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Abstract—We consider a collaborative decision-making frame-
work where heterogeneous agents receive streaming and partially
informative observations. We consider two asynchronous scenar-
ios that differ based on the agents’ participation patterns and
the fusion center’s policies. By using hypothetical interventions
on individual agents to conduct credit assignment, we attribute
causal impact scores to each agent for the joint decision. By
further employing these scores in a guided theoretical analysis,
we compare the fusion center’s two policies by evaluating their
vulnerability to adversarial attacks, robustness against moderate
deviations, and fairness.

I. INTRODUCTION

Autonomous systems are usually equipped with sensing and
computing capabilities to enable prompt decisions based on
streaming observations. One example is self-driving vehicles,
which need to react to changes in road conditions in real-time.
In situations where a multitude of agents observe a common
state of nature or phenomenon, then cooperative decision-
making becomes beneficial because the individual sensor ob-
servations may only relay partial information about the event
of interest. The main benefit of cooperative decision-making
or inference is the diversity of the information provided by
distinct agents. Yet, this very strength has its own challenges.
For instance, empowering an outlier agent can make the
system vulnerable to adversarial attacks, while discarding
outliers may violate fairness. Therefore, understanding to what
extent an agent impacts the quality of the decision in a multi-
agent system is an important question for many applications.

To that end, in this paper, we examine how varying factors
such as participation/absence patterns, fusion center policies,
and data distribution affect the impact that an agent has on the
aggregate decision. First, we revisit in Sec. II-A the distributed
decision making setting proposed in [1]. Then, in Sec. II-B,
we extend the framework by incorporating asynchronous be-
havior into the agents. We consider two distinct scenarios that
vary based on the participation patterns of the agents during
information sharing. In order to understand the influence of
agents under these scenarios, we treat influence as a causal
quantity in Sec. II-C and use hypothetical interventions [2] on
agents to derive closed form expressions for the causal impacts
of individual agents on the overall decision of the agents.

A. Related Work

We adopt the framework of [1], which is a special case
of the non-Bayesian social learning paradigm from [3]–[7].

Under social learning, the objective is to perform cooperative
decision-making through localized data processing and ex-
changes among agents. In the context of cooperative decision-
making, the use of hypothetical causal interventions to under-
stand influence was considered before in [8], [9] to assess
the influence of agents on each other over a network. We
focus here on using these causal impacts in the presence of
asynchronicity to explore how the fusion center policy and the
pattern of agent participation can influence dynamics. This
is a “bottom-up” perspective in the sense that we examine
the impact of individual agents on the joint decision. This
is as opposed to “top-down” approaches in previous works,
which employ objective functions or algorithms to promote
robustness and fairness while safeguarding against outliers
[10]–[13].

Application (Spontaneous collaboration). In many applica-
tions, agents start cooperating spontaneously. For instance,
intelligent vehicles on the same road can collaborate to better
understand the road conditions. In these ad-hoc scenarios, it
is impractical to assume synchronicity. As such, determining
an agent’s impact under asynchronicity is crucial for taking
robust and fair joint decisions. ■

Notation. Random variables are written in boldface letters.
We use the “proportional to” symbol ∝ whenever the LHS of
an equation is a proper normalization of the RHS. The KL
divergence between two probability distributions p and q is
denoted by DKL(p||q). Following the notation in [9], we use
∼ to denote the counterparts of variables after an intervention.

II. PROBLEM FORMULATION

A. Synchronous Collaboration

We start by introducing the synchronous setting of [1].
Consider a setting where a group of K agents wish to
discover the true state of nature θ◦ from a set of potential
hypotheses Θ ≜ {θ1, . . . , θH}, with the help of a fusion center.
For instance, autonomous vehicles on the same road can be
connected to a cloud with the objective of assessing the road
conditions {crowded, accident, normal} — see Fig. 1 for a
visual illustration. At each time instant i, each agent k receives
an observation ξk,i, which conveys partial information about
θ◦. Instead of directly transmitting the raw observations ξk,i to
the central server, each agent k processes its data locally with
its personalized likelihood model Lk(ξk,i|θ) (e.g., a neural



Fig. 1: Smart vehicles typically generate extensive raw sensory
data. Exchanging soft-decisions instead of the raw data can be
advantageous due to communication overhead.

network) in a Bayesian manner to obtain an intermediate belief
(soft decision) about which hypothesis is the true one:

ψk,i(θ) ∝ Lk(ξk,i|θ)µi−1(θ) (Adapt) (1)

where µi−1 is the prior probability mass function (pmf).
Subsequently, agent k forwards this intermediate pmf ψk,i to
the fusion center (FC). The FC may lack knowledge about the
system’s joint likelihood, the observations at the agents, or the
agents’ likelihood models. Therefore, it employs a weighted
geometric averaging of the received information in a non-
Bayesian manner [3]–[7] for each θ ∈ Θ:

µi(θ) ∝
K∏

k=1

(ψk,i(θ))
πk (Combine). (2)

Here, π ≜ [π1, . . . , πK ]T denotes the vector of confidence
weights πk ∈ (0, 1) that the fusion center assigns to each agent
k [14], [15], potentially formed from the previous interactions
with the agents. They are assumed to be positive constants
that sum up to 1. The server then sends the aggregated belief
back to the agents. This procedure of updating and exchanging
beliefs is executed repeatedly at every time instant.

