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ABSTRACT
This work employs a social learning strategy to estimate the
global state in a partially observable multi-agent reinforce-
ment learning (MARL) setting. We prove that the proposed
methodology can achieve results within an ε-neighborhood of
the solution for a fully observable setting, provided that a suf-
ficient number of social learning updates are performed. We
illustrate the results through computer simulations.

Index Terms— social learning, partial observability,
multi-agent system, reinforcement learning.

1. INTRODUCTION

A fundamental challenge in multi-agent reinforcement learn-
ing is the issue of partial observability. Traditional extensions
of methodologies used for single-agent reinforcement learn-
ing (RL) to the multi-agent scenario generally assume full
observability of the state variable. They also require knowl-
edge of this information by all agents. Moreover, most multi-
agent reinforcement learning (MARL) techniques in current
practice are designed by assuming centralized training and
decentralized execution, such as MADDPG [1], QMIX [2],
MAVEN [3], or Independent Learning (IL) [4]. All these
methods also impose some assumptions that tend to be re-
strictive for many complex scenarios. Therefore, develop-
ing decentralized RL algorithms that can operate reliably un-
der Partially Observable Markov Decision Processes (Dec-
POMDP) would be ideal for MARL applications, except that
this objective is known to be NEXP-hard [5] and lacks a for-
mal solution. Our approach relies on infusing a decentralized
MARL implementation with elements of social learning to
enable agents to learn the unobservable state through social
interactions.

Specifically, in this work, we extend the multi-agent off-
policy actor-critic (MAOPAC) algorithm [6], originally de-
signed for fully observable environments, to handle partially
observable settings. Motivated by the approach followed in
[7], we leverage social learning strategies [8, 9, 10] to esti-
mate the global state in a fully decentralized manner. Under
these strategies, agents estimate belief vectors using local ob-
servations and then iteratively diffuse these estimates to their
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immediate neighbors. In comparison, some existing works on
fully decentralized solutions tend to rely on neural network
implementations, which can be complex and challenging to
analyze. We adopt instead a social learning framework and,
unlike many existing solutions, the proposed method does not
necessitate transition models for state estimation.

The proposed method is supported by theoretical guaran-
tees. We derive conditions for estimating the global state,
ensuring that the ultimate error in the policy parameter is
bounded by ε. Through empirical evaluation and analysis, we
demonstrate the effectiveness and robustness of our approach
in addressing the challenges posed by partially observable
multi-agent environments. Additionally, we benchmark our
method against the zeroth order policy optimization (ZOPO)
approach.

2. MODEL SETTING

Our setting can be modeled through a Decentralized Partial
Observable Markov decision process (Dec-POMDP) denoted
by the tuple (K,Aℓ, {Oℓ}Kℓ=1,S, {rℓ}Kℓ=1,P, {Lℓ=1}Kℓ=1),
where K ≜ {1, 2, ...,K} is a set of agents, {Aℓ}Kℓ=1 is the set
of possible actions for agent ℓ, O is a continuous set of obser-
vations, and S is the set of states. Moreover, P : S ×A → S
is a transition model where the value P(s′|s, a) denotes the
probability of transition to state s′ ∈ S from state s ∈ S
after taking joint action a ≜ {aℓ ∈ Aℓ}Kℓ=1. The likelihood
function Lℓ(ξ|s) denotes the probability of observing ξ ∈ Oℓ

when the true global state is s ∈ S . We assume that agents
communicate according to some fixed graph.

Let rℓ,n ≜ rℓ(sn, aℓ,n) denote the individual reward
achieved by agent ℓ at time n if at global state sn ∈ S it
chooses action aℓ,n ∈ A. We denote the reward upper-bound
by Rmax and define the average reward at time n by

r̄n =
1

K

K∑
ℓ=1

rℓ,n (1)

Let bℓ : S × A → [0, 1] denote the individual policy of agent
ℓ. The individual target policies are approximated by local
parameterized functions πℓ(·; θℓ), where θℓ ∈ Rd.

