ≤ ⟨∇J(w∗), exp−1
w∗(wso)⟩+

L

2
∥ exp−1

w∗(wso)∥2

=
L

2
d2(wso ,w

∗) ≤ LD2

2
. (84)

This ensures ∆so ≤ LD2

2 ≤ D2

2µ since µ ≤ L−1, so that from (83) one can obtain

2ζE∆s +

s−1∑
t=so+1

E∆t ≤ ζLD2 + (s− so)

(
231ζαµ

2τ
G2 +

63ζαµ

τ
σ2

)
. (85)

Here the term ∆s does not cancel nicely due to the presence of the curvature term ζ, which necessities the use
of a Lyapunov function as in (Zhang & Sra, 2016). Introduce auxiliary variables w′

so+1 = wso+1 and w′
t+1 =

expw′
t

(
1

t−so+1 exp
−1
w′

t
(wt+1)

)
for so + 1 ≤ t ≤ s − 2, w′

s+1 = expw′
s−1

(
2ζ

2ζ+s−so−1 exp
−1
w′

s−1
(ws)

)
, repeatedly

consider (12) in Assumption 5.5 (geodesic convexity of J), for s ≥ so + 1, we have

J(w′
s−1) ≤

s− so − 2

s− so − 1
J(w′

s−2) +
1

s− so − 1
J(ws−1)

≤ s− so − 2

s− so − 1

(
s− so − 3

s− so − 2
J(w′

s−3) +
1

s− so − 2
J(ws−2)

)
+

1

s− so − 1
J(ws−1)

≤ · · · ≤ 1

s− so − 1

s−1∑
t=so+1

J(wt) . (86)

19

Riemannian Diffusion Adaptation

Denote ∆′
s = J(w′

s)− J(w∗), we have E∆′
s−1 ≤ 1

s−so−1

∑s−1
t=so+1 E∆t. Again, consider the geodesic convexity of J

in (12) of Assumption 5.5, and we can further write

E∆′
s = E{J(w′

s)− J(w∗)} ≤ E
{

s− so − 1

2ζ + s− so − 1
J(w′

s−1) +
2ζ

2ζ + s− so − 1
J(ws)− J(w∗)

}
=

2ζE∆s + (s− so − 1)E∆′
s−1

2ζ + s− so − 1

≤
2ζE∆s +

∑s−1
t=so+1 E∆t

2ζ + s− so − 1
. (87)

Plug the upper bound of 2ζE∆s +
∑s−1

t=so+1 E∆t in (83) into the above result, for s ≥ so + 1, we have

E∆′
s ≤

ζLD2

2ζ + s− so − 1
+

s− so
2ζ + s− so − 1

(
231ζαµ

2τ
G2 +

63ζαµ

τ
σ2

)
. (88)

C. Examples of Riemannian manifolds
C.1. Grassmann manifold

The Grassmann manifold Gp
n, a set of p-dimensional linear subspaces of Rn, can be regarded as a smooth quotient

manifold of the Stiefel manifold Sp
n = {U ∈ Rn×p : UTU = Ip}, i.e., Gp

n = Sp
n/Op = {π(U) : U ∈ Sp

n} where
Op = {U ∈ Rp×p : UTU = Ip} is the orthogonal group and π : Sp

n → Gp
n is the map π(U) = {UO : O ∈ Op}. The

geodesic distance between two subspaces π(U1) and π(U2) of Gp
n, spanned by orthonormal matrices U1 and U2, is defined

as follows (Edelman et al., 1998):
dGp

n
(U1,U2) = ∥ cos−1(θ)∥2 , (89)

where θ ∈ Rp contains the singular values of UT
1 U2, namely, it is related to its singular value decomposition (SVD) as

UT
1 U2 = V T

1 diag(θ)V2. Define f̄ : Sp
n → R, we have f(π(U)) = f̄(U) for all π(U) ∈ Gp

n. The Riemannian gradient
∇f at π(U) ∈ Gp

n is given by:

∇f(π(U)) = ∇f̄(U) = P
Gp
n

U (G) , (90)

with P
Gp
n

U (G) = (I − UUT)G, where G ∈ Rn×p is the Euclidean gradient of f̄ at U . Let ξ ∈ Tπ(U)Gp
n, and let

XΣY = U + ξ be the thin SVD of U + ξ ∈ Rn×p. A numerically stable retraction Rπ(U) : Tπ(U)Gp
n → Gp

n on Gp
n is

given by (Boumal, 2023):
Rπ(U)(ξ) = π

(
XY T

)
. (91)

C.2. The manifold of SPD matrices

The geodesic distance of S++
n between two SPD matrices Σ1 and Σ2 ∈ S++

n can be computed in closed form (Pennec
et al., 2006) as:

dS++
n

(Σ1,Σ2) =
∥∥ log(Σ− 1

2
2 Σ1Σ

− 1
2

2)
∥∥
F
, (92)

where ∥·∥F denotes the Frobenius norm. The Riemannian gradient ∇f at Σ ∈ S++
n is given by:

∇f(Σ) = Σ sym(G)Σ, (93)

with G ∈ Rp×p the Euclidean gradient of function f at Σ and sym(G) = 1
2 (G

T +G). In practice, the Euclidean gradient
can be easily computed using automatic differentiation tools. Let ξ ∈ TΣS++

n . A retraction RΣ,S++
n

: TΣS++
n 7→ S++

n is
defined as:

RΣ,S++
n

(ξ) = Σ+ ξ +
1

2
ξΣ−1ξ. (94)

This retraction is a second-order approximation of the exponential mapping.

