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Abstract—In this paper, we study a dynamic game between
two networks. The networks compete by optimizing two coupled
objective functions. Agents within the same network work toward
a common goal and are regarded as cooperative agents; they
exchange their strategies via links with other agents. Additionally,
in the assumed model, each agent receives information from some
adversary agents following a bipartite cross-network topology.
The networks employ a diffusion learning strategy that allows
them to learn and pursue the equilibrium state adaptively. We
show that the networks converge to the Nash equilibrium in the
mean-square-error sense under some reasonable assumptions.

Index Terms—Competing networks, diffusion learning, Nash
equilibrium, adaptive learning

I. INTRODUCTION

Adaptive networks with cooperative agents have a wide
range of applicability in distributed optimization and learning
problems [1]. However, networks need not be restricted to
cooperative scenarios; many real-world applications, such as
those in economics [2], multi-GANs [3], and e-sports games
[4], are more naturally characterized by competitive network
dynamics. Despite these applications, adaptive networks in
competing settings have been underexplored compared to
their cooperative counterparts. Inspired by this gap, this paper
explores a scenario where two adaptive networks compete.

Distributed optimization problems commonly employ a
cooperative setup, where agents collaborate to achieve a
common objective. A vast body of research has focused on this
scenario; see, for instance, [5]–[8]. The works [5], [6] establish
performance bounds for stochastic gradient algorithms for
solving single task problems over graphs, while the work
[8] addresses a game problem. All these references, however,
focus on solving their formulations through agent cooperation,
excluding the possibility that agents may take on different
roles.

A graph setting beyond cooperation is studied in [9]–[14].
The work [9] considers a distributed game over the graph
where each agent interacts in the game by minimizing its
private cost. The work [10] adopts a variational inequality
framework to study the network game problem and establishes
convergence results for best response dynamics. The work
[11] employs a decaying step size strategy to learn the Nash
equilibrium in a two-network zero-sum scenario; however, this
strategy lacks tracking capabilities. The work [12] proposes
an incremental strategy for solving the network competing
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problem, and its convergence is guaranteed when the stringent
assumption of bounded subgradient is satisfied. The work
[13] considers a bipartite network topology for cross-network
information sharing and carries out convergence analysis in
the continuous-time domain. The work [14] considers a two-
team competing problem similar to our work; however, the
convergence argument is missing.

The contributions of this work are summarized as follows:
1) We establish a convergence guarantee for diffusion learn-
ing under a bipartite cross-network setup and without the
assumption of bounded gradients [11]–[14]; 2) we provide
a variational inequality perspective to analyze the stability
performance of the adaptive competing algorithm, enabling it
to cover more general scenarios, including nonzero-sum game
formulations; and 3) our theoretical results are established in
the discrete-time domain, aligning with the nature of itera-
tive algorithms and distinguishing them from the arguments
presented in the work [13].

II. PROBLEM FORMULATION

A. Two-Network Game Setting
We consider a collection of K agents, decomposed into two

“teams” N (1) and N (2) of size K1 and K2, respectively, with
index setsN (1) = {1, · · · ,K1} andN (2) = {K1+1, · · · ,K},
where K = K1 + K2. Teams 1 and 2 employ the strategies
x ∈ RM1 , y ∈ RM2 , respectively, with M1 +M2 = M . Each
team seeks a strategy to minimize its own objective function
as follows:

min
x

J (1) (x, y) , min
y

J (2) (x, y) (1)

where we use superscripts (1) and (2) to denote the team
index. Note that the objective for each team depends on the
strategy of the other team. Note further that when J (1) (x, y) =
−J (2) (x, y), the problem reduces to a min-max problem.
Solutions for this type of problems is typically pursued by
applying the gradient descent strategy to both problems in (1)
— see, e.g., [15]. In the network setting, the cost function
for each network is usually expressed as the weighted sum of
local risk functions:

J (1) (x, y) ≜
∑

k∈N (1)

pkJk (x, y) (2)

J (2) (x, y) ≜
∑

k∈N (2)

pkJk (x, y) (3)



where each Jk(x, y) is the expected value of some loss
function:

Jk (x, y) ≜ EQk (x, y; ξk) (4)

Here, the {pk} are positive coefficients that add up to 1
over each network, i.e.,

∑
k∈N (t) pk = 1, t ∈ {1, 2}. The

variable ξk represents the random data (or observations). For
convenience, we introduce the following concatenated vectors:

z ≜

[
x
y

]
∈ RM , F (z) ≜

[
∇xJ

(1) (x, y)
∇yJ

(2) (x, y)

]
∈ RM (5)

To study the problem, we use the following assumption for
the gradient operator.
Assumption 1 (ν-strong monotonicity). For every z1, z2 ∈
RM , we have

⟨F (z1)− F (z2) , z1 − z2⟩ ≥ ν∥z1 − z2∥2 (6)

Assumption 1 is commonly used in the context of variational
functions [16], [17]. It is important to note that condition (6)
generalizes the traditional setup of strongly-convex strongly-
concave problems studied in the context of min-max optimiza-
tion. Let the Nash equilibrium z⋆ be defined as:

z⋆ ≜

[
x⋆

y⋆

]
∈ RM (7)

where z⋆ satisfies

J (1)(x⋆, y⋆) ≤ J (1)(x, y⋆), J (2)(x⋆, y⋆) ≤ J (2)(x⋆, y) (8)

This condition ensures that no team can unilaterally improve
their objective by changing their strategy. Based on this
definition, we have the following lemma (proofs are omitted
due to brevity).

Lemma 1 (Nash equilibrium). Under Assumption 1, there
exists a unique Nash equilibrium z⋆.

B. Network Formulation

For each team, agents are connected according to combina-
tion matrices A(1) = [a

(1)
lk ] ∈ RK1×K1 and A(2) = [a

(2)
lk ] ∈

RK2×K2 , respectively. Additionally, each agent is informed
about the strategy of the adversary network by receiving infor-
mation directly from one or more adversary agents following
a bipartite cross-network topology. We use C(12) ∈ RK1×K2

and C(21) ∈ RK2×K1 to denote the information flowing from
Team 1 to Team 2, and from Team 2 to Team 1, respectively.
Also, let

C ≜

[
0 C(12)

C(21) 0

]
∈ RK×K (9)

We assume the combination matrices A(1), A(2), C(12), C(21)

satisfy the following condition.

Assumption 2 (Connectivity). For t, t′ ∈ {1, 2}, t ̸= t′, the
following conditions hold:

1) The combination matrix A(t) ∈ RKt×Kt is primitive and
left-stochastic, i.e. 1⊤A(t) = 1

⊤.

2) The matrix C(t′t) ∈ RKt′×Kt is left-stochastic, and for
each k ∈ N (t), there exists at least one ℓ ∈ N (t′) such
that cℓk > 0. This condition guarantees that the cross-
team topology forms a bipartite graph without isolated
nodes.

The second condition is also adopted in two-network zero-
sum games [11], [13], ensuring agents in each team connect
directly with some agents in the adversary team. The first
condition ensures that A(1) and A(2) have Perron eigenvectors
p(1) and p(2), respectively, with entries summing to 1 and
satisfying A(1)p(1) = p(1) and A(2)p(2) = p(2) [18]. Define

p ≜

[
p(1)

p(2)

]
(10)

where the {pk}K1

k=1 and {pk}Kk=K1+1 correspond to the coef-
ficients used in (2) and (3), respectively.

Fig. 1. Within-team and cross-team topologies for the two competing
networks N (1),N (2).