B. Two Asynchronous Scenarios

Asynchronous behavior is common in many real-world
applications of distributed systems. We consider two scenarios
that are distinct based on the symmetry of communication
between the agents and the fusion center. For both scenarios,
we use the Bernoulli variable qk,i to indicate if agent k is
sharing its intermediate belief ψk,i with the server at time i,
namely,

qk,i =

{
1, with probability pk

0, otherwise
. (3)

We assume the process {qk,i} is i.i.d. over time and also
independent over space.

1) Asymmetric communication: There can be instances when
agents, despite being active, do not transmit information to
the FC and remain idle in terms of data sharing. This non-
engagement can be due to various factors, such as the need to
conserve energy, non-informative soft decisions, or the lack of

significant changes in intermediate statistics since the previous
transmission. However, these agents can keep receiving the up-
dates from the server. Another possible reason for this disparity
is that the uplink cost (from agent to server) is typically higher
than the downlink cost (from server to agent). In this case, the
fusion center can fill the belief components of missing agents
with its own prior while aggregating information. Therefore,
the combination step (2) at the server side changes to

µi(θ) ∝
K∏

k=1

(
ψ

qk,i

k,i (θ)µ
1−qk,i

i−1 (θ)
)πk

. (4)

Nevertheless, the adaptation step (1) at the agent side remains
unchanged and agents continue to utilize the beliefs received
from the server locally.

It is worth noting the parallel between this scenario and
the traditional distributed detection strategies [15]–[17]. Since
the server knows µi−1, sharing ψk,i is essentially equivalent
to sharing the observation likelihood Lk(ξk,i|θ) due to (1).
Similarly, agents (e.g., sensors) relay a sufficient statistics
of their likelihoods to the fusion center in [15]–[17]. The
difference is that in these works, the fusion center does not
communicate any information back to the agents.

2) Symmetric communication: Another possibility is that
an agent does not receive any update from the server if that
agent does not transmit information to the central processor.
In other words, the absence of communication is reciprocal.
This particular communication pattern can be rationalized
from an economic perspective. For instance, a server might
strategically choose not to update agents that do not contribute
information, hence incentivizing data sharing and promoting a
give-and-take dynamics. In this scenario, the combination step
at the server side is given by (4), whereas the adaptation step
(1) at the agents becomes

ψk,i(θ) ∝

{
Lk(ξk,i|θ)µi−1(θ), if qk,i−1 = 1

Lk(ξk,i|θ)ψk,i−1(θ), if qk,i−1 = 0
. (5)

The rationale behind (5) is as follows. If agent k has shared
information with the server (i.e., qk,i−1 = 1), the server
returns the combined belief µi−1 to that agent. On the other
hand, if the agent has not participated in the information
exchange (i.e., qk,i−1 = 0), then the server does not provide
the updated belief and the agent resorts to its own belief ψk,i−1

as a prior for the next update.

C. Causal Impact Definition

We extend the causal effect definition from [9]. The main
motivation for the definition is that the influence of an agent
m on the collective decision should be proportional to the
“amount” by which the outcome changes when this agent is
intervened upon. When an intervention occurs on agent m, we
decouple its belief ψm,i from other beliefs and observations
and fix it at some constant pmf, say, ψm,i = µm — see Fig. 2
for a visual representation. It can be shown that in the absence



of any intervention, the belief vector µi converges to a steady-
state value µ∞ that places a probability value of 1 on the true
hypothesis θ◦ as i → ∞ [18]. When an intervention occurs at
agent m, the steady-state belief vector will be denoted instead
by µ̃∞ as opposed to µ∞. As such, we can quantify the
causal impact of agent m on the joint decision by using the
difference:

Cm ≜ 1− µ̃∞(θ◦). (6)

Expression (6) measures the expected shift in the steady-state
belief on the true hypothesis θ◦ due to an intervention on agent
m. Note that as in [9], we can express the average belief,
µ̃∞(θ◦) in the form:

µ̃∞(θ◦) ≜
1

1 +
∑

θ ̸=θ◦
exp{−λ̃∞(θ)}

. (7)

where
λ̃∞(θ) ≜ lim

i→∞
E[λ̃i(θ)] (8)

represents the expected log-belief ratio under the intervention
with the variables λ̃i(θ) defined by

λ̃i(θ) ≜ log
µ̃i(θ

◦)

µ̃i(θ)
. (9)

Here, µ̃∞(θ◦) represents the average belief of the server at
steady state under the intervention do(ψm,i := µm).

