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Abstract—Distributed decision-making over networks involves
multiple agents collaborating to achieve a common goal. In the
social learning process, where agents aim at inferring an un-
known state from a stream of local observations, the probability
of error in their decisions converges to zero exponentially in the
asymptotic regime. The rate of this convergence, known as the
error exponent, is influenced by the combination policy employed
by the network. This work addresses the challenge of identifying
the optimal combination policies to maximize the error exponent.
We establish an upper bound on the achievable error exponents
by the social learning rule and provide the conditions for the
combination policy to reach this upper bound. By implementing
the optimized policy, we enhance the error exponent, leading
to improved accuracy and efficiency in the distributed decision-
making process.

Index Terms—social learning, combination policy, large devi-
ations, error exponent.

I. INTRODUCTION

Social learning (SL) is a key paradigm in online distributed
decision making, where a group of agents receives a stream
of observations that depend on an unknown state of nature.
The agents are tasked with inferring the true state, from
a finite set of hypothesized states, that best explains their
observations. This paradigm is valuable in applications such as
sensor networks, robotics, and social networks, where global
coordination is challenging or impractical [1]–[4].

In the SL framework, each agent’s state is described by a be-
lief vector that reflects the agent’s confidence in each hypoth-
esis. There are various SL algorithms in the literature, most
of which are designed based on the following two principles:
i) incorporating new information from the streaming observa-
tions using Bayes’ rule, and ii) reaching a decision consensus
by combining information from other agents through specific
pooling rules [4], [5]. Different choices of pooling rules lead
to distinct SL algorithms. Some representative pooling rules
include the arithmetic rule [6]–[8] and the geometric rule [9]–
[12]. All these rules provide a uniformly consistent learning
strategy, ensuring that each agent’s belief in the true state
converges to 1 almost surely as the number of observations
increases. The convergence rate of the belief vector serves as
a measure of learning performance for different SL variants.
For example, the geometric rule provides a larger convergence
rate than the arithmetic rule, as shown in [13]. Particularly, it

is revealed in [8]–[11] that the convergence rate is related
to the combination policy employed by the agents when
implementing the pooling rule. An important conclusion from
these studies is that placing the agent with the most evidence
from local observations in the most centralized position within
the network is beneficial for learning.

However, the convergence rate of belief vectors is not the
only performance measure for a learning strategy. In statistical
decision theory [14], [15], the probability of error is a key
criterion for evaluating learning performance. This criterion
is considered in adaptive social learning under non-stationary
environments [12], where the probability of error remains non-
zero in the steady state. The effect of combination policies on
the steady-state probability of error in the context of adaptive
SL is explored in [16]. Here, we consider non-adaptive SL
rules [6]–[11]. Since they are uniformly consistent, the proba-
bility of error will converge to zero. What is the decaying rate
of the probability of error in this context? Is this decaying
rate affected by the combination policy? If so, how does this
influence differ from its effect on the convergence rate of belief
vectors? Moreover, can we optimize the combination policy to
improve the convergence rate of the probability of error? These
are the main questions addressed in this paper.

In this work, we will focus on the geometric rule due to
its strong behavioral foundation [4], [11], [12]. Using large
deviations theory [17], [18], it has been shown in [19] that
in the asymptotic regime, the probability of error under the
geometric SL rule decays exponentially with a rate–known as
the error exponent in the literature–associated with the Perron
vector of the combination policy. Building on this, we establish
lower and upper bounds on the error exponents that can be
achieved by all combination policies. Furthermore, we provide
the criterion for designing the combination policy to reach
the error exponent’s upper bound, should it be feasible for
the given learning task. It turns out that the optimal Perron
entries must satisfy specific proportionality conditions related
to the agent’s local likelihood models. This indicates that the
optimal combination strategy for minimizing the probability of
error strikes a balance among the centralities of all informative
agents, rather than merely increasing the centrality of the most
informative agent, as suggested in prior studies [8]–[11] aimed
at improving the convergence speed of belief vectors.



Notation: We use boldface fonts to denote random variables,
and normal fonts for their realizations, e.g., x and x. E and
P denote expectation and probability operators, respectively.

