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ABSTRACT
This work introduces and studies the convergence of a
stochastic diffusion-optimistic learning (DOL) strategy for
solving distributed nonconvex (NC) and Polyak–Lojasiewicz
(PL) min-max optimization problems. Problems of this type
are of interest due to a wide range of applications, including
in generative adversarial networks (GANs), adversarial ma-
chine learning, and reinforcement learning. We prove that
the DOL algorithm approaches an ε-stationary point through
cooperation among agents following a left-stochastic com-
munication protocol. The good performance of the proposed
algorithm is illustrated by means of computer simulations.

Index Terms— Minimax optimization, nonconvex-PL,
optimistic algorithm, diffusion strategy.

1. INTRODUCTION
In recent years, there has been a surge of interest in study-
ing minimax optimization problems due to their wide range
of applications, ranging from generative adversarial networks
(GANs) [1], to reinforcement learning [2], and adversarial
learning [3].

There exists an extensive body of work on minimax opti-
mization problems in the single agent scenario where the pro-
cessing of the data is carried out at a single processing unit [4–
19]. Several variations have been considered for this purpose.
For example, some works studied strongly-convex strongly-
concave (SC-SC) formulations [5, 6], while other works fo-
cused on convex-concave (C-C) formulations [7–9]. In addi-
tion, some results established the intractability of finding sta-
tionary points in the general nonconvex-nonconcave setting,
even under smoothness conditions [4]. For this reason, many
recent investigations have been concentrating on solving min-
imax problems under more tractable conditions. For instance,
some works now assume a nonconvex-(strongly) concave set-
ting [10–12] or a (PL)nonconvex-PL setting [16,17,20], while
others consider the structured nonconvex-nonconcave setting
under the assumption that the (weak) Minty variational in-
equality holds [13–15].

For multi-agent minimax optimization problems, on the
other hand, the parameters/data are spread across multiple
computing nodes, which cooperate with each other to solve
the optimization problem [21–28]. Distributed multi-agent
learning is advantageous to deal with the growing demand
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for training large-scale models, as well as to enable privacy-
preserving and scalability features. In the multi-agent sce-
nario, some works have already addressed (S)C-(S)C prob-
lems [21, 22]. Moreover, some works have also approached
the problem by relying on variational inequalities [27, 28].

Nevertheless, the important scenarios involving noncon-
vexity in the primal variable and SC/PL in the dual variable
over multi-agent systems remain largely unexplored. To
our knowledge, there exist only a few distributed multi-agent
works under this setting [23–26]. We summarize the dis-
tinction between our work and these earlier contributions as
follows: i) We establish an O( 1

T 1/2 ) convergence rate for
the primal objective using a double-call variant of optimistic
gradient without the use of large batch sizes. Many exist-
ing results require large batch sizes where the stochastic gra-
dient is computed and averaged over large data samples to
guarantee convergence, see, e.g., [10, 12, 27, 28]. Moreover,
other works require the strong assumption that the stochas-
tic loss function is smooth (see remarks under Assumption 2)
[23–26]; ii) we establish convergence for both the primal and
dual objectives, while works such as [23–26] only demon-
strate convergence for the primal objective; iii) we consider
left-stochastic combination matrices, which are more general
than the doubly-stochastic setting considered in [23–28], and
enable a wider flexibility for the communication protocol;
and iv) our theoretical results are established without the
strong assumption that the stochastic loss functions should
be smooth, thus broadening the scope of applicability be-
yond [23–26]. We further note that only the recent work [26]
considers nonconvex-PL formulations.

Therefore, in this work, we study the stochastic multi-
agent minimax problem, which assumes nonconvexity over
the primal variable and PL over the dual variable. This setting
encompasses nonconvex strong-concavity as a subproblem.
The PL setting has attracted wide interest recently because it
has been shown to hold in the neighborhood of the minima
for over-parameterized neural networks [29]. We propose a
decentralized optimistic diffusion method, which generalizes
the optimistic gradient algorithm from game theory [30]. We
show that the proposed method converges to a stationary point
for both primal and dual objectives.