III. THEORETICAL RESULTS

We begin by reviewing the causal impact result from [9],
which addresses synchronous communication. To that end, we
first define the informativeness level of each agent k as

dk(θ) ≜ DKL
(
Lk(·|θ◦)||Lk(·|θ)

)
(10)

which represents how informative agent k’s observations are
for distinguishing θ◦ from θ.

Theorem 1 (Synchronous collaboration [9]). Under syn-
chronous collaboration described in Sec. II-A, the expected
log-belief ratio under intervention is given by

λ̃∞(θ) =
1

πm

∑
k ̸=m

πkdk(θ) + log
µm(θ◦)

µm(θ)
(11)

Therefore, by (6), the causal impact of agent m on the joint
decision is

Cm=1− 1

1 +
∑

θ ̸=θ◦

µm(θ)

µm(θ◦)
exp

{
− 1

πm

∑
k ̸=m

πkdk(θ)
} (12)

■

Equations (11) and (12) imply that:
• An increase in the confidence πm by the fusion center

increases the causal impact of agent m.
• Increasing the informativeness and confidence weights of

the other agents decreases the impact of agent m.
Also, observe that (11) and (12) are dependent on the interven-
tion strength µm. For an intervention dose-independent causal
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do( m,i := µm)

Fig. 2: Visual representation of a hypothetical intervention
do(ψm,i := µm). Agent m keeps sending information to the server
with probability pm, however, its belief is now fixed and is not
dependent on any other variable.

impact measure, setting µm to a uniform belief (i.e., setting the

log-belief ratio log
µm(θ◦)

µm(θ)
to zero) is discussed in [9] along

with its equivalence to causal derivative effect [19]. Next, we
consider the causal impacts for the asynchronous scenarios we
have introduced in Sec. II-B.

Theorem 2 (Asymmetric communication). Under the asym-
metric communication protocol described in Sec. II-B, the
expected log-belief ratio under intervention is given by

λ̃∞(θ) =
1

πm

∑
k ̸=m

πkpkdk(θ) + pm log
µm(θ◦)

µm(θ)
(13)

This implies by (6) that the causal effect of agent m on the
joint decision is given by

Cm=1− 1

1 +
∑

θ ̸=θ◦

(
µm(θ)

µm(θ◦)

)pm

exp
{
− 1

πm

∑
k ̸=m

πkpkdk(θ)
}

(14)

Proof. Omitted due to space limitations. Available in [18]. ■

Notice in Theorem 2 that as pk approaches 1 for each
agent k, i.e., when all agents participate synchronously at each
iteration, we recover Theorem 1. Also notice that the essential
difference from the synchronous scenario is the replacement
of confidence weights πk by πkpk. This is intuitive since more
participation by an agent is expected to increase its influence
on the joint decision, as if it had a higher confidence from
the server. Similarly, more participation by the other agents
decreases the overall impact of an agent on the joint decision.

Theorem 3 (Symmetric communication). Under the sym-
metric communication protocol described in Sec. II-B the
expected log-belief ratio under intervention is given by

λ̃∞(θ) =
1

πmpm

∑
k ̸=m

πkdk(θ)

1− πk(1− pk)
+ log

µm(θ◦)

µm(θ)
(15)
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Fig. 3: (a) Simulated log-belief ratios (averaged over 1000 Monte Carlo (MC) simulations and theoretical expressions over time, (b) Causal
impact of agent m = 1 on the joint decision with changing participation probability pm, (c) Asymptotic log-belief ratio with respect to

misinformation strength log
µm(θ)

µm(θ◦)
.

This implies by (6) that the causal effect of agent m on the
joint decision is given by

Cm= 1− 1

1 +
∑

θ ̸=θ◦

µm(θ)

µm(θ◦)
exp

{ −1

πmpm

∑
k ̸=m

πkdk(θ)

1− πk(1− pk)

}
(16)

Proof. Omitted due to space limitations. Available in [18]. ■

Similar to the asymmetric communication scenario in The-
orem 2, as pk → 1 for all agents, Theorem 3 recovers the
synchronous collaboration result Theorem 1. Furthermore, as
pm → 0, notice that λ̃∞(θ) → ∞ which in turn implies
Cm → 0. In other words, if an agent does not participate
in the decision making, it does not have any impact on the
decision.