II. PROBLEM FORMULATION

A. Observation Models

We consider a group of K agents, each receiving a stream
of private observations over time. These observations are sta-
tistically governed by an unknown true state θ⋆, which belongs
to a finite set of M possible hypotheses. The sets of the K
agents and the M hypotheses are denoted by K ≜ {1, . . . ,K}
and Θ ≜ {θ1, . . . , θM}, respectively. Specifically, at each time
i, each agent k observes a private signal ξk,i ∈ Xk, which is
an independent and identically distributed (i.i.d.) realization
of a random variable described by the distribution Lk(·|θ⋆).
This distribution is drawn from a family of likelihood models
{Lk(·|θ) : θ ∈ Θ} specific to agent k, with all models defined
on the same support Xk. The agents are heterogeneous in that
their signal spaces Xk and likelihood models Lk(·|θ) may be
different. We assume the observations from different agents to
be independent conditioned on the true hypothesis θ⋆. Without
loss of generality, we assume that θ⋆ = θ1.

The goal of the agents is to infer the true hypothesis that
underlies their observations. For each agent k, two distinct
hypotheses θm and θn are called locally indistinguishable if
Lk(·|θm) = Lk(·|θn) almost everywhere. Equivalently, this
can be expressed in terms of the Kullback-Leibler (KL) diver-
gence [20] as DKL(Lk(·|θm)∥Lk(·|θn)) = 0. The learning task
is infeasible for agent k if θ1 is locally indistinguishable from
any other θ. We impose the following identifiability condition.

Assumption 1. For each pair of hypotheses (θ1, θ), there
exists at least one agent k such that DKL(Lk(·|θ1)∥Lk(·|θ)) >
0.

This assumption guarantees that θ1 is globally distinguishable
for the network. However, the agents may not be able to learn
the true hypothesis on their own due to potential local in-
feasibility. This necessitates collaboration among agents using
certain learning rules, which we describe next.

B. Social Learning Rule

At each time i, each agent k maintains a local belief vector
µk,i and an intermediate belief vector ψk,i, both of which
are probability mass functions over the hypothesis space Θ.
The entry µk,i(θ) of the belief vector represents agent k’s
confidence that θ is the true hypothesis. The social learning
rule consists of two alternating steps. In the adaptation step,
each agent k updates its intermediate belief ψk,i according to
Bayes’ rule using the new observation ξk,i:

ψk,i(θ) =
µk,i−1(θ)Lk(ξk,i|θ)∑

θ′∈Θ µk,i−1(θ′)Lk(ξk,i|θ′)
, ∀θ ∈ Θ. (1)

In the combination step, agent k combines the intermediate
beliefs from other agents to update its belief vector µk,i:

µk,i(θ) =

∏
ℓ∈Nk

ψℓ,i(θ)
aℓk∑

θ′∈Θ

∏
ℓ∈Nk

ψℓ,i(θ′)aℓk
, ∀θ ∈ Θ (2)

where aℓk is the combination weight assigned to agent ℓ by
agent k, and Nk denotes the set of neighboring agents that send
information to agent k. The communication network among
agents can be represented by a graph, which is assumed to be
strongly connected.

Assumption 2. There exist paths with positive weights be-
tween any two distinct agents in both directions (the two paths
need not be the same), and at least one agent k has a self-loop
(akk > 0).

The combination policy used by the agents is described by
matrix A = [aℓk], which is assumed to be left-stochastic with

A⊤
1 = 1, aℓk > 0, ∀ℓ ∈ Nk and aℓk = 0, ∀ℓ /∈ Nk (3)

where 1 denotes the K-dimensional vector of all ones. Under
Assumption 2, the matrix A is primitive so that the Perron
eigenvector π exists according to the Perron-Frobenius theo-
rem [21], which can be normalized to have strictly positive
entries:

π⊤
1 = 1, πk > 0, ∀k ∈ K. (4)

To avoid trivial cases, we assume that the initial belief of each
agent on each hypothesis is positive.

Assumption 3. For each k ∈ K and θ ∈ Θ, µk,0(θ) > 0.