The remainder of this work is organized as follows. We
present the problem and algorithm in Section 2, and we
demonstrate the convergence results in Section 3. The perfor-



mance of the algorithm is simulated in Section 4. Section 5
summarizes the conclusion of this work.

2. PROBLEM FORMULATION
We consider a network of K agents connected by a graph
topology and used to solve the following minimax problem:

min
x∈RM1

max
y∈RM2

J(x, y) =

K∑
k=1

pkJk(x, y) (1)

where Jk(x, y) ≜ EξkQk(x, y; ξk) (2)
Here, x, y are the global parameters, and each agent k has
access to its local data set {ξk}. The agents approximate their
local risk functions Jk : RM1 × RM2 → R by using the loss
functions Qk(x, y; ξk). The scalars pk are positive weights
satisfying

∑K
k=1 pk = 1. In this work, we study the case

where each Jk(·, y) is nonconvex and smooth in x, while the
global objective −J(x, ·) is ν-PL in y.
2.1. Diffusion Optimistic Learning (DOL)
Single agent scenario: We consider first the optimistic gradi-
ent method; this technique can be derived from the forward-
reflected-backward framework [31], and it admits the follow-
ing update rule at iteration i [30]:

xi = xi − µ1∇xJ(xi−1, yi−1) (2a)
yi = yi + µ2∇yJ(xi−1, yi−1) (2b)

xi+1 = xi − µ1∇xJ(xi, yi) (2c)
yi+1 = yi + µ2∇yJ(xi, yi) (2d)

where µ1, µ2 are step-size or learning rates, set by the de-
signer. The algorithm starts from i = 0, say, with initial con-
ditions x̄0 = ȳ0 = x−1 = y−1. In the small step-size regime,
the variables {xi+1, yi+1} will be close to {xi+1, yi+1}. We
can simplify (2a)-(2d) and rewrite them in terms of the vari-
ables xi and yi as follows [12, 18]:

xi+1 = xi − µ1

(
2∇xJ(xi, yi)−∇xJ(xi−1, yi−1)

)
(3a)

yi+1 = yi + µ2

(
2∇yJ(xi, yi)−∇yJ(xi−1, yi−1)

)
(3b)

Multi-agent scenario: In the distributed stochastic en-
vironment, each agent k utilizes a local sample {ξk} to ap-
proximate the true local gradient of the risk function by using
its loss value. By integrating the adapt-then-combine (ATC)
diffusion strategy [32, 33] into the update rules (3a)-(3b), we
arrive at the DOL strategy listed in Algorithm 1. In this de-
scription, Nk denotes the set of neighbors of agent k, and aℓk
is the scaling weight for the information flowing from agent ℓ
to agent k.

To study the convergence of the algorithm, we introduce
the following network quantities:

xc,i ≜
K∑

k=1

pkxk,i ∈ RM×1 (centroid) (4a)

X i ≜ col{x1,i, . . . ,xK,i} ∈ RMK×1 (4b)

X c,i ≜ col{xc,i, . . . ,xc,i} ∈ RMK×1 (4c)

Gx,i ≜ col{gx,1,i, . . . , gx,K,i} ∈ RMK×1 (4d)
and similarly for yc,i ∈ RM×1,Yi,Yc,i,Gy,i ∈ RMK×1.

Algorithm 1 Diffusion Optimistic Learning (DOL)
Initialize: xk,i,yk,i, gx,k,i, gy,k,i, (i=−1,−2), step sizes µ1, µ2.

