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ABSTRACT
In social learning, a network of agents assigns probability scores
(beliefs) to some hypotheses of interest, based on the observation of
streaming data. First, each agent updates locally its belief with the
information extracted from the current data through a suitable like-
lihood model. Then, these beliefs are diffused across the network,
and the agents aggregate the beliefs received from their neighbors
by means of a pooling rule. This work studies social learning in the
context of fully online problems, where the true hypothesis and the
likelihood models can drift over time. Traditional social learning
fails to address both cases. To overcome this limitation, we propose
the doubly adaptive social learning (A2SL) strategy, which infuses
traditional social learning with the necessary adaptation capabilities
to face drifts in the hypotheses and/or models. The A2SL strategy
achieves this goal by employing two adaptation stages, and we show
that all agents learn well (i.e., they end up placing full belief mass on
the correct hypothesis) in the regime of small adaptation parameters.

Index Terms— Social learning, adaptation and learning, belief
and opinion formation, online learning, model drift.

1. INTRODUCTION AND RELATED WORK

Social learning is a popular paradigm for collaborative opinion for-
mation, where a group of agents assign probability scores (beliefs)
to some hypotheses of interest, based on private streaming data and
the beliefs exchanged with their neighbors [1–7]. Traditional social
learning algorithms have been extensively studied in the literature,
and have been shown to offer provable learning guarantees: under
reasonable technical conditions, each agent ends up placing all the
probability mass on the true underlying hypothesis that gives rise to
the data [7–13].

An increasing number of applications is focused on online set-
tings, which require the social learning strategy to be able to react
promptly to the two inherent sources of non-stationarity of the in-
ferential problem: drifts in the true hypothesis and in the likelihood
models. Traditional social learning does not exhibit any adaptation
in both domains and is therefore unreliable in online settings.

The issue of drifting hypotheses can be managed by the recently
proposed adaptive social learning (ASL) paradigm [14, 15], which
infuses traditional social learning with adaptation by means of an
adaptive update step. However, the ASL strategy requires that the
likelihood models are known beforehand.

The issue of unknown models has been recently addressed in the
context of social machine learning (SML) [16, 17] and social learn-
ing with uncertain models [18]. In these works, the agents use train-
ing data to learn the decision models (e.g., the likelihood ratios),
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which are then employed to perform social learning over a stream of
prediction data. However, while these approaches remove the need
for prior knowledge of likelihood models, they still do not provide
adaptation to model drifts, since training is performed offline.

In this work we propose a novel, doubly adaptive social learning
strategy, nicknamed A2SL, which enables adaptation in the domain
of the hypotheses and model drifts, and is therefore suited to fully
online applications. Once turned on, the A2SL algorithm can run
virtually forever, with no need of resets or re-tuning stages, since it
automatically adapts to variations in the training or prediction data.
We address the realistic setting where there exists no hard separa-
tion between the time epochs where training and prediction are per-
formed. In our model, these phases stay concurrently active, and at
each time instant new training or prediction data can be observed, in
an asynchronous manner.

The A2SL strategy instills adaptation by using two adaptation
stages: one stage is a stochastic gradient descent (SGD) algorithm,
which features a constant step-size as an adaptation parameter to
perform online model training. The other stage is an adaptive be-
lief update, ruled by another adaptation parameter to balance old
knowledge (stored in the past beliefs) and new knowledge (extracted
from the current prediction data). We will show that the A2SL strat-
egy learns consistently, in the sense that the probability that (at any
agent) the maximum belief mass concentrates on the correct hypoth-
esis converges to 1 as the adaptation parameters go to zero. We cor-
roborate the theoretical results by showing the effectiveness of the
A2SL strategy on a distributed classification problem using real data.

Notation. We denote random variables with bold font. The op-
erator col{·} stacks its column-vector entries in a single column. For
a nonnegative function f(y) with positive argument y, the notation
f(y) = O(y) means that f(y) ≤ c y for all y ≤ y0, for some pos-
itive values c and y0. The symbols E and P denote expectation and
probability, respectively.

