
2024 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 22–25, 2024, LONDON, UK

DECENTRALIZED FUSION OF EXPERTS OVER NETWORKS

Marco Carpentiero⋆ Vincenzo Matta⋆ Stefan Vlaski⋄ Ali H. Sayed†

⋆ University of Salerno, Italy
⋄ Imperial College London, UK
† EPFL, Lausanne, Switzerland

ABSTRACT

This article considers a network of agents interested in solving a
classification task. The datasets available to accomplish the task are
heterogeneous and dispersed across the agents. Each agent is inter-
ested in discriminating among the “inner” hypotheses reflected in its
individual dataset. Moreover, the datasets at the different agents can
be further labeled in terms of additional characteristics, giving rise
to an enlarged space of hypotheses. The agents have no local in-
formation to distinguish their own dataset from the datasets of other
agents. To overcome this issue, they want to share their individual
knowledge to build an overall model that is able to address the clas-
sification task comprising all possible hypotheses. Starting from the
optimal Bayesian fusion rule, we develop a strategy nicknamed de-
centralized fusion of experts (DeFoE), which is able to build a global
classifier starting from the classifiers locally available to the agents,
at a reduced complexity, without re-training them from scratch. The
effectiveness of the proposed strategy is shown over a benchmark
dataset containing real images.

Index Terms— Distributed optimization, decentralized learning
and inference, hypothesis testing, supervised classification.

1. INTRODUCTION

The steady progress in the theory of machine learning (ML) and ar-
tificial intelligence (AI) has led to the development of several use-
ful strategies that achieve extraordinary results in numerous appli-
cations. Many tools are made freely available by the hyperscalers
(i.e., big cloud providers) to academic researchers, companies, or
practitioners. These tools allow to train sophisticated learning archi-
tectures and solve challenging tasks. For example, one can construct
an “expert” that is able to label several images to classify them in
terms of certain attributes.

However, in face of the complexity of challenging datasets, there
still exists a sensible gap between the AI systems developed by the
hyperscalers and the systems that an end user (e.g., an academic re-
searcher or a company of medium size) is able to develop. This
gap mainly arises from two limitations: the dataset and the compu-
tation/memory power. In most cases, the magnificent performance
that we observe in the most popular AI applications results from hav-
ing trained extremely sophisticated deep learning architectures over
extremely complex datasets. In contrast, the end user is not able to
construct learning models with performance comparable with that of

The work of V. Matta was partially supported by the European Union un-
der the Italian National Recovery and Resilience Plan (NRRP) of NextGener-
ationEU, partnership on “Telecommunications of the Future” (PE00000001
- program “RESTART”).
979-8-3503-7225-0/24/$31.00 ©2024 IEEE

the best available systems. One typical solution in this case for the
end user is to borrow some pre-trained model made available by a
hyperscaler, and possibly refining this model (e.g., by a fine tuning)
over its own dataset.

1.1. Main Question and Motivation

In this article we focus on the following problem. A group of agents
are individually able to solve a certain classification task where
they want to choose a particular hypothesis θ from a discrete finite
set Θ = {θ1, θ2, . . . , θH}. Each agent has learned, from its own
dataset, a certain decision rule to classify the hypotheses. For exam-
ple, the agents might possess datasets of images representing cars or
trucks, and they have learned to distinguish the type of vehicle.

The datasets of the agents might be different, in the sense that
additional qualifications (i.e., labels) can be added to the original
classes. Continuing with the car/truck example, assume that two
agents correspond to two companies that produce cars or trucks.
Then, one can append to the original hypothesis set

Θ = {car, truck} (1)

a label to identify the particular company, namely, we can define the
hypothesis sets

Θ1 = {car brand 1, truck brand 1},
Θ2 = {car brand 2, truck brand 2}.