Next, we compare the causal impacts of agents under both
asymmetric and symmetric communication schemes, given the
same asynchronicity parameters. Notice from (13) and (15)
that when the misinformation strength (defined as the ratio of
an incorrect hypothesis belief to the correct hypothesis belief)
from agent m meets the condition

log
µm(θ)

µm(θ◦)
≥

∑
k ̸=m

πkdk(θ)

πm(1− pm)

( 1

pm(1− πk(1− pk))
−pk

)
,

(17)
then the λ̃∞(θ) term in (13) exceeds that in (15). Since by
definition (7), λ̃∞(θ) is inversely proportional to the causal
impact Cm, it also implies that agent m exerts a stronger
causal impact on the joint decision in the symmetric scenario
than in the asymmetric one if the misinformation strength
surpasses the threshold specified in (17).

This observation holds significant relevance for practical
applications. Commonly, misinformation (i.e., deviations from
the norm) originating from malfunctioning agents is moderate.
In contrast, malicious or Byzantine agents often supply ad-
versarial misinformation that can be extreme. The discussion
above suggests that the symmetric communication scenario is
more vulnerable to adversarial attacks, while asymmetric com-
munication is more sensitive to moderate level misinformation

that typically emerges from malfunctioning agents without
harmful intentions. Furthermore, for a decision-making pro-
cess that aims to be both fair and resilient against adversarial
threats, asymmetric communication appears to be better in
comparison to the symmetric case. This is because it allocates
greater causal weight to moderate deviations from the norm
while also reducing the influence of extreme misinformation,
providing a safeguard against adversarial attacks.

IV. NUMERICAL RESULTS

To verify our theoretical results, we consider a binary
hypothesis testing problem with K = 12 agents connected
to a fusion center, each receiving observations that follow a
Gaussian distribution. Under the null hypothesis, the mean
for all agents is assumed to be 0, while under the alternative
hypothesis, it is 0.5 for odd-indexed agents and 1 for even-
indexed agents. The probability of participation pk is set to 0.8
for each agent k with indices 1 − 3, to 0.6 for agent indices
4 − 6, 0.4 for agent indices 7 − 9, and 0.2 for agent indices
10 − 12. Furthermore, the confidence weight πk assigned by
the server to each agent k is 0.125 for agent indices 1 − 4,
0.075 for agent indices 5−8, and 0.05 for agent indices 9−12,
ensuring that the sum of all weights across the K = 12 agents
equals 1.

In the first experiment, we average 1000 simulations for
three settings: the synchronous setting from Sec. II-A, and the
asymmetric and symmetric settings from Sec. II-B. This is
performed under an intervention on agent m = 1 with uniform
beliefs. We plot the evolution of log-belief ratios over 500
time instants in Fig. 3a, as well as the theoretical expressions
for these values from Theorems 1, 2, and 3. Notice that the
simulated log-belief ratios closely align with the theoretical
expressions.

In Fig. 3b, we illustrate the causal impacts of agent m = 1
on the joint decision with respect to changing participation
probability pm. We also include the synchronous setting where
all agents participate with a probability of 1 as a reference.
It is evident from this figure that increasing the frequency of
information transmission by an agent increases its impact on
the joint decision.
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Fig. 4: Normalized causal impacts of each agent over three frame-
works.

Next, in Fig. 3c, we plot the asymptotic log-belief ratios
in relation to varying intervention strengths on agent m = 1.
Supporting our theoretical finding in (17), the log-belief ratio
in the asymmetric setting surpasses the one in the symmetric
setting when the misinformation strength exceeds a certain
threshold. As discussed before, this means that under condi-
tions of high misinformation supply, the asymmetric commu-
nication framework assigns a relatively smaller causal impacts
compared to the symmetric communication framework.

Finally, in Fig. 4 we present the causal impact of each
agent on the joint decision which are normalized such that
the sum of agents’ impacts under each strategy equals to 1.
This plot reveals that the asymmetric communication protocol
results in a more uniform distribution of impacts, whereas
the symmetric communication approach leads to a few agents
having significant influence on the joint decision. This supports
our earlier theoretical findings, suggesting that asymmetric
communication fosters a fairer decision-making process.

V. CONCLUDING REMARKS

In this paper, we examined two distinct asynchronous
decision-making models, which differ in terms of whether
the fusion center updates the agents that do not provide
information. Utilizing a causal theoretical framework, we
explained how each agent’s impact on the collective decision
varies based on factors such as the distribution of data re-
ceived by the agents and their participation frequencies. These
results revealed that symmetric (reciprocal) communication
offers greater resilience to moderate deviations from the usual,
whereas asymmetric communication protocols are more effec-
tive against adversarial attacks and better for fairness.

Future directions include extending this federated frame-
work to decentralized peer-to-peer networks, and also exam-
ining different combination strategies at the server side such
as median-based robust fusion [11].
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