1: for i = 1, 2, . . . do
2: for each agent k do
3: Compute stochastic gradient with sample ξx,k,i, ξy,k,i

4:
gx,k,i−1 =2∇xQk(xk,i−1,yk,i−1; ξx,k,i)

− ∇xQk(xk,i−2,yk,i−2; ξx,k,i)

5:
gy,k,i−1 =2∇yQk(xk,i−1,yk,i−1; ξy,k,i)

− ∇yQk(xk,i−2,yk,i−2; ξy,k,i)

6: Adaptation
7: ϕk,i = xk,i−1 − µ1gx,k,i−1

8: ψk,i = yk,i−1 + µ2gy,k,i−1

9: Combination
10: xk,i =

∑
ℓ∈Nk

aℓkϕℓ,i, yk,i =
∑

ℓ∈Nk

aℓkψℓ,i

11: end for
12: end for

If we let A = [aℓk] and A ≜ A ⊗ I , where ⊗ stands for
the Kronecker product operator, then DOL can be expressed
using the network recursion:

X i = A⊤{X i−1 − µ1Gx,i−1}
Yi = A⊤{Yi−1 + µ2Gy,i−1}

(5)

3. CONVERGENCE RESULTS
In this section, we list the assumptions used in our analysis
and state the main convergence results. Due to space con-
straints, detailed proofs are omitted and will appear elsewhere
e.g., in an arXiv preprint.

3.1. Assumptions
Assumption 1. We assume each local risk function Jk(x, y)
is nonconvex in x while −J(x, y) is ν-PL in y, i.e., for any x
and y in the domain of J(x, y), it holds that

∥∇yJ(x, y)∥2 ≥ 2ν
{
max

y
J(x, y)− J(x, y)

}
(6)

where ν is a strictly positive constant. □

Assumption 2. We assume the gradients associated with
each local risk function are Lf -Lipschitz, i.e.,
∥∇wJk(x1, y1)−∇wJk(x2, y2)∥ (w = x or y) (7)

≤ Lf

(
∥x1 − x2∥+ ∥y1 − y2∥

)
□

Remark 1. We assume (7) holds for the local risk Jk(x, y).
This is in contrast to the works [23–26], where smoothness of
the local loss Qk(x, y; ξk) is also assumed.

Since the goal of the primal problem is to minimize over
the variable x, we introduce the primal objective as [23–26]:

P (x) ≜ maxy J(x, y) (8)

Assumption 3. We assume the primal function P (x) is lower
bounded, i.e., P ⋆ = infx P (x) > −∞. □
Assumption 4. The graph is strongly connected and the ma-
trix A = [aℓ,k] is left-stochastic and primitive. As a result, it
holds that 1⊤A = 1

⊤ and Ar has strictly positive entries for
some integer r [32, 33]. □



The last assumption ensures that A has a single maximum
eigenvalue at 1 with Perron eigenvector p with positive entries
and such that Ap = p,1⊤p = 1. Furthermore, the combina-
tion matrix A admits a Jordan decomposition of the following
form A = V JV −1 where [32, 33]:

V =
[
p, VR

]
, J =

[
1 0
0 Jγ

]
, V −1 =

[
1
⊤

V ⊤
L

]
(9)

Here, the submatrix Jγ consists of Jordan blocks with ar-
bitrarily small values γ on the lower diagonal, and where
1
⊤VR = 0, V ⊤

L VR = I , ∥Jγ∥ < 1. For convenience of the
analysis, we let Jγ ≜ Jγ ⊗ I,VR ≜ VR ⊗ I,VL ≜ VL ⊗ I .

Assumption 5. We denote the filtration generated by the ran-
dom processes by F i = {(xk,j ,yk,j) | k = 1, . . . ,K, j =
−2,−1, . . . , i}, and assume the stochastic gradients are un-
biased with bounded variance:
E
{
∇wQk(xk,i,yk,i; ξw,k,i) | F i

}
= ∇wJk(xk,i,yk,i)

E
{
∥∇wQk(xk,i,yk,i; ξw,k,i)−∇wJk(xk,i,yk,i)∥2 | F i

}
≤ σ2

k (w = x or y) (10)
Moreover, we assume the data samples ξw,k,i are independent
of each other for all k, i and w. □

Assumption 6. We assume the disagreement between the lo-
cal and global gradients is bounded, i.e.,
∥∇wJk(x, y)−∇wJ(x, y)∥2 ≤ G2 (w = x or y) (11)