III. ALGORITHM DEVELOPMENT

We describe the diffusion learning algorithm at a single
node level. The algorithm is developed in a similar spirit
to the Adapt-then-Combine (ATC) strategy for within-team
cooperation described in [18]. The difference, however, is
the additional step for cross-network information fusion, as
each agent requires information from the other team to make
decisions. Intuitively, each agent should make decisions based
on the latest actions of the opposing network, rather than
outdated ones. Therefore, we must first update the information
about the adversary team’s strategy for an agent; here we
consider an agent in Team 1 receiving information from Team
2 for simplicity:

y1
k,i−1 =

∑
ℓ∈N (2)

cℓky
2
ℓ,i−1 (11)

where k ∈ N (1) belongs to network 1. Therefore, y1
k,i−1

denotes the strategy of the adversary team transmitted to
agent k. Using the latest information y1

k,i−1 received from
the adversary team, we adopt an ATC strategy to update agent
k’s strategy in Team 1:

ϕk,i = x1
k,i−1 − µ∇̂xJk(x

1
k,i−1,y

1
k,i−1) (12)

x1
k,i =

∑
ℓ∈N (1)

a
(1)
ℓk ϕℓ,i (13)



where ∇̂xJk(·, ·) denotes a stochastic gradient approximation
at agent k. Team 2 proceeds in a similar manner.

Algorithm 1: Diffusion learning for competing net-
works (network-level)

1 Initialize: i=0, actions X 1
−1,Y

2
−1 ← 0, step size µ

2 while not done do
3 Cross-team learning

4 Y1
i−1 = C(21)⊤Y2

i−1

5 X 2
i−1 = C(12)⊤X 1

i−1

6 Within-team adaptation and combination

7 X 1
i = A(1)⊤(X 1

i−1 − µGx,i)

8 Y2
i = A(2)⊤(Y2

i−1 − µGy,i)
9 i←− i+ 1

10 end

For convenience, we introduce the following notation for
the network variables:

X 1
i ≜ col{x1

1,i, . . . ,x
1
K1,i} ∈ RK1M1×1 (14)

Y1
i ≜ col{y1

1,i, . . . ,y
1
K1,i} ∈ RK1M2×1 (15)

Similarly, Y2
i ,X

2
i are defined for Team 2. In the above

notation, X 1
i and Y2

i correspond to the actions of the same
team, while X 2

i ,Y
1
i correspond to the adversary information

received by the agents. At iteration i, Team 1 holds the
quantities X 1

i ,Y
1
i−1, Team 2 holds the quantities Y2

i ,X
2
i−1.

In addition, we define the network gradient terms:

Gx,i ≜ col{∇̂xJk(x
1
k,i−1,y

1
k,i−1)}K1

k=1 ∈ RK1M1×1 (16)

Gy,i ≜ col{∇̂yJk(x
2
k,i−1,y

2
k,i−1)}Kk=K1+1∈ RK2M2×1 (17)

The network combination matrices are defined as follows:

C(21) = C(21) ⊗ IM2
, C(12) = C(12) ⊗ IM1

A(1) = A(1) ⊗ IM1
, A(2) = A(2) ⊗ IM2

(18)

where ⊗ denotes the Kronecker product operator. With this
notation, we summarize the aforementioned learning process
in Algorithm 1.

To study the behavior of the network centroids, we introduce
the following notation:

xc,i ≜
∑

k∈N (1)

pkx
1
k,i, (19)

X c,i ≜ 1K1 ⊗ xc,i, X ′
c,i ≜ 1K2 ⊗ xc,i (20)

The quantities yc,i,Yc,i,Y ′
c,i are defined similarly. According

to Algorithm 1, we obtain the following recursion for X c,i:

X c,i = 1K1 ⊗ xc,i =
(
1K1p

(1)⊤ ⊗ IM1

)
X 1

i

=
(
1K1

p(1)
⊤ ⊗ IM1

)
A(1)⊤ (

X 1
i−1 − µGx,i

)
=

(
1K1p

(1)⊤ ⊗ IM1

) (
X 1

i−1 − µGx,i

)
= X c,i−1 − µ

(
1K1

p(1)
⊤ ⊗ IM1

)
Gx,i (21)

which translates into the following recursion for xc,i:

xc,i = xc,i−1 − µ
∑

k∈N (1)

pk∇̂xJk(x
1
k,i−1,y

1
k,i−1) (22)

In the next section, we show that the network centroids of the
two networks asymptotically converge to the Nash equilibrium
in the mean-square-error sense.

