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Abstract—Adaptive Social Learning (ASL) enables consistent
truth learning in nonstationary environments. In this framework,
agents linked by a graph, exchange their local beliefs with
neighbors to track some underlying state of interest. This
state can drift over time. Previous works have examined the
adaptation and learning properties of ASL without relating them
to the speed of the drifts. This study assesses the performance
of ASL by modeling the true state as a Markov chain. We
determine an asymptotic characterization of the ASL tracking
performance, revealing the fundamental scaling laws that rule
the rare transition regime. We demonstrate that ASL achieves
a vanishing probability of error when the average drift time of
the Markov chain is smaller than the adaptation time of the
ASL algorithm. Simulations illustrate our theoretical findings,
providing insights into the ASL performance in dynamic settings.

Index Terms—Adaptive social learning, large deviations,
Markov chain, hidden Markov model, opinion formation.

I. INTRODUCTION AND BACKGROUND

Social learning allows a set of agents over a network to form
opinions by observing the local environment and exchanging
information with their neighbors [1], [2]. The growing litera-
ture on the topic presents a rich family of algorithms relying
on Bayesian and graph theories to address problems such as
hypothesis testing, classification, and opinion formation over
social networks [1]–[8].

Social learning strategies are particularly useful in solving
decentralized inference problems. These strategies enable a set
of K cooperating agents, each collecting streaming observa-
tions about a common phenomenon, to learn the hypothesis
that best describes the observations. This hypothesis, denoted
by θ⋆, is referred to as the true state, and is chosen from a
set of plausible hypotheses Θ = {θ1, . . . , θH}. In traditional
social learning, each agent k starts from an initial belief
vector µk,0, representing a probability vector over the set of
plausible hypotheses Θ. At every time instant i ≥ 1, each
agent k receives a random observation xk,i ∈ Xk (we use
bold font for random quantities), distributed according to the
likelihood Lk(·|θ⋆). By leveraging its set of likelihood models
{Lk(·|θ)}θ∈Θ, agent k performs a local Bayesian update step
to incorporate the received observation into its (past) belief
vector µk,i−1 and to construct an intermediate belief vector
ψk,i (self-learning step). Subsequently, each agent k combines
the intermediate beliefs of its neighbors (by means of a

weighted geometric or arithmetic averaging rule) to compute
the private belief vector µk,i (combination step). Under a
stationary setting where the true state does not change over
time, repeated application of the aforementioned two steps
leads the agents to truth learning [1]–[3], [5], [7].

However, applications with nonstationary environments are
common, where the true state undergoes continuous and
unpredictable drifts over time. This setting requires carefully
modifying the social learning algorithm to endow it with
adaptation abilities. To this end, the work in [9] proposed
the adaptive social learning (ASL) strategy and characterized
its performance both in the steady state and transient regimes.
The ASL algorithm takes the form of a two-step recursion that
iterates over time as follows:

ψk,i(θ) ∝ Lk(xk,i|θ)µ1−δ
k,i−1(θ) (self-learning) (1)

µk,i(θ) ∝
K∏
ℓ=1

[
ψℓ,i(θ)

]aℓk (combination) (2)

where the proportionality symbol ∝ indicates that the entries
of µk,i and ψk,i are normalized to add up to 1. The quantity
aℓk is a nonnegative weight assigned by agent k to the
information received from neighbor ℓ satisfying the following
conditions:

0 ≤ aℓk ≤ 1,

K∑
ℓ=1

aℓk = 1, aℓk = 0 for ℓ /∈ Nk, (3)

where Nk denotes the neighborhood of agent k (which in-
cludes agent k itself). The positive scalar δ ∈ (0, 1) is
an adaptation parameter used to tune the network’s ability
to adapt in view of changes. This parameter controls the
importance of old information (i.e., of the prior belief µk,i−1)
in the update rule (1). Specifically, the smaller the weight
assigned to the prior is, the better the algorithm will adapt
to drifts.

It is shown in [9] that the adaptation (or transient) time
is inversely proportional to δ, while the steady-state error
probability vanishes as δ approaches zero. This is one instance
of the learning/adaptation trade-off: a larger δ ensures faster
adaptation to changes at the expense of a higher steady-state
error probability. These findings are established without ac-
counting for the nature of the underlying process that governs
the drifts. In fact, the analysis in [9] is conducted under the



assumption that the true state remains constant for sufficiently
long intervals, allowing the agents to learn it before it changes.