(2)

Assume that both companies have developed or borrowed an AI sys-
tem that, upon observing an image of a car or truck, is able to cor-
rectly label it with high accuracy. Now the companies want to ex-
ploit the heterogeneity existing between their datasets to learn more
attributes of the images; they want to strengthen their individual clas-
sifiers to distinguish also the brand the particular car or truck belongs
to, which amounts to classifying a hypothesis belonging to the net-
work set

Θnet = Θ1 ∪Θ2

= {car brand 1, truck brand 1, car brand 2, truck brand 2}. (3)

However, to build a decision model over Θnet, the agents face
two fundamental limitations. First, they cannot be re-trained from
scratch. In the case where they have borrowed some expert from
a hyperscaler, this limitation is motivated by the fact that the ex-
pert structure is too complex to be learned from scratch given the
dataset/computation/memory limitations of the agents. In the case
where the agent built the expert on its own, this construction is
assumed to be too costly to be implemented again.



The second limitation is related to the fact that the agents are
spatially dispersed, and they have to cooperate in a distributed man-
ner. For this reason, the agents want to minimize the training com-
plexity, in terms of communication rounds, learning architecture,
and so on.

1.2. Related Work

The problem of fusing the abilities of multiple classifiers is ad-
dressed in the context of ensemble learning. In this problem, the
focus is on combining different classifiers operating on the same hy-
pothesis set to attain improved performance. Two known strategies
to achieve this goal are bagging (bootstrap aggregating) [1, 2] and
boosting [1,3]. In bagging, some learning machines are trained over
a collection of datasets generated through a bootstrap procedure,
and then the resulting classifiers are aggregated by means of some
voting procedure. In boosting, classifiers are trained sequentially
in a row; some scores are assigned to the performance of a classi-
fier to highlight its strength and weakness. Then, the subsequent
classifier in the pipeline is trained by accounting for the strength
and weakness of the previous classifiers. Finally, the decisions of
the classifiers are weighted according to the obtained scores. The
problem of enhancing the classification performance through coop-
eration has been more recently addressed in a decentralized setting,
in the context of social learning [4, 5].

However, the aforementioned ensemble learning strategies as-
sume that the hypothesis set is one and the same for the different
classifiers and the goal is to boost up the performance of the indi-
vidual classifiers. In the problem addressed in the present work, we
have instead different hypothesis sets for different agents, and the
goal is to build a decision model over the hypothesis set obtained by
aggregating the hypothesis sets of the individual agents. This is a
different problem that bears some similarities to the frameworks of
incremental learning [6, 7] and accretionary learning [8]. In these
frameworks there is a single learning entity that observes additional
hypotheses arising over time. In comparison, in our case the different
hypotheses stem over space (i.e., across the network agents), rather
than over time. The decentralized nature of our problem determines
the following distinguishing features.

One fundamental peculiarity is that the information necessary
to pass from Θ to Θnet can only be obtained by fusing the comple-
mentary views of the agents. In other words, each individual agent
has some private knowledge that, when shared with the other agents,
would permit to differentiate the hypotheses belonging to different
clusters. The second fundamental property is that the datasets cor-
responding to different hypotheses are spatially dispersed and the
agents must cooperate locally (i.e., with their neighbors according to
a certain network topology) to build the global decision model. An-
other critical peculiarity is that to combine their own complementary
views, the agents are not allowed to share their heterogeneous data.
They are only allowed to share model parameters. The mix of these
conditions gives rise to the problem that we call decentralized fusion
of experts (DeFoE).

To address the problem, we rely on the theory of distributed
learning and optimization [1]. By simply exploiting Bayes’ rule, we
are able to formulate the fusion of experts as a learning problem that
involves the construction of an additional decision model aimed at
classifying only the additional attributes that distinguish the individ-
ual agent datasets. This problem is cast in the form of a distributed
optimization problem with a global cost function that is able to ac-
count for the complementary views brought by the individual agents.

Notation. We denote random variables with bold font. For a

nonnegative function f(µ) with positive argument µ, the notation
f(µ) = O(µ) means that f(µ) ≤ c µ for all µ ≤ µ0, for some
positive values c and µ0. The symbols E and P denote expecta-
tion and probability, respectively. The symbol [K] denotes the set
{1, 2, . . . ,K}. For two matrices X and Y , the notation X ≥ Y
means that X − Y is positive semidefinite. The function I[C] is the
indicator function, which is equal to 1 if condition C is true, and is 0
otherwise.