C. Decision Making Rule

At each time i, the agents need to make a decision about
the true hypothesis based on their current belief vectors. One
natural choice for them is to select the hypothesis with the
highest belief. According to this rule, a decision error occurs
at agent k if µk,i(θ1) is either not the maximum or is the
maximum but not unique. The instantaneous probability of
error of agent k at time i, denoted by pk,i, is defined as

pk,i ≜ P
(
∃θ ̸= θ1 : µk,i(θ) ≥ µk,i(θ1)

)
. (5)

The convergence behavior of pk,i obviously depends on that of
the belief vectors. From [9], [10], we know that µk,i(θ1) → 1
almost surely with the exponential convergence rate:

I(π,Θ) ≜ min
θ ̸=θ1

K∑
k=1

πkDKL(Lk(·|θ1)∥Lk(·|θ)). (6)

Due to Assumption 1, it holds I(π,Θ) > 0 for any π satisfying
(4). This implies from (5) that pk,i → 0 as i grows. It is clear
from (6) that the Perron centrality of each agent plays a crucial
role in the convergence rate of the belief vectors. Particularly,
a combination policy that places more centrality on the most
influential agent (measured by the KL divergence) is preferred
as it boosts the rate of convergence.

However, an increase in the convergence speed of the belief
vector µk,i does not equate to a decrease in the probability
of error pk,i, which is another important performance measure
in statistical decision theory [14], [15]. The main goal of this
work is to examine the effect of the combination policy on the
convergence rate of the probability of error pk,i, with particular
focus on the exponential decaying rate–referred to as the error
exponent–in the asymptotic regime as i becomes large.



III. MAIN RESULTS

For our subsequent analysis of the error exponent, we need
to introduce some useful variables. For each agent k and each
time i, we define xk,i(θ) and λk,i(θ) as the log-likelihood and
log-belief ratios associated with the true hypothesis θ1 and an
alternative hypothesis θ ̸= θ1:

xk,i(θ) ≜ log
Lk(ξk,i|θ1)
Lk(ξk,i|θ)

, λk,i(θ) ≜ log
µk,i(θ1)

µk,i(θ)
. (7)

We also introduce the logarithmic moment generating function
(LMGF) of xk,i(θ):

Λk,θ(t) ≜ logEetxk,i(θ) = logE exp

{
t log

Lk(ξk,i|θ1)
Lk(ξk,i|θ)

}
.

(8)
We make the following assumption on Λk,θ(t), which is known
as Cramér’s condition [4], [22].

Assumption 4. For each k ∈ K, Λk,θ(t) < ∞,∀t ∈ R for all
θ ̸= θ1.

The network LMGF Λave,θ(π, t) is defined as the average of
the individual LMGFs Λk,θ(t) weighted by the Perron vector
π:

Λave,θ(π, t) ≜
K∑

k=1

Λk,θ(πkt). (9)

Using the well-known Gärtner-Ellis theorem [17], [18], it was
established in [19] that the probability of error pk,i satisfies the
large deviations principle (LDP) with the rate function given
by the Fenchel-Legendre transform ϕave,θ(π, x) of Λave,θ(π, t):

ϕave,θ(π, x) = sup
t∈R

[
tx− Λave,θ(π, t)

]
, ∀x ∈ R. (10)

Lemma 1 ([19]). Under Assumptions 1–4, the probabilities
of error of all agents satisfy the LDP with the error exponent

Φ(π) ≜ min
θ ̸=θ1

ϕave,θ(π, 0) > 0 (11)

for any given combination policy with Perron vector π.

According to LDP theory, this means that the probability of
error pk,i can be characterized as

pk,i
.
= e−iΦ(π), as i → ∞ (12)

where the notation .
= means equality to the leading order

(namely, i) in the exponent. Therefore, a larger error exponent
Φ(π) indicates a faster decaying rate of pk,i in the asymptotic
regime. Since Φ(π) depends on the Perron vector π, a pertinent
question is whether we can find an optimal Perron vector π
that maximizes the error exponent. This leads to the following
optimization problem:

max
π

Φ(π) s.t. (4). (13)

Before solving this problem, we first derive bounds on the
achievable error exponents for the SL rule (1)–(2).