□3.2. Main Results

We adopt the ε-approximate stationary condition as the con-
vergence criterion, which is the standard criterion for this
setting [10–12, 23–25]. The majority of single(multi)-agent
minimax works [10–12,23–25] focus on studying the conver-
gence of the primal objective, i.e., on finding a point x⋆

c,T0

that satisfies

E∥∇P (x⋆
c,T0

)∥2 ≤ ε2 (12)

for an arbitrarily small constant ε and after some itera-
tions T0. In contrast, we seek to find the network centroid
(x⋆

c,T0
,y⋆

c,T0+T1
) that satisfies the following first-order sta-

tionary conditions:
E∥∇xJ(x

⋆
c,T0

,y⋆
c,T0+T1

)∥2 ≤ ε2 (13a)

E∥∇yJ(x
⋆
c,T0

,y⋆
c,T0+T1

)∥2 ≤ ε2 (13b)
for an arbitrarily small constant ε and after some iterations
T0 + T1. Note that the convergence condition (12) only guar-
antees the solution for the primal variable x, since the pri-
mal objective P (x) does not involve the direct computation
of the dual variable y. Nonetheless, both primal and dual so-
lutions are essential, and we therefore need to establish the
more challenging property (13a)-(13b).

We present the following main results.

Lemma 1. Under Assumptions 2-6, the averaged network

deviation is bounded as
1

T

T−1∑
i=0

(
E∥X i −X c,i∥2 + E∥Yi −Yc,i∥2

)
≤ O

(η2(4KG2 + µ1σ
2)µ2

1− ∥J⊤
γ ∥2

) (14)

for sufficiently small step sizes µ1, µ2 and µ1 ≤ µ2, where
σ2 =

∑K
k=1 σ

2
k is the sum of the local gradient noise vari-

ances, and η2 = ∥V⊤
R ∥2∥V⊤

L ∥2∥J⊤
γ ∥2 is a constant.

Theorem 1. Under Assumptions 1-6, the expected gradient
norm of the primal objective satisfies

1

T

T−1∑
i=0

E∥∇P (xc,i)∥2

≤ O
( 1

µ1T

)
+O

(
a2µ2max

k
p2k

)
+O

(
e2µ2

2max
k

p2k

)
+O

( d2KG2µ2

1− ∥J⊤
γ ∥2

)
(15)

for sufficiently large number of iterations T and sufficiently
small step sizes µ1 ≪ µ2 < 1, and where

a2 =
L3
fσ

2

ν2
, e2 = Kσ2L2

f (
8L2

f

ν2
+ 4)

d2 = (
8L2

f

ν2
+ 4)L2

f∥V⊤
R ∥2∥VL∥2∥J⊤

γ ∥2
(16)

are constants. We choose µ1 = O
(

1−∥J⊤
γ ∥

T 1/2

)
and µ2 = Cµ1

for sufficiently large constant C, and get the non-asymptotic
bound for sufficiently large T :

1

T

T−1∑
i=0

E∥∇P (xc,i)∥2 ≤ O
( 1

T 1/2

)
+O

( 1

T

)
(17)

That is, DOL outputs an ε-stationary point after T0 =
O(ε−4) iterations and gradient evaluation complexity, i.e.,
E∥∇P (x⋆

c,T0
)∥2 = inf

i=0,...,T0−1
E∥∇P (xc,i)∥2

≤ 1

T0

T0−1∑
i=0

E∥∇P (xc,i)∥2 ≤ O(ε2)
(18)

Theorem 2. Under Assumptions 1-6, we can find an ε-
stationary point (x⋆

c,T0
,y⋆

c,T0+T1
) satisfying (13a)-(13b) for

small ε and after large number of iterations T0 + T1 =
O(ε−4) + O(ε−4) with the parameter choices for µ1, µ2

shown in Theorem 1.
Proof. We use the sequential approach to achieve (13a)-
(13b), i.e., we first show that DOL finds a global primal
variable x⋆

c,T0
that satisfies the following stationary condi-

tion:
E∥∇P (x⋆

c,T0
)∥2 = E∥∇xJ(x

⋆
c,T0

,yo(x⋆
c,T0

))∥2

≤ ε2

4
= O(ε2)