2. PROBLEM FORMULATION

Consider a network of K agents. Each agent k ∈ [K] owns a dataset
Dk comprised of Nk independent and identically distributed (iid)
training examples, namely,

Dk = {xk,n,θk,n}Nk
n=1. (4)

Each training example is constituted by a (feature, label) pair, with

xk,n ∈ X , θk,n ∈ Θ(k). (5)

The feature space X is common to all agents. For example, the
agents observe the same type of images. Note that the hypothesis set
Θ(k) is allowed to be different across the agents. We do not impose
the constraint that all agents have different hypothesis sets. In par-
ticular, we assume that there exist C disjoint clusters of hypotheses,
denoted by Θc, for c ∈ [C]. Then, the hypothesis set of agent k is
one of these clusters, namely, we have

Θ(k) = Θck , for ck ∈ [C]. (6)

The hypothesis set at the network level is

Θnet ≜
C⋃

c=1

Θc =

K⋃
k=1

Θ(k). (7)

Note that the sets Θ(k) are not necessarily disjoint since two agents
are permitted to share the same Θc.

The agents are interested in the following problem. Assume that
they observe a new featurex, that is generated from some hypothesis
θ ∈ Θnet. There is no additional label specifying the cluster, and the
agents are interested in classifying the feature into one of the labels
θ ∈ Θnet. To this end, they must focus on the joint distribution of a
(feature, label) pair (x,θ) across the agents, i.e., for θ ∈ Θnet. The
labels θ ∈ Θnet are distributed according to some prior pmf:

π(θ) ≜ P[θ = θ], θ ∈ Θnet. (8)

The generative mechanism that rules how x is drawn, given the un-
derlying label θ, is described by a likelihood ℓ(x|θ). For simplicity
of presentation, we perform the analysis by assuming that x is a
discrete random variable. Thus, as a function of x, the likelihood
will be a probability mass function (pmf). Note that the final re-
sult we are interested in (which is the evaluation of the posterior
P[θ = θ|x = x]) would still hold for the continuous case. Using
Bayes’ rule, we can build the joint model

pnet(x, θ) ≜ P[x = x,θ = θ] = π(θ)ℓ(x|θ). (9)

Observe that, since agent k observes only data corresponding to la-
bels θ ∈ Θck , the distributions within the individual clusters Θc are
related to the distribution pnet(x, θ) as follows. Let

π(θ|Θc) =
π(θ)∑

θ′∈Θc

π(θ′)
I[θ ∈ Θc] (10)



be the conditional prior pmf given that θ ∈ Θc. From the total
probability law, the prior distribution in (8) can be written as

π(θ) =

C∑
c=1

π(θ|Θc)P[θ ∈ Θc]. (11)

The probability that θ belongs to Θc can be evaluated by considering
the relative frequency of observing each cluster across the agents,
yielding:

P[θ ∈ Θc] =
1

K

K∑
k=1

I[ck = c] =
K(c)

K
, (12)

where K(c) is the number of agents that are observing a dataset
corresponding to cluster Θc. Substituting (12) into (11), we obtain

π(θ) =

C∑
c=1

π(θ|Θc)
K(c)

K
. (13)

The marginal distribution of the features xk,n is obtained as

P[xk,n = x] =
∑

θ∈Θck

π(θ|Θck )ℓ(x|θ). (14)

Moreover, the posterior corresponding to the joint model pnet(x, θ)
from (9) can be obtained by applying the law of total probability to
get

pnet(θ|x) ≜
C∑

c=1

P[θ = θ|x = x,θ ∈ Θc]P[θ ∈ Θc|x = x]. (15)

Let us denote the first probability in the summation by

pc(θ|x) ≜ P[θ = θ|x = x,θ ∈ Θc] (16)

and the second by

Q(Θc|x) ≜ P[θ ∈ Θc|x = x]. (17)

With these two definitions, we rewrite (15) as

pnet(θ|x) =
C∑

c=1

pc(θ|x)Q(Θc|x). (18)

Observe further that

∑
θ∈Θc

pc(θ|x) = 1,

C∑
c=1

Q(Θc|x) = 1. (19)

That is, pc(θ|x) is a pmf defined over set Θc, while Q(Θc|x) is a
pmf over the set [C]. From the first relation in (19), we conclude
that pc(θ|x) is equal to 0 for all θ /∈ Θc. This implies that, in the
summation appearing in (18), only the term corresponding to the
cluster c to which θ belongs is actually present.