This work evaluates the performance of ASL by modeling
the true state as a time-varying stochastic process, thereby
accounting for its inherent nonstationary nature. Specifically,
the true state is modeled as a random process θ⋆i that we
refer to as the state process. The bold font highlights the
random nature of the true state θ⋆i , while its dependence on i
emphasizes its nonstationary nature. Formally, we assume that
the state process θ⋆i is a discrete-time homogeneous Markov
chain taking values in the state space Θ with the following
transition probabilities:

P
[
θ⋆i = θ′|θ⋆i−1 = θ

]
=

{
1− εqθθ if θ = θ′

εqθθ′ if θ ̸= θ′
, θ, θ′ ∈ Θ,

(4)
where 0 < ε < 1 represents the drift parameter, qθθ′ ≥ 0 for
θ′ ̸= θ, and

∑
θ′ ̸=θ qθθ′ = qθθ for each θ ∈ Θ. We assume

that the Markov chain θ⋆i is irreducible and aperiodic, thereby
guaranteeing the existence of its stationary distribution, which
we denote by ps = [ps(1), . . . , ps(H)]T.

Before proceeding with our result, we introduce a set of
assumptions in the following section.

II. ASSUMPTIONS

The observations and likelihood functions considered in this
work satisfy the following assumptions.

Assumption 1 (Bounded log-likelihood ratios) There exists
a positive constant B such that

max
k∈{1,...,K}

max
θ,θ′∈Θ

sup
x∈Xk

∣∣∣∣log Lk(x|θ)
Lk(x|θ′)

∣∣∣∣ ≤ B. (5)

□

Assumption 1 is automatically satisfied when the observations
are discrete random variables with the same finite support.

Assumption 2 (Statistical model) Conditioned on the cur-
rent value of the state process, the current observations are
i) independent of any past states or observations; and ii)
independent over space. Formally, let xi ≜ {xk,i}Kk=1 collect
all observations from across the agents at time i. Then, the
joint likelihood at time i satisfies

L(xi|θ⋆i , . . . ,θ
⋆
1,xi−1, . . . ,x1) = L(xi|θ⋆i ) (6a)

=

K∏
k=1

Lk(xk,i|θ⋆i ). (6b)

□

Assumption 3 (Global Identifiability) For each pair θ, θ′ ∈
Θ such that θ ̸= θ′, there exists at least one agent k such that
the Kullback-Leibler (KL) divergence [10] between Lk(.|θ)
and Lk(.|θ′) is positive, which reads as

Dk(θ, θ
′) ≜ Eθ

[
log

Lk(x|θ)
Lk(x|θ′)

]
> 0, (7)

where the subscript on the expectation operator means that
the expectation is computed under Lk(·|θ). □

The global identifiability assumption requires that, for any two
distinct hypotheses in Θ, at least one agent must be capable
to distinguish between them.

Next, we introduce the following assumption on the initial
beliefs of the agents.

Assumption 4 (Positive initial beliefs) The initial beliefs of
all agents are positive, i.e., µk,0(θ) > 0 for all k ∈ {1, . . . ,K}
and θ ∈ Θ. □

Finally, we introduce some standard assumptions on the
weights aℓk.

Assumption 5 (Connected network) The network graph is
assumed to be connected, which means that, given any pair
of distinct nodes (ℓ, k), a path with nonzero weights exists
between ℓ and k in both directions (the forward and backward
paths need not be the same). □

It is useful to define a combination matrix A whose (ℓ, k)
entry is aℓk. Under conditions (3), A is a left-stochastic matrix.
Moreover, under Assumption 5, the matrix A is irreducible.
Therefore, in view of the Perron-Frobenius theorem [11], [12],
matrix A has spectral radius equal to 1 and a single eigenvalue
equal to 1. This eigenvalue is associated with an eigenvector
π, referred to as the Perron vector, which can be scaled to
have all positive entries that add up to 1, namely,

Aπ = π,

K∑
ℓ=1

πℓ = 1, πℓ > 0 for all ℓ = 1, 2, . . . ,K.