2. BACKGROUND

Consider H hypotheses belonging to the set Θ = {θ1, θ2, . . . , θH}.
Each agent k = 1, . . . ,K, at each time t = 1, 2, . . ., observes
some prediction data xk,t ∈ RMk , and is equipped with a likeli-
hood model linking the hypotheses to the data:

ℓk(xk|θ), for xk ∈ RMk and θ ∈ Θ. (1)

More precisely, ℓk(xk|θ) is a likelihood function when regarded as
a function of θ for a fixed xk. For a fixed θ, it represents the gener-
ative model of the data xk corresponding to that θ, e.g., it can be a
probability mass function or a probability density function.

The goal of the agents is to assign a probability score to each
hypothesis. The scores assigned by agent k at time t form the be-
lief vector µk,t = [µk,t(θ1), . . . ,µk,t(θH)], with µk,t(θ) ≥ 0 and



∑
θ∈Θ µk,t(θ) = 1. In traditional social learning, the beliefs are

constructed with the following recursion, initialized by some deter-
ministic belief vectors µk,0 [10–13]:

ψk,t(θ) =
µk,t−1(θ)ℓk(xk,t|θ)∑

θ′∈Θ

µk,t−1(θ′)ℓk(xk,t|θ′)
∝ µk,t−1(θ)e

dk(xk,t;θ)

(2a)

µk,t(θ) ∝
K∏

j=1

[ψj,t(θ)]
ajk (2b)

where the symbol ∝ hides the constant necessary to make ψk,t =
[ψk,t(θ1), . . . ,ψk,t(θH)] and µk,t probability vectors. The RHS
of (2a) is obtained by dividing ℓk(xk,t|θ) and ℓk(xk,t|θ′) by
ℓk(xk,t|θH) and introducing the decision statistic or model:1

dk(xk; θ) ≜ log
ℓk(xk|θ)
ℓk(xk|θH)

. (3)

Without loss of generality, we divided by ℓk(xk|θH), but we can use
any hypothesis as “pivot”. Note that dk(xk; θH) = 0 by definition.

Step (2a) produces an intermediate belief ψk,t(θ) by perform-
ing a Bayesian update based on the new local observation xk,t. In
step (2b), each agent implements a pooling rule to combine the inter-
mediate beliefs of the other agents. Specifically, agent k computes a
weighted geometric average (scaled to obtain a valid probability vec-
tor) where the intermediate belief of agent j is raised to a weight ajk.
The weights are conveniently arranged into a combination matrix
A = [ajk] that must be left-stochastic, which means that ajk ≥ 0

and
∑K

j=1 ajk = 1 [19, 20].
When ajk = 0, agent k does not receive information from

agent j. Conversely, agent k aggregates the beliefs received from
the agents j for which ajk > 0, which are called neighbors (of
k). Therefore, the combination matrix describes through a weighted
graph the communication structure that links the agents in the net-
work. In our treatment, we consider the following assumption,
which is standard in social learning theory.

Assumption 1 (Primitive Combination Matrix [19–21]). We as-
sume that the K × K left-stochastic matrix A is primitive, which
means that it is irreducible (i.e., in the graph associated with A, for
all j, k there is a path starting at j and ending at k) and has a single
eigenvalue on the unit circle. From the Perron-Frobenius theorem,
irreducibility implies that A has an eigenvector v = [v1, . . . , vK ]⊤

(called Perron eigenvector) that satisfies the following conditions:

Av = v, vk > 0 for all k,
K∑

k=1

vk = 1. (4)

Moreover, since A is primitive, we also have the convergence:

lim
t→∞

At = [v, . . . , v︸ ︷︷ ︸
K times

]. (5)

□

3. ADAPTIVE MODEL LEARNING

To implement the update (2a), the agents should know exactly the
decision statistics. This assumption is unrealistic, especially in dy-
namic environments where the models can drift over time. To over-
come this limitation, in this work we allow agents to learn and