Bayes’ classifier, which minimizes the probability of error,
works as follows [1]. First, it computes the posterior probability
pnet(θ|x) and then, given an observation x, it chooses the estimated
class θ̂(x) ∈ Θnet by maximizing the posterior probability over the
possible hypotheses:

θ̂(x) = argmax
θ∈Θnet

pnet(θ|x). (20)

This rule is known as the MAP (maximum a posteriori) rule.
Let us examine how the MAP rule (20) works in our case. Us-

ing (18), we see that, to choose between two hypotheses θ, θ′, both
belonging to Θc, we have to compare (recall that, since θ, θ′ ∈ Θc,
in (18) the terms corresponding to clusters different from c are zero)

pc(θ|x)Q(Θc|x)
θ

≷
θ′

pc(θ
′|x)Q(Θc|x) ⇐⇒ pc(θ|x)

θ

≷
θ′

pc(θ
′|x).

(21)
This means that, to choose between two hypotheses within the same
cluster c, the conditional posterior pc(θ|x) is sufficient. This is
no longer true when we have to compare hypotheses from different
clusters, where the role of Q(Θc|x) becomes important. Note that
Q(Θc|x) represents a pmf over the clusters, i.e., it would correspond
to the relevant posterior if we want to solve a classification problem
to decide to which cluster θ belongs to, without paying attention to
the inner structure of the cluster.

2.1. Agents’ Decision Models

As explained in the previous section, each agent k is assigned a
dataset relative to a particular cluster of hypotheses Θck . Accord-
ingly, the posterior corresponding to agent k is the conditional pos-
terior given that θ belongs to Θck . In other words, the posterior
distribution “seen” by agent k, for its labels θk,n given its features
xk,n, is the quantity pck (θ|x) from (16). However, each agent k is
not able to compute exactly this posterior, since this would imply an
exact knowledge of the underlying mechanism ruling the data. What
the agent can do is to learn a decision model from its datasetDk. In
some applications (e.g., the cars/trucks example mentioned in the in-
troduction), we can assume that the same discriminative model can
be used for all clusters of hypotheses. That is, agent k could use
its local decision model as a proxy for pc(θ|x) for all c ∈ [C]. In
other applications, the decision models might vary across the clus-
ters. In the latter case, the agents can easily share the parameters of
the learned models, such that each agent k possesses discriminative
models for all clusters c ∈ [C]. We denote the posterior available to
agent k and relative to cluster c as follows:

p̂(k)c (θ|x), k ∈ [K], c ∈ [C]. (22)

Each model p̂(k)c (θ|x) is intended to be an approximation of the true
conditional posterior pc(θ|x). However, we have seen in the previ-
ous section that the knowledge of the conditional posteriors pertain-
ing to the individual clusters is not sufficient to solve the classifi-
cation problem over Θnet. Moreover, in our problem the individual
agents have no information regarding the differences across the clus-
ters, since each agent has only data pertaining to a single cluster. For
this reason, the agents need to cooperate to learn Q(Θc|x), as we ex-
plain next.

3. DEFOE STRATEGY

To learn the pmf Q(Θc|x), we focus on a discriminative paradigm [1],
where we aim at building an estimated posterior Q̂(Θc|x;w) that
can be cast in the following softmax form:

Q̂(Θc|x;w) ≜
eδ(x,Θc;w)

C∑
c=1

eδ(x,Θc;w)

, c ∈ [C], (23)

where δ(x,Θc;w) represents a decision function that is chosen from
some admissible family of functions parametrized by a vector w ∈



RM . For example, the family of functions can result from a logistic
regression model or a multilayer perceptron [1]. We now illustrate
how each agent k can learn the posterior by means of a decentralized
optimization strategy.