(8)

Assumption 6 (Primitive matrix) Under Assumption 5, the
combination matrix is further said to to be primitive when the
only eigenvalue on the unit circle is the real eigenvalue at 1.
Note that, a sufficient condition for the matrix to be primitive
is that the network is strongly connected, which means that,
in addition to being connected, it has at least one self-loop,
i.e., there exists at least one agent k with akk > 0.

III. ASL AND MARKOV CHAINS

To evaluate the performance of ASL in tracking the Markov
chain θ⋆i , we consider the natural performance metric of
error probability. Specifically, according to the maximum-a-
posteriori (MAP) criterion, each agent k makes a mistake
whenever its belief is not maximized at the true hypothesis.
Therefore, the instantaneous error probability of agent k at
time instant i can be expressed as

pk,i ≜ P
[
argmax

θ∈Θ
µk,i(θ) ̸= θ

⋆
i

]
. (9)

In the theory of adaptation, the learning performance is char-
acterized by evaluating the steady-state performance of this
error probability as i → ∞ [13]. With reference to the ASL
algorithm under a stationary setting, this translates into the
consistency conclusion that the steady-state error probability



converges to 0 as the adaptation parameter δ tends to 0. In
comparison, in the theory of Bayesian filtering and smoothing
[14] [15], consistency is examined for the rare transition
regime when the drift parameter ε vanishes. In our study, we
blend these two approaches by incorporating both parameters
into the error probability: the drift parameter ε (related to the
environment) and the adaptation parameter δ (related to the
social learning algorithm).

The work in [16] is a relevant study that also considers
these two parameters, albeit for a different inferential problem,
namely, for parameter estimation or regression. The authors
analyze the tracking properties of the (centralized) least-mean-
squares (LMS) algorithm when the underlying parameter
evolves according to a finite-state Markov chain with infre-
quent jumps. They establish a bound on the mean-square error
involving both ε and the LMS step-size parameter. Then, by
imposing a certain asymptotic relationship between the LMS
step-size parameter and ε, they establish additional guarantees
on the tracking algorithm.

Returning to the decision making problem that is of interest
in social learning, in the next theorem, we establish a sufficient
condition for the parameters ϵ and δ to ensure that each
network agent tracks the drifting hypothesis with vanishing
error probability.

Theorem 1 (Consistency for small-ε) Under Assumptions
1-6, let δ = δε be the adaptation parameter used for a given
drift parameter ε. If the following conditions are satisfied:

lim
ε→0

δε = 0, (10)

lim
ε→0

ε

δε
= 0, (11)

then each agent k ∈ {1, . . . ,K} consistently learns the truth
as ε goes to zero, which is formally expressed as

lim
ε→0

lim sup
i→∞

pk,i = 0. (12)

Proof: Due to space limitations, we provide a sketch of
the proof. In what follows, the notation f(ε) = O(g(ε)) means
that lim

ε→0

f(ε)
g(ε) is finite.

Let Tε > 0 be an integer function of ε. We can write the
instantaneous error probability as follows:

pk,i = P
[
argmax

θ∈Θ
µk,i(θ) ̸= θ

⋆
i , no jumps in [i− Tε, i]

]
+ P

[
argmax

θ∈Θ
µk,i(θ) ̸= θ

⋆
i , one or more jumps in [i− Tε, i]

]
≤ P

[
argmax

θ∈Θ
µk,i(θ) ̸= θ

⋆
i , no jumps in [i− Tε, i]

]
+ P

[
one or more jumps in [i− Tε, i]

]
, (13)

where a jump in the Markov chain θ⋆i is observed at instant
j if θ⋆j ̸= θ⋆j−1. We see from (13) that pk,i is upper bounded
by the sum of two terms that depend on Tε. We would like

to suitably design Tε such that the probability of one or more
jumps of the Markov chain in [i− Tε, i] is “small”. Formally,
we can show that if Tε verifies the following two conditions

lim
ε→0

εTε = 0, (14)

lim
ε→0

Tε = +∞, (15)

then

P
[
one or more jumps in [i− Tε, i]

]
= O(εTε). (16)