1For nonsingular problems, the likelihood ratio is almost-surely nonzero.

track the decision statistics by exploiting the clues contained in a
stream of training samples, according to the supervised classifica-
tion paradigm [20]. Specifically, consider a collection of indepen-
dent and identically distributed (iid) training samples (x̂k,t, θ̂k,t),
a.k.a. (feature, label) pairs. We assume that the labels θ̂k,t in the
training set are uniformly distributed across the hypotheses, whereas
the features x̂k,t corresponding to a label θ̂k,t = θ are drawn from
the generative model ℓk(xk|θ). Thus, the posterior probability that
rules the training data is, for xk ∈ RMk and θ ∈ Θ:

pk(θ|xk) =
ℓk(xk|θ)∑

θ′∈Θ

ℓk(xk|θ′)
=

edk(xk;θ)∑
θ′∈Θ

edk(xk;θ
′)
, (6)

where in the last equality we use (3). The exact decision model
dk(xk; θ) is unknown, and must be learned from the training set. In
supervised classification, one looks for an approximate posterior:

p̂k(θ|xk) =
ed̂k(xk;θ)∑

θ′∈Θ

ed̂k(xk;θ
′)
, (7)

where the approximate decision model d̂k(xk; θ) is chosen from
some admissible family of functions. In this work we consider the
standard (multiclass) logistic regression model [20]:

d̂k(xk; θ) = h(xk)wk(θ), h(xk) ≜ (col{xk, 1})⊤, (8)

where h(xk) is the augmented row vector that adds to x⊤
k a dummy

entry,2 and wk(θ) is a parameter vector of dimension (Mk +1)× 1.
We set wk(θH) = 0 to enforce the condition d̂k(xk; θH) = 0. It is
convenient to aggregate the vectors wk(θ), for θ ̸= θH , into

wk = col
{
wk(θ1), . . . , wk(θH−1)

}
∈ R(Mk+1)(H−1). (9)

To select a decision model, we must choose a parameter wk by op-
timizing some performance metric. One common choice is to mini-
mize the regularized cross-entropy cost function [20]:

Jk(wk) = E
[
− log p̂k

(
θ̂k,t|x̂k,t

)
+

ρ

2
∥wk∥2︸ ︷︷ ︸

≜Q(wk;x̂k,t,θ̂k,t)
regularized log-loss function

]
. (10)

where ρ > 0 is the regularization parameter. Note that the approxi-
mate posterior in (7) depends implicitly on the vector wk. It can be
shown that Jk(wk) admits a unique minimizer w⋆

k [19, 20]. Unfor-
tunately, in the considered setting, w⋆

k cannot be computed exactly.
In fact, the cost function Jk(wk) is unknown, since the distribu-
tion of the (feature, label) pairs in the training set is itself unknown.
Moreover, we want to solve the optimization problem in an adaptive
manner, because if the models governing the data in the training set
change over time, we want to track the drifts. One common choice
to achieve this goal is the stochastic gradient descent algorithm with
constant step-size [19, 20], which is defined by the recursion:

wk,t = wk,t−1 − η∇Q
(
wk,t−1; x̂k,t, θ̂k,t

)
, (11)

where the step-size η > 0 scales the gradient (computed with re-
spect to the first argument) of the log-loss function. It is possible to

2This is a standard choice to incorporate an offset term, i.e., the last entry
of wk(θ), into the regression model (8).



show that the SGD algorithm approximates well the minimizer w⋆
k

for sufficiently large t and small η, in particular [19, 20]:

lim sup
t→∞

E
[
∥wk,t − w⋆

k∥2
]
= O(η). (12)

In the following, we set conventionallywk,t(θH) = w⋆
k(θH) = 0.