Off-policy learning relies on corrections, which are im-



plemented using the importance sampling ratio, defined as:

ρn ≜
K∏
ℓ=1

ρℓ,n =

K∏
ℓ=1

πℓ,n
bℓ

(2)

In the MAOPAC algorithm [6], the importance ratio is esti-
mated in a decentralized manner at each actor-critic update
by iteratively diffusing individual importance ratios ρℓ,n until
consensus. We also adopt this assumption in our work.

3. MULTI-AGENT OFF-POLICY ACTOR-CRITIC
FOR DEC-POMDP

In our study, we extend MAOPAC by considering scenarios
where the global state is not fully observed. We refer to the
proposed extended algorithm as MAOPAC-dec-POMDP. It is
based on the repeated alternation of two main learning phases:
1) traditional MAOPAC and 2) state estimation, as detailed in
the following subsections. The complete listing of our method
is presented in Algorithm 1.

3.1. Multi-agent off-policy actor-critic learning

The MAOPAC algorithm belongs to the family of policy gra-
dient methods designed to concurrently learn the optimal poli-
cies (actors) and the corresponding state values (critics). In
our study, we assume that each agent has its own estimate for
state values, approximated using the following linear func-
tion:

vωk,n
≈ µT

k,nωk,n (3)

where µk,n is a state feature vector and ωk,n is a parameter
vector, also referred to as the critic parameter, estimated by
agent k at time n. Target policies are approximated with some
functions π(µk,n; θk,n) parametrized by θk,n, which will be
referred to as the actor parameters.

As shown in steps (4)-(8) of Algorithm 1, the updates
of θk,n and ωk,n are similar to those of traditional actor-
critic algorithms with the exception of several correction
factors: ρk,n, ek,n and Mθ

k,n. The importance sampling ra-
tio ρk,n is essential for correcting the discrepancies inherent
in off-policy learning methodologies. The variables ek,n and
Mθ

k,n are motivated by emphatic temporal difference learning
(ETD), which was proposed in [11, 12, 6] to address instabili-
ties due to off-policy learning under function approximations.
The step (4) involves intermediate calculations necessary for
computing Mθ

k,n.

3.2. State estimation

At each iteration of the critic and actor updates, agents per-
form state estimation using the social learning strategy de-
scribed by (10)-(11). Social learning is a form of group learn-
ing that identifies the most suitable hypothesis from a set S,

Algorithm 1: MAOPAC-dec-POMDP
Initialize parameters: λ ∈ (0, 1), ζ ∈ (0, 1), γ ∈ (0, 1),
ωk,0(s, a), ρk,0, µ̃k,0 = 1

S
, ηk,0 = 1

S
, Fk,0 = 0;

for n=0,1,2.... do
if n=0 then

Each agent k receives observations {ξ0
k,t}Tt=0 ;

Each agent k estimates µk,0 using (10)-(11);
end
Each agent k takes action ak,n ∼ bk;
Each agent k receives rk,n and {ξn+1

k,t }Tt=0;
Each agent k estimates ηk,n ;
Each agent k estimates ρk,n as given in [6] ;
for each agent k do

Update Mθ
k,n and ek,n as given in [6] (4)

δk,n = rk,n + γωT
k,nηk,n − ωT

k,nµk,n (5)

Ψk,n =
∇θπ (ak,n | µk,n)

π (ak,n | µk,n)
(6)

ω̃k,n = ωk,n + βnρk,nδk,nek,n (7)

θk,n+1 = θk,n + βnρk,nM
θ
k,nδk,nΨk,n (8)

end
for each agent k do

ωk,n+1 =
∑
ℓ∈Nk

cℓ,kω̃ℓ,n (9)

end
Reset: µk,n = ηk,n, η̃k,0(s) = 1

S
;

end

best explaining the given observations ξk,i ∈ Ok. In this
work, we use the social learning technique for state estima-
tion from [13, 14]. At each iteration of MAOPAC learning,
we implement an internal loop for learning the global state.
At iteration n of actor-critic updates, all agents receive a set
of individual observations {ξnk,t}Tt=0, which are dependent on
the current unknown global state of nature, i.e., sn. Using
their individual likelihood functions Lk(ξ

n
k,t|s), the s-th el-

ements of the individual belief vectors µk,n are updated as
follows:

1. Repeat (10) and (11) for t = 0, 1, ..., T , ∀s ∈ S and
∀k ∈ K:

Adapt:

ψk,t(s) =
Lk

(
ξnk,t|s

)
µ̃k,t−1(s)∑

s′∈S Lk

(
ξnk,t|s′

)
µ̃k,t−1 (s′)

(10)

Combine:

µ̃k,t(s) =

∏
ℓ∈Nk

[ψℓ,t(s)]
cℓk∑

s′∈Θ

∏
ℓ∈Nk

[ψℓ,t(s)]
cℓk (11)

2. Assign µk,n = µ̃k,T



(a) Parameter exchanges (b) Action selection (c) State transition

Fig. 1. Illustration of the agents/target framework: (a) shows a phase where agents exchange parameters according to the
communication graph: black arrows demonstrate communication links; (b) illustrates a phase where agents, based on their
individual policies, choose an action, i.e., select the possible location of the target (cells indicated by the orange arrows); (c)
demonstrates the transition of the target to another state (cell) as a result of the agents’ actions.

where cℓ,k are the entries of a combination matrix C satis-
fying Assumption 1 below, and the notation Nk denotes the
neighbors of agent k. Actor-critic learning requires knowl-
edge of the current and next states. We estimate the belief
vector for the next state ηk,n, in the same manner as µk,n, but
using the observations for the next state, ξn+1

k,t

T

t=0
.

As demonstrated in [9], under Assumptions 1–3 (listed
below), repeated application of the updates in (10) and (11)
allows agents to almost surely learn the true current state sn.
The convergence rate of the algorithm is discussed in [8].
Generally, the belief vectors converge at an exponential rate,
which depends on the second largest eigenvalue of C [10].
Therefore, in Section 4, we analyze the maximum allowable
state estimation error to ensure that, by the end of the MARL
run, the estimation of the policy parameter θk,n is ε-optimal.

Assumption 1 (Combination matrix). The combination ma-
trix C assigns non-negative weights to neighboring agents
and is assumed to be doubly-stochastic.

Assumption 2 (Strong connectivity). The underlying graph
topology is assumed to be strongly connected.

Assumption 3 (Likelihood function). For all agents k ∈ K
and all states s ∈ S , the KL-divergence between the true
model fk(ξk) and the likelihood function Lk(ξk|s) is finite:

Dk (f || Lk) ≜ Efk log
fk(ξ)

Lk(ξ | s)
<∞ (12)

■

4. THEORETICAL GUARANTEES

For analysis we compare the performance of MAOPAC when
the global state is fully observed against when it is only par-
tially observed, as is the case in this paper. In essence, we

compare the original algorithm MAOPAC and the proposed
MAOPAC-dec-POMDP. Let µ̂k,n, ρ̂k,n, and θ̂k,n denote the
full-observation counterparts of µk,n, ρk,n, and θk,n, respec-
tively. These variables undergo the same update processes as
their counterparts, with the distinction that they are privileged
with knowledge of the true global state. We introduce the er-
ror variables

∆µk,n ≜ µ̂k,n − µk,n, ∆ρk,n ≜ ρ̂k,n − ρk,n,

∆θk,n ≜ θ̂k,n − θk,n (13)

In the analysis of the proposed method, we establish the fol-
lowing upper bounds:

∥ωk,n∥ ≤
n−1∑
i=0

βiΩ
n−iRmaxBe∥ω0,max∥

bϵ
≜ Bω

n (14)

|δk,n| ≤ Rmax + (1 + γ)Bω
n ≜ Bδ

n (15)

The proofs are omitted due to space limitations.
In our analysis, we determine conditions under which the

actor parameter under partial observability, θk,n, can get ε-
close to the optimal result of MAOPAC. This finding is for-
mally stated in Theorem 1, whose proof is omitted for brevity.