From (13) and (16), we see that upper bounding
pk,i reduces to upper bounding the dominant term
P
[
argmaxθ∈Θ µk,i(θ) ̸= θ

⋆
i , no jumps in [i− Tε, i]

]
. This

term exhibits a desirable property because it involves an
event where the state process remains constant in the time
interval [i − Tε, i]. This allows us to handle this term with
the techniques exploited in [9, Appendix F] to establish the
following upper bound on the steady-state error probability

lim sup
i→∞

pk,i ≤
∑
θ′

∑
θ ̸=θ′

exp

(
1

δ

(
− Φ(θ′, θ)

+ |t⋆θ′,θ|(1− δ)Tε
(
D(θ′, θ) +B

)
+O(δ)

))
ps(θ

′)

+O(εTε),

(17)

where Φ(θ′, θ) > 0 and t⋆θ′,θ < 0 can be respectively computed
as Φ(θ) and t⋆θ in [9, Appendix F, Lemma 2] (with θ′ and
θ in our notation representing respectively θ and θ0 in [9]).
Furthermore, D(θ′, θ) ≜

∑K
ℓ=1 πℓDℓ(θ

′, θ).
To guarantee that the steady-state error probability vanishes

as ε goes to zero, we investigate a design for δ that leads
the upper bound in (17) to vanish as ε goes to zero. If the
adaptation parameter δ = δε verifies (10) and (11), then it
is always possible to choose Tε = α/δε, for α > 0, which
indeed satisfies (14) and (15). Now, with this choice of Tε,
we have

lim
ε→0

(1− δε)
α
δε = lim

δε→0
(1− δε)

α
δε = exp(−α). (18)

Therefore, there exists α small enough such that

lim
ε→0

lim sup
i→∞

pk,i = 0. (19)

Theorem 1 shows that the agents can achieve consistent
learning if the adaptation parameter of ASL satisfies conditions
(10) and (11). The first condition is necessary because, as is
known from the analysis of adaptive social learning [9], if the
adaptation parameter does not vanish, the steady-state error
probability does not vanish, even in the limiting case where
no transitions occur (ε = 0). We also note that the limiting
case δϵ = ϵ = 0 brings us back to traditional social learning
designed for stationary environments.

Condition (11) requires that ε/δε goes to zero as ε vanishes.
This condition admits a useful interpretation in terms of the
characteristic times of the system. In fact, it is shown in [9] that
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Fig. 1: Strongly connected network with K = 10 agents.

the adaptation time of ASL, denoted by TASL, is proportional
to 1/δε. On the other hand, the average time between two
consecutive jumps in the Markov chain, denoted by TMC, can
be shown to be proportional to 1/ε. Therefore, Eq. (11) can
be translated into the following condition

lim
ε→0

TASL

TMC
= 0. (20)

In other words, condition (11) imposes that the adaptation
time of ASL (TASL) is smaller than the Markov chain time
(TMC) that governs the model drifts. This ensures that the ASL
process reacts sufficiently fast to track the drifts, ultimately
guaranteeing consistency of the social learning algorithm.

IV. ILLUSTRATIVE EXAMPLES

We consider the strongly connected network of K = 10
agents depicted in Fig. 1, where all agents are assumed to have
a self-loop that is not displayed. We design the combination
matrix A using the uniform-averaging combination rule [12],
[13], which results in a left-stochastic matrix satisfying As-
sumptions 5-6. We assume that the Markov chain θ⋆i takes on
values in the state space Θ = {0.1, 0.2, 0.3} with the following
transition probabilities

P
[
θ⋆i = θ|θ⋆i−1 = θ′

]
=

{
1− ε if θ = θ′

ε
H−1 if θ ̸= θ′

, θ, θ′ ∈ Θ.

(21)
Note that, in this setting, we can show that TMC = 1/ε. The
likelihood models of the agents belong to a family of binomial
distributions with number of trials n = 5 and probability of
success θ ∈ Θ, which are given by the following probability
mass function:

fθ(x) =

(
5

x

)
θx(1− θ)5−x, x ∈ {1, . . . , 5}, (22)

where
(
5
x

)
= 5!

x!(5−x)! and fθ(x) represents the probability of
x successes in n trials. The parameter θ takes on values in the
set Θ = {0.1, 0.2, 0.3}. Thus, in this setting, the state process
θ⋆i represents the success probability. It is easily seen that the
choice of likelihood models in (22) satisfies Assumption 1.