4. DOUBLY ADAPTIVE STRATEGY

The A2SL strategy that we propose in this work consists of the fol-
lowing four steps that are iteratively performed by each agent k at
each time instant t ≥ 1 (with initial vectors wk,0 and µk,0):

wk,t = wk,t−1 − η∇Q
(
wk,t−1; x̂k,t, θ̂k,t

)
αtr

k,t (13a)

d̂k,t(xk,t; θ) = h(xk,t)wk,t(θ) (13b)

ψk,t(θ) ∝ µ1−δ
k,t−1(θ) exp

{
d̂k,t(xk,t; θ)α

pr
k,t

}
(13c)

µk,t(θ) ∝
K∏

j=1

[ψj,t(θ)]
ajk (13d)

– Model Parameter Update. In (13a), each agent k performs an
SGD iteration to update the parameter vector wk,t after observing
the training sample (x̂k,t, θ̂k,t). In comparison to (11), we have
added the scalar αtr

k,t, which is assumed to be a Bernoulli random
variable taking value 1 with probability qtrk > 0. When αtr

k,t = 0,
no training sample at time t is observed and the parameter vector is
not updated. The insertion of this variable is important because we
are using a common time axis for the training and prediction phases,
and it is not realistic to assume that these phases are synchronous. In
other words, at a given time instant, we can observe a new training
sample, and/or a new prediction sample, or no samples at all.
– Model Computation. In (13b), each agent k adjusts the current de-
cision statistic by using the updated vectorwk,t.
– Adaptive Bayesian Update. In (13c), the agents update their in-
termediate beliefs according to the adaptive rule proposed in [14].
Agent k uses an adaptation parameter δ ∈ (0, 1) to discount its
own belief, in order to give more importance to new observations
and enable reaction to drifts. For the same reasons discussed in re-
lation to the training samples, we assume that agent k observes the
prediction sample xk,t with probability qprk > 0. When no fresh
prediction sample is observed, the likelihood is not informative. To
capture this behavior, in (13c) we introduce as a multiplicative factor
the Bernoulli random variable αpr

k,t (with success probability qprk ).
– Combination Step. In (13d), the agents update their beliefs com-
bining the intermediate updates received from their neighbors.

The characterization of the A2SL strategy will be carried out un-
der the following standard procedure adopted in the theory of adap-
tation and learning [14, 19, 20]. Consider an arbitrary time instant
t0, with some drift occurring in the data and/or models from t0 + 1
onward. Given a realization of the training and prediction data un-
til t0, the belief vectors µk,t0 and estimated parameters wk,t0 store
the knowledge accumulated by the agents until t0, and are the only
quantities necessary for the algorithm (13a)–(13d) to carry on. The
aim of the theoretical analysis is to characterize the system evolu-
tion over a stationary interval starting from t0 + 1, and to establish
how much time is necessary to adapt to the new conditions (transient
analysis) and which learning performance is achieved as time pro-
gresses (steady-state analysis). For space limitations, in this work
we report only the results pertaining to the steady-state analysis. For
convenience, we set t0 = 0.

Assumption 2 (Data Properties). For each agent k, the random
observations xk,t are iid over time, have finite second moment, and
are generated from the model ℓk(x|θ0), where θ0 is the actual hy-
pothesis in force from t > 0. Prediction and training data are inde-
pendent, and the Bernoulli random variables αtr

k,t and αpr
k,t are iid

over time and across the agents, they are mutually independent, as
well as independent of the training and prediction data. □

Let each agent k at time t make its decision by choosing the
hypothesis that maximizes the belief vector µk,t. Then, the instan-
taneous error probability at agent k is defined as:

pk,t ≜ P
[
θ0 ̸= argmax

θ∈Θ
µk,t(θ)

]
= P

[
∃θ ̸= θ0 : βk,t(θ) ≤ 0

]
,

(14)

where we introduce the log belief ratio βk,t(θ) ≜ log
µk,t(θ0)

µk,t(θ)
. In

Theorem 1, we establish that pk,t can be kept small, for sufficiently
large t and small δ and η, under a suitable identifiability condition.