(19)

after T0 = O(ε−4) iterations using the parameters consid-
ered in Theorem 1, where yo(x⋆

c,T0
) denotes the optimal dual

variable when fixing x⋆
c,T0

. On the other hand, by halting the
update of x⋆

c,T0
, we can find a point y⋆

c,T0+T1
that satisfies the
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Fig. 1. Performance comparison of DOL with diffusion gradient descent ascent (DGDA), diffusion alternating gradient descent
ascent (DAGDA), and diffusion alternating gradient descent ascent with momentum (DAGDAM) for stochastic bilinear game.

second stationary condition (13b) after T1 = O(ε−4) itera-
tions. The first stationary condition (13a) will also be satisfied
under condition (19).

4. COMPUTER SIMULATIONS
The experiment utilizes a stochastic bilinear function to illus-
trate the performance of DOL. In this example, the agents
collaborate to solve the following global objective:

min
x

max
y

J(x, y) =

K∑
k=1

pkJk(x, y)

Jk(x, y) ≜ Eξk
[
x⊤A(ξk)y + x⊤gx(ξk) + g⊤y (ξk)y

] (20)

where A(ξk), gx(ξk), gy(ξk) are random quantities with de-
pendence on the random sample ξk. We consider the models
in [19] to generate the data samples for each agent k:

A(ξk) ≜ Ak +N(ξk) ∈ RM×M

[N(ξk)]ij ∼ N (mAk
, σ2

Ak
)

(21)

where Ak is a constant matrix. Each entry of N(ξk) is a Gaus-
sian random variable; all variables are independent of each
other:

gx(ξk) ∈ RM×1 ∼ N (mxk
1M , σ2

xk
IM )

gy(ξk) ∈ RM×1 ∼ N (myk
1M , σ2

yk
IM )

(22)

The Nash equilibrium of (20) can be verified by setting the
gradients of J(x, y) relative to x and y to 0, respectively.

4.1. Experimental Setting
We generate the random samples for each agent k as follows:
the mean values are set to zero, i.e., mAk

= mxk
= myk

= 0,
the variances are set to σ2

Ak
= σ2

xk
= σ2

yk
= 1e−4, the

constant matrices are set to Ak = IM , and M = 20. Un-
der this setting, the Nash equilibrium is given by (xo, yo) =
(0M×1, 0M×1). We then generate a strongly-connected net-
work with K = 10 agents and use the averaging rule [33,34].
We also implement DOL under a fully-connected network
topology. We further compare DOL with diffusion gradient

descent ascent, diffusion alternating gradient descent ascent
(DAGDA) (which updates the primal and dual variables in a
sequential manner) [17], and the DAGDA with momentum
(DAGDAM) [35] by extending the corresponding algorithms
to the multi-agent scenario.

4.2. Simulation Result
Figure 1(a) illustrates the mean-square-error between the net-
work centroid (xc,i,yc,i) obtained by different algorithms
and the Nash equilibrium (xo, yo). It is observed from
this figure that DGDA diverges, while the DAGDA trajec-
tory remains flat, neither converging nor diverging. On the
other hand, DAGDAM with conventional positive momentum
(β1 > 0, β2 > 0) has unstable effect in this application where
it diverges fast, while DAGDAM with negative momentum
(β1 < 0, β2 < 0) is able to converge, however, to the less
accurate neighbourhood of the Nash equilibrium. In compar-
ison, the DOL method converges to the neighbourhood of the
Nash equilibrium and also matches the centralized solution.

Figure 1(b) illustrates the convergence result of DOL for
different step-sizes. It is observed that DOL converges for a
wide range of step sizes.

5. CONCLUSION
In this work, we introduced and studied the convergence
behavior of diffusion optimistic learning (DOL) for fully
distributed stochastic nonconvex-PL minimax optimization
problems. Convergence towards an ε-stationary point is guar-
anteed under suitable parameters. We simulated the algorithm
by considering a stochastic bilinear game, and observed that
DOL outperforms DAGDA and DAGDAM and converges to
the neighbourhood of the Nash equilibrium.
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