IV. CONVERGENCE ANALYSIS

To carry out the analysis, we use the following assumptions.

A. Assumptions

Assumption 3 (Lipschitz gradients). For each t ∈ {1, 2} and
k ∈ N (t), we assume the gradients associated with each local
risk function Jk(·, ·) are Lf −Lipschitz, i.e, for any x1, x2 ∈
RM1 , y1, y2 ∈ RM2 :

∥∇wJk(x1, y1)−∇wJk(x2, y2)∥
≤ Lf (∥x1 − x2∥+ ∥y1 − y2∥) ,

(23)

where w = x or y.

Assumption 4 (Bounded gradient disagreement). For each
t ∈ {1, 2} and k ∈ N (t), the gradient disagreement between
the local risk functions and the global risk function is bounded,
i.e., for any x1 ∈ RM1 , y1 ∈ RM2 :

∥∇wJk(x1, y1)−∇wJ
(t)(x1, y1)∥ ≤ G (24)

where w = x or y.

Assumption 5 (Gradient noise process). We define the
filtration generated by the random processes as F i =
{(xt

k,j ,y
t
k,j) | t = {1, 2}, k ∈ N (t), j = −1, . . . , i}. For each

t ∈ {1, 2} and k ∈ N (t), we assume the stochastic gradients
are unbiased with bounded variance conditioned on F i, i.e.,
for any x,y ∈ F i,

E{∇̂wJk(x,y) | F i} = ∇wJk(x,y) (25)

E{∥∇̂wJk(x,y)−∇wJk(x,y)∥2 | F i} ≤ σ2 (26)

where w = x or y.

B. Main Results

Lemma 2 (Within-team consensus). Under Assumptions 2-
5, the iterates of teams 1 and 2, namely X 1

i and Y2
i cluster

around their respective team centroids X c,i and Yc,i when the
step size µ is sufficiently small and after sufficient iterations
i ≥ io. Specifically,

E{∥X 1
i −X c,i∥2 + ∥Y2

i −Yc,i∥2} ≤ O
(
µ2

)
(27)

where

io =
log

(
O
(
µ2

))
log (α)

(28)

and α < 1 is a constant depending on A(1) and A(2).

Lemma 3 (Cross-team consensus). Under Assumptions 2-5,
the adversary strategies X 2

i known to team 2 and Y1
i known to

team 1 cluster around the centroids of teams 1 and 2, namely,



X ′
c,i and Y ′

c,i, respectively, when the step size µ is sufficiently
small and after sufficient iterations i ≥ io, i.e.,

E{∥X 2
i −X ′

c,i∥2 + ∥Y1
i −Y ′

c,i∥2} ≤ O
(
µ2

)
(29)

Proof. Using the recursions from Algorithm 1 and the prop-
erty of C(12) stated in Assumption 2, we obtain the relation-
ship

X 2
i −X ′

c,i = C(12)
⊤ (

X 1
i −X c,i

)
(30)

Then, we have

E
{∥∥X 2

i −X ′
c,i

∥∥2} ≤ ∥∥∥C(12)⊤∥∥∥2 E{∥∥X 1
i −X c,i

∥∥2} (31)

where∥∥∥C(12)⊤∥∥∥2 = ρ
(
C(12)C(12)⊤

)
≤

∥∥∥C(12)C(12)⊤
∥∥∥
1

≤ 1
⊤
K1

C(12)C(12)⊤
1K1 = K2

(32)

A similar result holds for E{∥Y1
i −Y ′

c,i∥2}. Using the result
from Lemma 2 we complete the proof.