First, we must select a cost function that quantifies the dis-
crepancy between the true posterior and the estimated one. A
classical choice in classification problems is the regularized condi-
tional cross-entropy. Consider first the conditional cross-entropy
between the true posterior Q(Θc|x) and a candidate posterior
Q̂(Θc|x;w) [14]:

H(w) ≜
∑
x∈X

P[x = x]

C∑
c=1

Q(Θc|x) log
1

Q̂(Θc|x;w)

=
∑
x∈X

C∑
c=1

P[x = x,θ ∈ Θc] log
1

Q̂(Θc|x;w)
. (24)

Likewise, consider the conditional cross-entropy at agent k, which,
since agent k observes only labels from set Θck , is given by

Hk(w) ≜
∑
x∈X

P[xk,n = x] log
1

Q̂(Θck |x;w)
, (25)

where P[xk,n = x] is defined by (14). Now, each agent k uses as
local cost function the regularized conditional cross-entropy

Jk(w) ≜ Hk(w) + ρk∥w∥2, (26)

where ρk > 0 is a regularization parameter. It is also useful to
introduce the corresponding global cost function

J(w) ≜
1

K

K∑
k=1

Jk(w). (27)

Unfortunately, in supervised classification problems, the cost func-
tions Jk(w) cannot be computed since the probability P[xk,n = x]
is unknown. For this reason, for each n, agent k replaces the exact
cost function with a stochastic instantaneous approximation

Ĵk(w;xk,n) ≜ log
1

Q̂(Θc|xk,n;w)
+ ρk∥w∥2. (28)

We make the following assumption on the family of decision func-
tions δ(x,Θc;w) employed by the agents.

Assumption 1 (Regularity of cost functions). For all w ∈ RM , the
decision functions δ(x,Θc;w) are such that: i) each cost function
Jk(w) is twice-differentiable and its Hessian matrix satisfies the Lip-
schitz condition ∇2Jk(w) ≤ η IM , for some constant η > 0; and
ii) the aggregate cost function J(w) in (27) is ν-strongly convex,
namely, a positive constant ν exists such that ∇2J(w) ≥ ν IM . □

3.1. Adapt-then-Combine Diffusion Strategy

In order to learn the posterior Q(Θc|x) in a distributed manner, the
agents resort to the following diffusion strategy, which is known as
Adapt-Then-Combine (ATC) [1, 9, 10]:

ψk,i = wk,i−1 − µ∇Ĵk(wk,i−1;xk,i) [Adapt]

wk,i =

K∑
j=1

ajkψj,i [Combine]
(29)

According to this strategy, each agent k ∈ [K], computes a sequence
of iterates wk,i ∈ RM over time i ∈ N. In the adaptation step,
agent k at time i computes the stochastic instantaneous approxi-
mation ∇Ĵk(wk,i−1;xk,i) of the true gradient, based on its fresh
observation xk,i. The resulting stochastic gradient is scaled by a
small step-size µ > 0 to compute an updated parameter vector ψk,i

starting from the previous parameter vector wk,i−1 and following
the approximate gradient direction. In the combination step, agent
k combines the updated states from its neighboring agents. More
specifically, the agents interact according to a given weighted graph.
The graph edges are characterized by weights collected into a com-
bination matrix A, whose (j, k) entry is denoted by ajk. We say that
a directed edge exists from j to k if, and only, if, ajk > 0. The
neighborhood of agent k is accordingly defined as Nk ≜ {j ∈ [K] :
ajk > 0}. As a result, agent k effectively incorporates into wk,i

only the updated states ψj,i received from its neighbors j ∈ Nk.
We make the following standard assumption on the combination ma-
trix [9].

Assumption 2 (Combination matrix). The combination matrix A
is doubly stochastic, i.e., its entries are nonnegative and all rows and
columns add up to 1. Moreover, matrix A is primitive, which means
that there exist paths of common length between any pair of nodes
(j, k) in both directions (i.e., from j to k and vice versa) [13]. □

The next theorem establishes that the proposed decentralized
strategy allows each agent to approach a certain optimal parame-
ter w⋆ that turns out to minimize the overall regularized conditional
cross-entropy across all agents.