20

Riemannian Diffusion Adaptation

D. Additional experimental results
D.1. Inefficiency of the method (Wang et al., 2024b)

In Section 2, we argue that the algorithm in (Wang et al., 2024b) is inefficient due to the inner-loop optimization when
minimizing the penalty term P (ϕt). To support this claim, we compare the MSD performance and runtime between the
work in (Wang et al., 2024b) (denoted as “Inefficient Riemannian diffusion”) and the proposed algorithm. We examine these
two algorithms for distributed PCA on synthetic data in the same setting as in Subsection 7.1, and produce the results as in
Figure 6. From these results, we can see that while the performance of these two algorithms is nearly identical, the proposed
algorithm achieves a significantly reduced runtime. These experiments were performed on a computer with an Apple M4
Pro processor and 24GB of RAM.

0 200 400 600 800 1000 1200 1400
iteration

20

15

10

5

0

5
M

SD
 (d

B)
Inefficient Riemannian diffusion (15.88s)
Riemannian diffusion (0.68s)

Figure 6. Illustration of MSD performance and runtime per Monte Carlo run of the (inefficient) Riemannian diffusion adaptation algorithms
for distributed PCA on synthetic data.

D.2. Applicability to more networks

To illustrate the applicability of the proposed algorithm to more networks, we randomly generate another graph topology
as shown in Figure 7 (left) and select weights with an uniform rule. We test all compared algorithms for both distributed
PCA and GMM inference on synthetic data in the same setting as in Section 7 and produce experimental results in Figure 7
(middle and right). From these results, we find the performance of the compared algorithms remains similar to that shown in
Figure 2 and Figure 4, which are obtained with the network illustrated in Figure 1.

0 200 400 600 800 1000 1200 1400
iteration

25

20

15

10

5

0

5

M
SD

 (d
B)

Riemannian non-cooperative
DRSGD
Riemannian diffusion
Riemannian centralized

0 200 400 600 800 1000 1200 1400
iteration

20

15

10

5

0

5

AL
L

*
AL

L
(d

B)

Riemannian non-cooperative
ECGMM
Riemannian diffusion
Riemannian centralized

Figure 7. Performance illustration of the compared methods on another network with uniformly distributed weights: graph topology (left);
MSD performance for distributed PCA (middle); ALL differences for GMM inference (right) on synthetic data.

D.3. Impact of step sizes

For the proposed algorithm, the choice of step sizes is critical to control the tradeoff between convergence speed and
steady-state performance. We examine the behavior of the proposed algorithm for distributed PCA on synthetic data in the
same setting as in Subsection 7.1, and produce the results with different choices of step sizes as shown in Figure 8. It can be
observed that larger step sizes tend to accelerate convergence but result in worse performance at steady state.

21

Riemannian Diffusion Adaptation

0 200 400 600 800 1000 1200 1400
iteration

20

15

10

5

0

5

M
SD

 (d
B)

= 0.05
= 0.07
= 0.09

Figure 8. Illustration of MSD performance of the proposed method with different step sizes for distributed PCA on synthetic data.

E. Computational complexity
The computational complexity of the proposed algorithm on each agent k involves two contributing terms. The first is the
cost of a local adaptation step (3) (i.e., Riemannian SGD on Jk), which is denoted by TJ . The second is the cost of the
combination step (4), which involves a gradient step over the loss function Pk that scales linearly with the number Nneigh,k

of neighbors connected to node k in the graph (that is, with the number of nonzero elements in the coefficients ckℓ), which
we represent as Nneigh,k · TP , where TP is the cost of computing the inverse of the exponential mapping. Nneigh,k is also
known as the degree of the vertex k in the graph G. Thus, for each agent k, we obtain a complexity of TJ +Nneigh,k · TP .
Compared to a non-cooperative setting, we have an overhead cost of Nneigh,k ·TP , which is a function of both on TP (which
depends on the manifold) and on the number of neighbors connected to node k (which depends on the graph topology).

This allows us to understand how the complexity scales with the number of agents K. In the case where the number of
neighbors to each node (i.e., their degree in the graph) is constant, the complexity does not increase with K. On the other
hand, in the worst case scenario of a fully connected graph (where each vertex has degree K − 1, being connected to all
other vertices), then the complexity scales linearly with K, with a coefficient equal to TP .

F. Discussion on the limitations
Our work has two main limitations, which are discussed in the following.

• The theoretical analysis is based on the exponential mapping expx as in many works in Riemannian optimization,
e.g., (Zhang & Sra, 2016), while in practice, a retraction Rx is used for more efficient computations. A key result
in (Bonnabel, 2013) states that d(Rx(µ · v), expx(µ · v)) = O(µ2), meaning that for small µ, a retraction closely
approximates the exponential map. The main approach to proving convergence with retractions involves showing that
the iterates of the algorithm remain close to those of an equivalent version using the exponential map, which holds as
µ → 0 (Bonnabel, 2013). This argument typically relies on diminishing step sizes, whereas our analysis is designed for
constant step sizes, which are crucial for continuous adaptation and learning. Some works also employ the pullback
operator f ◦Rx, i.e., the composition of the cost function f and a retraction Rx, to establish convergence. However,
these approaches require assumptions that may be less natural, such as the convexity and smoothness of the pullback
operator, see Chapter 4 of (Boumal, 2023). Thus, we believe that extending the proposed theoretical analysis based on
a retraction is an exciting, though non-trivial, research direction.

• Manifolds without closed-form expressions for retractions, or for the Riemannian gradient, pose challenges to the
implementation of the proposed algorithm, as such operations have to be approximated numerically in some way.
However, we highlight that this limitation also applies to most existing Riemannian optimization algorithms and is not
specific to our work.

22