For zc,i, we have the following lemma.

Lemma 4 (Learning dynamics). Under Assumptions 2-5, the
block centroid zc,i generated by Algorithm 1 follows the
following dynamics when the step size µ is sufficiently small
and after sufficient iterations i ≥ io:

zc,i = zc,i−1 − µF (zc−1,i) +Dc,i (33)

where E{∥Dc,i∥2} ≤ O(µ2).

Proof. The result follows directly from Lemmas 2 and 3 along
with Assumption 3.

Theorem 1 (Mean-square-error stability). Under Assumptions
1-5, the centroid zc,i converges to the Nash equilibrium z⋆

asymptotically in the mean-square-error sense for sufficiently
small step size µ:

lim sup
i→∞

E{∥zc,i − z⋆∥2} ≤ O(µ) (34)

Proof. The proof can be established using the argument from
Lemmas 2– 4 and the properties of Dc,i.

V. NUMERICAL RESULTS

We consider a regularized stochastic bilinear game similar
to [19] to illustrate the performance of the proposed algorithm.
In this example, two teams aim to optimize the following
objectives:

min
x

J (1)(x, y) =
∑

l∈N (1)

plJl(x, y)

min
y

J (2)(x, y) =
∑

r∈N (2)

prJr(x, y)
(35)

where local costs are defined as:

Jl(x, y) ≜ Eξl
[x⊤B (ξl) y + ∥x∥2 − ∥y∥2

+ x⊤gx(ξl) + g⊤y (ξl)y] (36a)

Jr(x, y) ≜ −Eξr
[x⊤B (ξr) y + ∥x∥2 − ∥y∥2

+ x⊤gx(ξr) + g⊤y (ξr)y] (36b)

Here, for l ∈ N (1), B (ξl) , gx(ξl), gy(ξl) are random quan-
tities depending on the random samples ξl, and B (ξl) is
generated according to the following model:

B (ξl) ≜ Bl +N (ξl) ∈ RM×M

[N (ξl)]ij ∼ N
(
mBl

, σ2
Bl

) (37)

where Bl is a constant matrix, gx(ξl) ∈ RM is a Gaussian
random vector with mean mxl

1M and covariance σ2
xl
IM ,

and gy(ξl) follows the same model. All random variables
are spatially and temporally independent from each other. We
consider a similar model for r ∈ N (2).

A. Experiment Setting and Simulation Results

We consider the following setup for agents l in Team 1,
with the same applied to Team 2: Mean values are set to zero,
i.e., mBl

= mxl
= myl

= 0, and variances are set to σ2
Bl

=
σ2
xl

= σ2
yl

= 1e − 4. The constant matrices are defined as
Bl = IM , with M = 20. Team 1 consists of K1 = 6 agents
while team 2 has K2 = 4 agents. Two strongly-connected
networks are generated for the teams using the averaging rule,
and a bipartite structure without isolated nodes is implemented
for cross-team connections. We run Algorithm 1 based on this
setting.
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Fig. 2. Performance of Algorithm 1 for solving regularized stochastic bilinear
game

Figure 2 illustrates the mean-square error between the
network centroids zc,i obtained by Algorithm 1 and the Nash
equilibrium z⋆. The results show that our method converges
to the neighborhood of the Nash equilibrium with the size
proportional to the magnitude of step size.

VI. CONCLUSION

In this work, we proposed a diffusion learning algorithm
for finding the Nash equilibrium point in the scenario of
an adaptive competing network problem. Convergence of the
algorithm is guaranteed under some standard assumptions. We
further used a regularized bilinear game simulation to illustrate
the theoretical findings. We aim to explore weaker assumptions
for the cross-network topology and the gradient operator using
the variational inequality approach in the future.
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