Theorem 1 (Training performance). Let Assumptions 1 and 2 be
satisfied and consider the distributed strategy in (29) with stochas-
tic instantaneous approximation (28). Then, as the number of iter-
ations i grows, and for sufficiently small step-sizes µ, each agent
k converges within a small neighborhood of the vector parameter
w⋆ that minimizes the overall regularized conditional cross-entropy
computed with respect to the true model, namely,

H(w) +
∥w∥2

K

K∑
k=1

ρk, (30)

where H(w) is defined by (24). More specifically, we have that

lim sup
i→∞

E∥wk,i − w⋆∥2 = O(µ). (31)

Proof. For space constraints, we only give a sketch of the proof
here. First, one has to appeal to the analytical tools presented, e.g.,
in [1, 9, 11, 12], to show that, under Assumptions 1 and 2, Eq. (31)
holds true when w⋆ is the minimizer of an aggregate cost func-
tion

∑K
k=1 vkJk(w), where vk is the kth entry of the Perron vec-

tor associated with the combination matrix A. Since by Assump-
tion 2 A is doubly stochastic, it is known that vk = 1/K for all
k ∈ [K]. As a result, we see that w⋆ is the minimizer (which can
be shown to exist and be unique under Assumption 1) of J(w) from
(27). In view of (26), to complete the proof, it remains to show that
H(w) = (1/K)

∑
Hk(w). Observe from (9) that

P[x = x,θ ∈ Θc] =
∑
θ∈Θc

π(θ)ℓ(x|θ)

Eq. (13)
=

∑
θ∈Θc

ℓ(x|θ)
C∑

c′=1

π(θ|Θc′)
K(c′)

K
I[θ ∈ Θc′ ]

=
∑
θ∈Θc

ℓ(x|θ)π(θ|Θc)
K(c)

K
. (32)



On the other hand, using (25) we get

1

K

K∑
k=1

Hk(w) =
1

K

K∑
k=1

∑
x∈X

P[xk,n = x] log
1

Q̂(Θck |x;w)

Eq. (14)
=

1

K

K∑
k=1

∑
x∈X

∑
θ∈Θck

π(θ|Θck )ℓ(x|θ) log
1

Q̂(Θck |x;w)

(a)
=

1

K

∑
x∈X

C∑
c=1

K(c) log
1

Q̂(Θc|x;w)

∑
θ∈Θc

π(θ|Θc)ℓ(x|θ)

Eq. (32)
=

∑
x∈X

C∑
c=1

P[x = x,θ ∈ Θc] log
1

Q̂(Θc|x;w)
= H(w),

(33)

where in (a) the summation over k is transformed into a summation
over c by counting how many agents k correspond to a cluster c. ■

We can now summarize our decentralized fusion of expert (De-
FoE) strategy. Assume that training has been performed until time
imax, and denote by w⋆

k the realization of the parameter vector wk,i

estimated by agent k at time i = imax. At the end of the training
phase, each agent k has learned the posterior pmf Q̂k(Θc|x;w⋆

k).
Then agent k can use the learned pmf, along with the decision mod-
els for the individual clusters from (22), to build its own approxima-
tion of the global posterior (18), which results in

p̂(k)(θ|x) =
C∑

c=1

p̂(k)c (θ|x)Q̂k(Θc|x;w⋆
k), θ ∈ Θnet. (34)

We will illustrate in the next section how this strategy performs over
a benchmark dataset of real images.

4. ILLUSTRATIVE EXAMPLES

We present the results of some experiments conducted over the
CIFAR-10 dataset [15]. We extracted from this dataset the images
corresponding to cars and trucks. Specifically, we have 5000 images
for each class. Each image has 32× 32 pixels, with intensity values
between 0 and 1, for the three RGB channels. Then we split the re-
sulting dataset uniformly into two datasets obtained by changing the
saturation level. Specifically, in one dataset the saturation is set to
1.75, in the other to 0.25. In terms of our notation, this corresponds
to two hypothesis sets

Θ1 = {car sat. 1.75 , truck sat. 1.75},
Θ2 = {car sat. 0.25 , truck sat. 0.25},

(35)

with Θnet = Θ1 ∪ Θ2. Finally, the two datasets are distributed
across K = 10 agents. Specifically, the dataset pertaining to Θ1 is
partitioned into 5 disjoint datasets assigned to agents 1, 2, 3, 4, and
5. Likewise, the dataset pertaining to Θ2 is distributed to agents
6, 7, 8, 9, and 10. As a result, each agent owns 1000 labeled images.