To introduce the identifiability condition, consider the decision
statistic d⋆k(xk; θ) and the corresponding approximate posterior
p⋆k(θ|xk) constructed with the optimal parameter w⋆

k minimizing
the cost function Jk(wk) in (10). From (7) and (8), we can write:

log
p⋆k(θ0|xk)

p⋆k(θ|xk)
= d⋆k(xk; θ0)− d⋆k(xk; θ)

= h(xk)
(
w⋆

k(θ0)− w⋆
k(θ)

)
. (15)

If this log ratio is positive, the estimated posterior leads to a correct
decision. Assume that the log ratio is positive on average, namely,

E [d⋆k(xk,t; θ0)−d⋆k(xk,t; θ)]=E[h(xk,t)]
(
w⋆

k(θ0)−w⋆
k(θ)

)
>0.

(16)
To capture the significance of (16), consider the single-agent (SA)
version of (2a)–(2b) (i.e., ignore the combination step and set
ψSA

k,t = µSA
k,t) and use d⋆k(xk; θ) in place of dk(xk; θ), obtaining:

µSA
k,t(θ)∝µSA

k,t−1(θ)e
d⋆k(xk,t;θ)=µSA

k,0(θ)e
∑t

m=1d
⋆
k(xk,m;θ). (17)

Computing the log belief ratio, by the law of large numbers we get:

lim
t→∞

1

t
log

µSA
k,t(θ0)

µSA
k,t(θ)

= E [d⋆k(xk,t; θ0)− d⋆k(xk,t; θ)] , (18)

with probability 1. This shows that, under (16), the true hypothesis
can be perfectly identified by agent k over an infinite stream of data.
For this reason, we refer to (16) as a local identifiability condition.

In our social learning framework, where the agents learn cooper-
atively, local identifiability at each individual agent can be replaced
by the following less stringent condition.

Assumption 3 (Global Identifiability). We say that global identifi-
ability holds when, for all pairs (θ, θ0) with θ ̸= θ0:

βnet(θ) ≜
K∑

k=1

vk q
pr
k E[h(xk,t)]

(
w⋆

k(θ0)− w⋆
k(θ)

)
> 0. (19)

□

A useful interpretation of condition (19) can be obtained by in-
troducing the aggregate decision statistic across the agents:

K∑
k=1

vk α
pr
k,t d

⋆
k(xk,t; θ), (20)



Fig. 1. Social learning problem over the CIFAR-10 data set [22]. (Left): SML [16]. (Middle): A2SL. (Right-Top): Network topology.
(Right-Bottom): Image patches assigned to agents 1, . . . , 9.

where i) agent k is active at time t only if a prediction sample is ob-
served (αpr

k,t = 1); and ii) the agents’ decision statistics are scaled
by the Perron eigenvector entries. Condition (19) can now be inter-
preted as the counterpart of (16) where the local decision statistic
d⋆k(xk,t; θ) is replaced by the aggregate statistic.

The condition βnet(θ) > 0 is less stringent than local identi-
fiability because it does not require that the individual terms of the
summation in (19) are positive for all k. Note that higher network
centrality (i.e., higher Perron eigenvector entries vk) and more fre-
quent data acquisition (i.e., higher probabilities qprk ) enhance the role
of agent k in the identifiability condition.

Theorem 1 (Consistency of A2SL). Assume that µk,0(θ) > 0 for
all k and θ, and that Assumptions 1 and 2 hold. Then, the scaled log
belief ratio δβk,t(θ) is close to βnet(θ) for large t and sufficiently
small δ and η, in the following precise sense:

lim sup
t→∞

P
[∣∣δβk,t(θ)− βnet(θ)

∣∣ ≥ ε
]
≤ O(δ) +O(η), (21)

for all ε > 0. Moreover, under Assumption 3, Eq. (21) implies that
each agent detects the correct hypothesis θ0 with negligible error for
large t and sufficiently small δ and η, in the following precise sense:

lim sup
t→∞

pk,t = O(δ) +O(η). (22)

Sketch of proof. From (13c) and (13d), βk,t(θ) can be written as:
K∑

j=1

ajk

(
(1− δ)βj,t−1(θ) +α

pr
j,t h(xj,t)

(
wj,t(θ0)−wj,t(θ)

))
.