For each hypothesis θ ̸= θ1, we denote by KI(θ) the set of
agents for whom θ is distinguishable from θ1, i.e.,

KI(θ) ≜
{
k ∈ K : DKL(Lk(·|θ1)∥Lk(·|θ)) > 0

}
. (14)

Under Assumption 1, we have KI(θ) ̸= ∅ for all θ ̸= θ1. Let
Φk(θ) denote the error exponent associated with hypothesis θ
for agent k in the non-cooperative learning scenario where

Θnc ≜ {θ1, θ}, Knc ≜ {k}. (15)

By replacing (Θ,K) with (Θnc,Knc) in Lemma 1, we obtain

Φk(θ) ≜ ϕk,θ(0) = − inf
t∈R

Λk,θ(t), (16)

where ϕk,θ(x) is the conjugate of Λk,θ(t) defined in a similar
way to (10). Moreover, we have Φk(θ) > 0 if k ∈ KI(θ) and
Φk(θ) = 0 otherwise. A bound on the error exponent Φ(π)
can be established using the individual Φk(θ) as follows.

Theorem 1. The error exponent Φ(π) is bounded as

min
θ ̸=θ1

min
k∈KI(θ)

Φk(θ) ≤ Φ(π) ≤ min
θ ̸=θ1

K∑
k=1

Φk(θ). (17)

Proof. Omitted for brevity, however, the argument follows by
using similar tools as in [16].

This theorem shows that the maximum error exponent achiev-
able for the optimization problem (13) is upper bounded by
the right-hand side term of (17), which we denote as Φ̄. Also,
we denote the set of hypotheses corresponding to Φ̄ by

Θ∗ ≜ argmin
θ ̸=θ1

K∑
k=1

Φk(θ). (18)

This set contains all hypotheses that are hardest to distinguish
from the true hypothesis θ1 for the entire network (in terms of
the error exponents). The subsequent question is whether we
can attain this upper bound by optimizing π. We will answer
this question in the affirmative by showing that the optimal
Perron vector π⋆ needs to satisfy a proportionality condition
related to the quantity tk(θ), which is defined as the critical t
that determines the individual error exponent Φk(θ) in (16):

tk(θ) ∈ argmin
t∈R

Λk,θ(t). (19)

Using the convexity of the LMGF Λk,t(θ), we can prove that
tk(θ) is unique and negative for all k ∈ KI(θ), that is,

tk(θ) ≜ argmin
t∈R

Λk,θ(t) < 0, ∀k ∈ KI(θ). (20)

By definition of KI(θ) in (14), we know Λk,θ(t) = 0,∀t ∈ R
for each k /∈ KI(θ). In this case, tk(θ) can be any value.

Theorem 2. Let Φ⋆ be the maximum error exponent in the
optimization problem (13) and Π⋆ be the set of optimal Perron
vectors. If the upper bound in (17) is achievable, i.e., Φ⋆ = Φ̄,
then for each Perron vector π⋆ ∈ Π⋆, the following relation

π⋆
k

π⋆
ℓ

=
tk(θ

∗)

tℓ(θ∗)
, ∀k, ℓ ∈ KI(θ

∗) (21)

holds for all hypotheses θ∗ ∈ Θ∗.

Proof. This proof is based on the nice properties of the LMGF
Λave,θ(π, t) and the rate function ϕave,θ(π, x), proceeding in a
manner similar to the analysis conducted by [16].
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Fig. 1: Probabilities of error under different combination policies in the two learning scenarios on a given network.