Each agent has learned a decision model to distinguish cars from
trucks within its own dataset. These models have been constructed as
follows. All agents consider a sophisticated deep learning model for
image classification, namely, the Google vision transformer avail-
able from [16], further trained on the CIFAR-10 dataset 1. To allow

1The final model obtained by performing additional training on
the CIFAR-10 dataset are available at https://huggingface.co/
edadaltocg/vit_base_patch16_224_in21k_ft_cifar10

Fig. 1. Network topology used in the examples. Each node has a
self-loop, not shown in the picture.

for some variability across the clusters, we perform a fine tuning
of the aforementioned deep learning model over the datasets corre-
sponding to Θ1 and Θ2. The classification performance achieved by
each agent to distinguish cars from trucks, relative to the individual
classification problems pertaining to Θ1 and Θ2, is shown in the first
two rows (in yellow) of Table 1.

The goal of the agents is now to distinguish also the image satu-
ration. Note that this classification task is significantly simpler than
the task of distinguishing cars from trucks. For this reason, it would
be wasteful to re-train the classifiers over the entire hypothesis set
Θnet. This is why we now exploit the DeFoE strategy to learn the
posterior Q(Θc|x) only. To this end, we implement a regularized
logistic model [1]. The decision functions δ(x,Θc;w) are chosen as
follows. Given an image x, represented as a collection of 32 × 32
matrices, X1, X2 and X3 (corresponding to channels R, G, and B,
respectively), we compute first the empirical mean-square deviations
between channels i and j, for i, j = 1, 2, 3:

yij(x) =
1

32× 32

32∑
p1=1

32∑
p2=1

(
Xi(p1, p2)−Xj(p1, p2)

)2

, (36)

where Xi(p1, p2) denotes entry (p1, p2) of matrix Xi. Then, we
aggregate these values and compute a scalar feature

γ ×
(
y12(x) + y13(x) + y23(x)

)
, (37)

where γ > 0 is a hyperparameter that can be tuned to speed-up
the convergence of the logistic regression model. Finally, we add a
dummy feature equal to 1 and obtain the 2× 1 vector

z(x) = [z1(x), z2(x)]
⊤ =

[
γ×

(
y12(x)+y13(x)+y23(x)

)
, 1
]⊤

.

(38)
The dummy feature is useful to incorporate a threshold into the lo-
gistic regression classifier. The decision function for the logistic re-
gression model is finally constructed as

δ(x,Θ1;w) = w⊤z(x), δ(x,Θ2;w) = 0, (39)

where w is a 2× 1 vector.

car sat. 1.75 truck, sat. 1.75 car, sat. 0.25 truck, sat. 0.25

Fig. 2. Sample images used in the experiments.

The network graph is shown in Fig. 1. The graph is equipped
with a combination matrix obtained with the Metropolis rule [9].



0 50 100 150 200 250 300 350 400 450 500

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 3. Convergence of the iterates for the DeFoE strategy. In this
plot, the hyperparameter γ is equal to 50.

Strategy Accuracy
Classify θ ∈ Θ1 99.1%
Classify θ ∈ Θ2 97.5%
Classify Θ1 vs. Θ2 (γ=10) 87.17%
Classify Θ1 vs. Θ2 (γ=50) 93.02%
Classify Θ1 vs. Θ2 (γ=100) 93.76%
Classify θ ∈ Θnet, uniform merging 49.6%
Classify θ ∈ Θnet (γ=10), DeFoE 85.69%
Classify θ ∈ Θnet (γ=50), DeFoE 91.49%
Classify θ ∈ Θnet (γ=100), DeFoE 92.29%

Table 1. Summary of performance. For the DeFoE strategy, the
performance is averaged over all agents. Different colors highlight
the following scenarios: yellow=classification within the individual
(separate) clusters; cyan=classification between clusters; red=overall
classification with uniform merging of the classifiers; purple=DeFoE
strategy.

The step-size is set to µ = 0.1, and the regularization parameters
are set to ρk = 0.1 for k ∈ [K]. Figure 3 shows the evolution over
subsequent iterations of the parameter estimated by all agents. We
see that the estimates obtained by the agents in a distributed manner
converge in a close neighborhood of the estimate obtained by the
centralized system (dashed line). The classification performance to
distinguish Θ1 from Θ2 is reported in the rows of Table 1 displayed
in cyan, which correspond to different values for the parameter γ.