(23)

Iterating recursion (23), we obtain:

βk,t(θ)=(1− δ)t
K∑

j=1

[
At]

jk
βj,0(θ)+

t−1∑
m=0

K∑
j=1

(1− δ)m
[
Am+1]

jk

×αpr
j,t−m h(xj,t−m)

(
wj,t−m(θ0)−wj,t−m(θ)

)
. (24)

The first summation on the RHS of (24) is a transient term that dies
out as t → ∞. To provide a sketch of the proof, we observe that:
i) the columns of the matrix power Am+1 converge to v in view
of Assumption 1; ii) for small δ, it can be shown that the product
αpr

j,t−m h(xj,t−m) can be asymptotically replaced by the expected
value qprk E[h(xj,t−m)], up to a mean-square-error in the order of
O(δ); iii) the estimated parameter wj,t approaches the exact pa-
rameter w⋆

j up to a mean-square-error in the order of O(η) — see
(12); and iv) by applying Chebyshev’s inequality, one can relate the
error probability to the variance of the log belief ratios. Combining
these facts one can rigorously prove (21). Using then the condition
βnet(θ) > 0 and choosing ε appropriately, the claim in (22) comes
from (21). ■

5. REAL-DATA EXAMPLE AND CONCLUSION

We extracted real-world images of cars, airplanes, and trucks from
the CIFAR-10 data set [22]. Each class is represented by 1616 im-
ages. The training samples are purposely biased to contain only non-
red cars. We employ the transformer in [23] as a feature extractor, to
map the images into feature vectors of dimension 384× 1.

For the social learning problem, we consider a network of K =
9 agents, connected according to the topology displayed in the figure
(top-right). Given an image of car, airplane, or truck, each agent ob-
serves only a patch3 thereof (right-bottom), and must decide from
which class the image was generated. The agents employ social
learning to blend their partial views on the same image. We assume
that both the true hypothesis and the likelihood models change over
time. We enforce the second type of drift by introducing training and
prediction samples of red car images. Note the new training samples
are immaterial to the SML strategy, which has been trained offline.

In the left panel of Fig. 1, we consider the SML strategy, the
most advanced adaptive social learning strategy that handles un-
known models [16]. With this strategy, each agent learns offline
(we use a batch SGD algorithm) the parameter vectors wk(θ). Since
the agents are trained offline, they are not able to track model drifts.
In the considered example, at time t = 5000 the agents observe
patches from red cars. As shown by the belief evolution in the left
panel (we report the belief of agent 1, with similar behavior observed
for the other agents) red cars are misclassified as trucks. This is rea-
sonable, since the agents were trained on the initial data set that does
not contain red cars, while it contains red trucks.

In the middle panel of Fig. 1, we consider the A2SL strategy
with adaptation parameters δ = 0.005 and η = 0.1. We see that the
beliefs converge exponentially fast to the truth any time that drifts
occur in the true hypothesis or in the models. Differently from the
SML approach, when the model drift is encountered, the agents up-
date correctly their decision models by leveraging new training sam-
ples that contain red cars. Just after a few iterations required to adapt
to the changes, the agents correctly track the true hypothesis even in
the presence of the model drift.

In summary, Theorem 1 reveals that, for sufficiently small adap-
tation parameters δ and η, the A2SL strategy learns the truth regard-
less of the possible drift sources. Ongoing work includes the analysis
of the transient phase to relate δ and η to the adaptation time, which
would allow to capture the learning/adaptation trade-off in terms of
the relation between error probability and adaptation time.

3Patches are resized to match the dimension of the transformer’s input
and extract the features.
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