Theorem 1 (ϵ-optimality). Let ∥ · ∥ denote the Euclidean
norm of a vector. Then, under Assumptions 1-3 and Assump-
tion 6.1.4. from [6], for all agents k and bϵ > γ, ∆θk,n is
ε-bounded at time n if ∀j ≤ n:

∥∆µℓ,j)∥ ≤ min(B̃1, B̃2) (16)

and

∥∆ρℓ,j∥ ≤ min(D̃1, D̃2, D̃3) (17)



(a) Critic error (b) Actor error (c) MAOPAC-dec-POMDP vs ZOPO

Fig. 2. Comparison between MAOPAC and the proposed MAOPAC-dec-POMDP: (a) shows the difference in critic values
computed by MAOPAC and MAOPAC-dec-POMDP for different numbers of agents (b) shows the difference in actor values
computed by MAOPAC and MAOPAC-dec-POMDP for different numbers of agents (c) compares the proposed MAOPAC-dec-
POMDP and ZOPO in terms of cumulative average reward

where γ is a reward discount factor,

B̃1 ≜
εα1

ΦnβjBω
j Ω

n−j
, B̃2 ≜

εα2

Φn|Mk,j |Bδ
n(γλ)

−j
(18)

D̃1 ≜
εα3

ΦnβjBδ
jΩ

n−j
, D̃2 ≜

εα4 (bϵ/γ)
−j

ΦnFk,jBδ
nΩ

n
, (19)

D̃3 ≜
εα5 (bϵ/γ)

−j

βnBδ
nFk,j

, Φn ≜ 4β0(1 + γ)π2Bθ
Mn

3, (20)

α1, α2, α3, α4, α5 <∞ (21)

■

Note that over infinite time, n → ∞, the bounds in (16)
and (17) converge to 0, which is a reasonable outcome. State
estimation occurs at every iteration of the actor-critic updates.
As a result, each new state estimation error ∆µk,n contributes
to the overall error of the actor parameter ∆θk,n. Therefore,
the convergence of the actor error ∆θk,n necessitates the
convergence of ∆µk,n to 0 as n approaches infinity. Next,
note that the bounds in (16) and (17) can be computed in real
time, highlighting the practical importance of these bounds.
Specifically, an agent undergoing an actor-critic update at
time j needs to determine the maximum allowable state es-
timation error and use it to adjust the runtime of the inner
state-estimation loop.

5. EXPERIMENTAL RESULTS AND DISCUSSIONS

For experiments we use the grid-based scenario from [7]. It
involves K agents (representing radars) with fixed location
and one object with changing location over some grid (see
Figure 1). The states of the underlying POMDP are the cells

of the grid. The objective for all agents is to correctly detect
the location of the moving object. The actions by agents cor-
respond to which cell in the grid to hit. Agents are rewarded
based on the accuracy of their selections relative to the actual
location of the object.

As shown in figures 2(a) and 2(b), both critic and ac-
tor values for MAOPAC-POMDP closely align with that of
MAOPAC. Convergence of MAOPAC to the optimal policy
under full observability has been proven in [6]. Hence, it fol-
lows that MAOPAC-POMDP can attain an ε-optimal solution.

ZOPO is an extension of Monte-Carlo-based policy gra-
dient approaches such as the REINFORCE algorithm. ZOPO
is inherently simple to implement and can be useful when the
gradient of a function is not available. However, it tends to
exhibit slow convergence and high noise levels, as confirmed
in Figure 2(d).

6. CONCLUSION

This paper proposes a multi-agent off-policy actor-critic algo-
rithm for partially observable environments. The key innova-
tion lies in estimating the global state through social learning
to guarantee bϵ−boundedness of estimation error. The perfor-
mance of the resulting algorithm is illustrated by comparing
against state-of-the-art solutions.
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