The classification performance over the entire set Θnet achieved
by the DeFoE strategy is reported in the rows of Table 1 displayed in
purple. This performance is compared against the naı̈ve strategy that
simply maximizes the pc(θ|x) without accounting for the weight-
ing functions Q(Θc|x) (red row in the table). The latter strategy is
almost equivalent to a classifier that, while guessing the type of ve-
hicle, chooses randomly between the two clusters, as its accuracy is
on the order of 50%. In comparison, with the DeFoE strategy, the
average accuracy across the agents goes from 85.69% to 92.29%,
depending on the value of γ, i.e., depending on the performance
achieved by the decentralized strategy in estimating Q(Θc|x).

5. CONCLUSION AND FUTURE WORK

Starting from the optimal Bayesian classification rule, we have
shown how to devise a decentralized strategy (the DeFoE strategy)
that completes the knowledge of a set of distributed experts, infusing
them with the incremental knowledge necessary to solve the overall
classification task that aggregates their own individual hypotheses.
There are several useful extensions and aspects that might be worth
of investigation. For example, in this article we tested the method on

a problem where the experts were initially trained to solve the same
task, e.g., distinguishing cars from trucks. Then, the hypothesis sets
of distinct agents were further labeled, giving rise to new classes.
However, the DeFoE strategy can be applied to more general set-
tings, where the initial experts solve distinct classification problems.
Another aspect concerns the generalization to overlapping clusters.

6. REFERENCES

[1] A. H. Sayed, Inference and Learning from Data, 3 vols., Cam-
bridge University Press, 2022.

[2] L Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2,
pp. 123–140, 1996.

[3] Y. Freund and R. E. Schapire, “A decision-theoretic general-
ization of on-line learning and an application to boosting,” J.
Comput. Syst. Sci., vol. 55, pp.119–139, Aug. 1995.

[4] V. Bordignon, V. Matta, and A. H. Sayed, “Adaptive social
learning,” IEEE Trans. Inf. Theory, vol. 67, no. 9, pp. 6053–
6081, 2021.

[5] V. Bordignon, S. Vlaski, V. Matta and A. H. Sayed, “Learn-
ing from heterogeneous data based on social interactions over
graphs,” IEEE Trans. on Inf. Theory, vol. 69, no. 5, pp. 3347–
3371, 2023.

[6] L. Bruzzone and D. F. Prieto, “An incremental-learning neural
network for the classification of remote-sensing images,” Pat-
tern Recognit. Lett., vol. 20, nos. 11–13, pp. 1241–1248, 1999.

[7] C. P. Diehl and G. Cauwenberghs, “SVM incremental learning,
adaptation and optimization,” in Proc. IEEE Int. Joint Conf.
Neural Netw., 2003, pp. 2685–2690.

[8] X. Wei, B. -H. Juang, O. Wang, S. Zhou and G. Y. Li, “Ac-
cretionary learning with deep neural networks with applica-
tions,” IEEE Transactions on Cognitive Communications and
Networking, vol. 10, no. 2, pp. 660-673, April 2024.

[9] A. H. Sayed, “Adaptation, Learning, and Optimization over
Networks,” Found. Trends Mach. Learn., vol. 7, no. 4-5, pp.
311–801, 2014.

[10] A. H. Sayed, “Adaptive networks,” Proceedings of the IEEE,
vol. 102, no. 4, pp. 460–497, Apr. 2014.

[11] J. Chen and A. H. Sayed, “On the learning behavior of adap-
tive networks — part I: Transient analysis,” IEEE Trans. Inf.
Theory, vol. 61, no. 6, pp. 3487–3517, Jun. 2015.

[12] J. Chen and A. H. Sayed, “On the learning behavior of adaptive
networks — part II: Performance analysis,” IEEE Trans. Inf.
Theory, vol. 61, no. 6, pp. 3518–3548, Jun. 2015.

[13] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge
University Press, 2012.

[14] T. M. Cover and J. A. Thomas, Elements of Information The-
ory. Wiley, 1991.

[15] A. Krizhevsky, V. Nair and G. Hinton, “Learning Multiple Lay-
ers of Features from Tiny Images,” 2009 [Online]. Available:
https://www.cs.toronto.edu/ kriz/cifar.html.

[16] A. Dosovitskiy et al., “An Image is Worth 16x16 Words: Trans-
formers for Image Recognition at Scale,” available online as
arXiv:2010.11929 [cs.CV].