TABLE I: Parameters of Gaussian models

Agent k mk(θ1) mk(θ2) mk(θ3) σ2
k εk

1–3 0 0.1 0.1 1 10
4–7 0 0.2 0 1 0.1
8–10 0 0 0.3 1 0.01

Remark 1. Assume Θ∗ = {θ∗} and that the upper bound Φ̄
is attainable. There are two special cases of Π⋆ when KI(θ

∗)
takes two extreme values: KI(θ

∗) = K or KI(θ
∗) = {k}. In

the first case, all agents are informative in distinguishing θ∗

from θ1. From (20) and (21), we know that the optimal Perron
vector π⋆ is unique, i.e., Π⋆ = {π⋆}, with

π⋆
k =

tk(θ
∗)∑

ℓ∈K tℓ(θ∗)
, ∀k ∈ K. (22)

In the second case, only agent k is able to exclude the wrong
hypothesis θ∗ based on its likelihood models. The condition
(21) holds regardless of the Perron centrality πk. Therefore,
Π⋆ includes all Perron vectors π that attain the upper bound.
It is worth noting that this conclusion contradicts the existing
results in [9]–[11], which support making πk as large as
possible for improving the convergence rate of belief vectors.

IV. NUMERICAL SIMULATIONS

In the simulations, we consider a network of 10 agents
shown in Fig. 1a, where each edge is generated with probabil-
ity 0.1. The network is constructed to be undirected to facilitate
the design of the combination policy for a given Perron vector.
Each agent is assumed to have a self-loop, which is not shown
in the figure. We cluster the 10 agents into 3 groups such that
the agents in the same group share the same likelihood models.

We consider 3 hypotheses and assume that each agent owns
a family of Gaussian models, i.e., Lk(·|θ) = G(mk(θ), σ

2
k(θ)),

where G(m,σ2) denotes the Gaussian distribution with mean
m and variance σ2. The group assignment and the parameters
of the Gaussian models for each group are provided in Table I.
For two Gaussian models G(mk(θ1), σ

2
k) and G(mk(θ), σ

2
k)

with the same variance σ2
k, the critical t in (20) is computed as

tk(θ) = − 1
2 . Since for any θ ̸= θ1, tk(θ) is identical for all k ∈

KI(θ), the uniform Perron vector satisfies (21). We can prove

that it is an optimal Perron vector. To validate its optimality, we
compare five doubly-stochastic A with a uniform Perron vector
to five left-stochastic A with sub-optimal Perron vectors. All
matrices are generated randomly following the procedure in
[16]. Under different A, the probability of error p1,i of agent
1 is shown in Fig. 1b. It can be observed that doubly-stochastic
matrices provide a larger error exponent.

In the second scenario, we assume that the observations ξk,i
are corrupted by some noise nk,i ∼ G(0, ν2k). The noise level
εk at agent k is defined as the ratio between ν2k and σ2

k, and
its value is given in Table I. In this noisy scenario, we have

tk(θ) = − 1

2(1 + εk)
, Φk(θ) =

(mk(θ1)−mk(θ))
2

8σ2
k(1 + εk)

. (23)

From Table I, we obtain Θ∗ = {θ2} and KI(θ2) = {1, . . . , 7}.
The upper bound Φ̄ of the error exponents is achievable for this
noisy learning setup by the Perron vector constructed in (22)
with tk(θ2) given by (23). Since the proportionality condition
(21) is imposed only on agents belonging to KI(θ2), the set
Π⋆ may not be a singleton. To illustrate this, we assume

tk(θ2) = −C < 0, ∀k /∈ KI(θ2), (24)

and consider the Perron vector πC given by (22) using (24).
It can be proved that πC ∈ Π⋆ for any choice of C ≥ 0.045.
In the simulations, we construct five combination policies AC

with Perron vectors πC by selecting C to be 0.2, 0.4, 0.6, 0.8,
and 1. Together with the ten combination policies in Fig. 1b,
we plot the evolution of p1,i under these fifteen combination
policies in Fig. 1c. The benefit of employing optimal combi-
nation policies is evident, as the curves corresponding to each
AC lie below all other curves in Fig. 1c.

V. CONCLUSIONS

We investigate the influence of the combination policies on
the error exponent of the probability of error in social learning.
The bound on the error exponent is derived, followed by an
error exponent maximization problem. Our results show that
by employing a combination policy with an optimal Perron
vector, which satisfies certain proportionality conditions re-
lated to the local likelihood models, the agents can learn the
true hypothesis more efficiently.
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