Furthermore, we assume that the observations xk,i are
independent across the agents (Assumption 2). We also assume

TABLE I: Identifiability setup of the agents.

Agent k Likelihood model: Lk(·|θ)
θ = 0.1 θ = 0.2 θ = 0.3

1, 5, 10 f0.1 f0.2 f0.3
2, 6 f0.1 f0.2 f0.2
3, 7 f0.1 f0.1 f0.3
4, 8 f0.1 f0.2 f0.1

that some agents cannot locally differentiate all pairs of
hypotheses, as it can be verified from the identifiability setup
in Table I. The setup in the Table I satisfies Assumption 3.

Theorem 1 provides sufficient conditions for the adaptation
parameter to guarantee consistency. Specifically, the adaptation
parameter δε should be a function of ε verifying (10)-(11). In
order to illustrate this result, we consider the following choices
of δε:

δε = ε
2
3 , δε = ε

1
2 , δε =

1

log 1
ε

. (23)

We can see that each of the above choices of δε adhere to
both conditions (10) and (11).

In order to illustrate the performance of ASL under the
different choices of δε, we consider 20 values of ε (uniformly
spaced in the log domain) in the interval [0.005, 0.1]. Then,
for each value of ε, we run the ASL algorithm considering
the three different choices of δε in (23). For each of these
three configurations, we consider 1000 iterations of the ASL
algorithm, which we assume are sufficient to reach the steady
state. For each time sample i, we execute the ASL algorithm
over 25000 Monte Carlo runs to estimate the error probability
at instant i. We plot the steady-state error probability as a
function of TMC = 1/ε in Fig. 2a. Then, we set ε = 0.005
and plot the instantaneous error probability as a function of
the time index i in Fig. 2b.

In Fig. 2a, we can see that the different choices of the
adaptation parameter in (23) result in a vanishing steady-state
error probability as the average drift time TMC diverges to
infinity. This behavior confirms the predictions of Theorem
1. In addition, we see that distinct choices of the adaptation
parameter δε lead to distinct levels of steady-state error prob-
ability, suggesting the existence of an optimal configuration
that maximizes the performance.

To gain further insight into the performance of ASL under
different adaptation parameters, we examine the time evolution
of the instantaneous error probability for a fixed ε = 0.005,
illustrated in Fig. 2b. The results reveal discernible varia-
tions in performance across different adaptation parameters.
Specifically, setting δε = 1

log 1
ε

= 0.1887 yields the lowest

instantaneous error probability, while δε = ε
1
2 = 0.0707

results in a higher error probability. Moreover, selecting δε =
ε

2
3 = 0.0292 notably increases the error probability compared

to the first two choices, indicating that ASL becomes too slow
to track the Markov chain as δε decreases.

Next, we examine the belief evolution of ASL over time,
for δε = 1

log 1
ε

, which exhibits the best performance among the
curves in Fig. 2. Simulations are performed with ε = 0.005
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Fig. 2: Error probability of agent 1 as a function of the drift
time (Fig. 2a) and as a function of the number of iterations
(Fig. 2b), for different choices of δε.

over 1000 time samples, and the resulting belief evolution
is displayed in Fig. 3. Fig. 3a illustrates the state process
evolution over time. We can see that the belief evolution of
ASL, depicted in Fig. 3b, indicates that ASL effectively tracks
the state process evolution.

V. CONCLUDING REMARKS

ASL is a social learning strategy enabling opinion formation
and consistent truth learning within dynamic environments.
Existing studies on the ASL performance are conducted with-
out accounting for the process that governs the drifts in the
underlying phenomenon of interest. This work addresses the
nonstationary nature of the learning environment by modeling
the true state as a time-varying stochastic process. Specifically,
we assess the ASL performance in scenarios where the true
state follows a Markov chain. Although this approach intro-
duces complexity into the error probability analysis, it provides
deeper insight into the fundamental interplay between the
adaptation offered by ASL and the drift rate in the underlying
Markov process.
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